
Motion Planning, Part III

Graph Search, Part I

Howie Choset

Happy President’s Day

The Configuration Space

• What it is

– A set of “reachable” areas constructed from

knowledge of both the robot and the world

• How to create it

– First abstract the robot as a point object. Then,

enlarge the obstacles to account for the robot’s

footprint and degrees of freedom

– In our example, the robot was circular, so we

simply enlarged our obstacles by the robot’s radius

(note the curved vertices)

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot

(treat as point object) x,y

Translate-only, non-circularly

symmetric

Pick a reference point…

Translate-only, non-circularly

symmetric

Pick a reference point…

With Rotation: how much distance to rotate

Pick a reference point…

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
180 360 270 90

qA

b

a

qB

A

B

Torus

(wraps horizontally and vertically)

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
90 180 135 45

qA

b

a

qB

A

B

Torus

(wraps vertically)

Configuration Space Obstacle

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
90 180 135 45

qB

qA

The C-space representation

of this obstacle…

b

a

How do we get from A to B ?

A

B

Reference configuration

Two Link Path

Thanks to Ken Goldberg

Two Link Path

Total Potential Function

+ =

)()()(repatt qUqUqU

)()(qUqF

Local Minimum Problem with the Charge Analogy

Representations

• World Representation
– You could always use a large region and distances

– However, a grid can be used for simplicity

Representations: A Grid

• Distance is reduced to discrete steps

– For simplicity, we’ll assume distance is uniform

• Direction is now limited from one adjacent cell to another

– Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

• 8-Point Connectivity • 4-Point Connectivity
– (approximation of the L1 metric)

The Wavefront Planner: Setup

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with

“0” to the current cell + 1

– 4-Point Connectivity or 8-Point Connectivity?

– Your Choice. We’ll use 8-Point Connectivity in our example

The Wavefront in Action (Part 2)

• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells
with values >= 2

• 0’s will only remain when regions are unreachable

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

• You’re done

– Remember, 0’s should only remain if unreachable
regions exist

The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always

move toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly proportional to their

distance from the goal

Two

possible

shortest

paths

shown

This is really a Continuous Solution

Not pixels

Waves bend

L1 distance

Pretty Wavefront

Rapidly-Exploring Random Tree

Path Planning with RRTs

(Rapidly-Exploring Random Trees)

BUILD_RRT (qinit) {

 T.init(qinit);

 for k = 1 to K do

 qrand = RANDOM_CONFIG();

 EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

(Some Details)

BUILD_RRT (qinit) {

 T.init(qinit);

 for k = 1 to K do

 qrand = RANDOM_CONFIG();

 EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

STEP_LENGTH: How far to sample

1. Sample just at end point

2. Sample all along

3. Small Step

Extend returns

1. Trapped, cant make it

2. Extended, steps toward node

3. Reached, connects to node

STEP_SIZE

1. Not STEP_LENGTH

2. Small steps along way

3. Binary search

Grow two RRTs towards each other

qinit

qgoal

qnew

qtarget

qnear

[Kuffner, LaValle ICRA ‘00]

Map-Based Approaches:

Roadmap Theory
• Properties of a roadmap:

– Accessibility: there exists a collision-free

path from the start to the road map

– Departability: there exists a collision-free

path from the roadmap to the goal.

– Connectivity: there exists a collision-free

path from the start to the goal (on the

roadmap).

 a roadmap exists a path exists

 Examples of Roadmaps
– Generalized Voronoi Graph (GVG)

– Visibility Graph

Roadmap: Visibility Graph

• Formed by connecting all “visible” vertices, the

start point and the end point, to each other

• For two points to be “visible” no obstacle can

exist between them

– Paths exist on the perimeter of obstacles

• In our example, this produces the shortest path

with respect to the L2 metric. However, the close

proximity of paths to obstacles makes it dangerous

The Visibility Graph in Action (Part 1)

• First, draw lines of sight from the start and goal to all

“visible” vertices and corners of the world.

start

goal

The Visibility Graph in Action (Part 2)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 3)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 4)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph (Done)

• Repeat until you’re done.

start

goal

Visibility Graph Overview

• Start with a map of the world, draw lines of sight from the

start and goal to every “corner” of the world and vertex of

the obstacles, not cutting through any obstacles.

• Draw lines of sight from every vertex of every obstacle

like above. Lines along edges of obstacles are lines of

sight too, since they don’t pass through the obstacles.

• If the map was in Configuration space, each line

potentially represents part of a path from the start to the

goal.

Graph Search
Howie Choset

16-311

42

Outline

• Overview of Search Techniques

• A* Search

43

Graphs

Collection of Edges and Nodes (Vertices)

A tree

44

Grids

45

Stacks and Queues

Stack: First in, Last out (FILO)

Queue: First in, First out (FIFO)

46

Depth First Search

Worst case

performance

O(| V | + | E |) for explicit graphs traversed without

repetition,

Worst case space

complexity

O(| V |) if entire graph is traversed without repetition,

O(longest path length searched) for implicit graphs

without elimination of duplicate nodes

algorithm dft(x)

 visit(x)

 FOR each y such that (x,y) is an edge

 IF y was not visited yet

 THEN dft(y)

Copied from wikipedia

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

47

Breadth First Search
visit(start node)

queue <- start node

WHILE queue is nor empty DO

 x <- queue

 FOR each y such that (x,y) is an edge

 and y has not been visited yet DO

 visit(y)

 queue <- y

 END

END
wikipedia

http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch14.html

48

Depth First and Breadth First

49

Wavefront Planner: A BFS

50

Search

• Uninformed Search

– Use no information obtained from the

environment

– Blind Search: BFS (Wavefront), DFS

• Informed Search

– Use evaluation function

– More efficient

– Heuristic Search: A*, D*, etc.

51

B C

G

D

FE

I J

A

M

H K

NL

Uninformed Search

Graph Search from A to N

BFS

52

Dijkstra’s Search: f(n) = g(n)

Pop lowest f first

53

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

Pop lowest f first

54

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

Pop lowest f first

55

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

Pop lowest f first

56

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

Pop lowest f first

57

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5, 3}; C = {S, 2, 4, 1}

Pop lowest f first

58

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5, 3}; C = {S, 2, 4, 1}

6. O = {3, G}; C = {S, 2, 4 1,5} (goal points to 5 which points to 4 which points to S)

Pop lowest f first

59

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5, 3}; C = {S, 2, 4, 1}

6. O = {3, G}; C = {S, 2, 4 1,5} (goal points to 5 which points to 4 which points to S)

7. O = {3}; C = {S, 2, 4, 1,5} (Path found because Goal was popped)

Pop lowest f first

60

Informed Search: A*

Notation

• n → node/state

• c(n1,n2) → the length of an edge connecting

between n1 and n2

• b(n1) = n2 → backpointer of a node n1 to a

node n2.

61

Informed Search: A*

• Evaluation function, f(n) = g(n) + h(n)

• Operating cost function, g(n)

– Actual operating cost having been already traversed

• Heuristic function, h(n)

– Information used to find the promising node to traverse

– Admissible → never overestimate the actual path cost

Cost on a grid

62

A*: Algorithm

 The search requires 2

lists to store

information about

nodes
1) Open list (O) stores nodes

for expansions

2) Closed list (C) stores

nodes which we have

explored

Start

Pick n
best

 from O such

that f(n
best

) < f(n)

Remove n
best

 from O

and add it to C

n
best

 = goal?

End

YN

Expand all nodes x

that are neighbors of

n
best

 and not in C

x is not in O?

Add x to Oupdate b(x)=n
best

if

(g(n
best

)+c(n
best

,x)<g(x))

O is empty? EndY

N

YN

63

A*: Example (1/6)

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Heuristics

A = 14 H = 8

B = 10 I = 5

C = 8 J = 2

D = 6 K = 2

E = 8 L = 6

F = 7 M = 2

G = 6 N = 0

Legend
operating cost

64

A*: Example (2/6)

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6

H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

Closed List Open List - Priority Queue

A(0) E(11)

B(14)

H(14)

E(y) = E(f(n))

where f(n) = g(n) + h(n)

 = 3 + 8 = 11

Expand

A(x) = A(g(n))

65

A*: Example (3/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6

H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Since A → B is smaller

than A → E → B, the f-

cost value of B in an

open list needs not be

updated

Closed List Open List - Priority Queue

A(0)

B(14)

H(14)

E(3)

F(14)

Update Add new node

I(11)

B(16) >

H(15) >

66

A*: Example (4/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6

H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Closed List Open List - Priority Queue

A(0)

H(14)

F(14)

E(3)

L(15)

Update Add new node

J(12)

H(18)

F(17) >

M(12)

B(14)I(6)

>

67

A*: Example (5/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6

H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Closed List Open List - Priority Queue

A(0)

H(14)

F(14)

E(3)

L(15)

Update Add new node

F(21) >

M(12)

B(14) I(6)

J(10)

N(13)

K(16)

G(19)

M(16) >

68

A*: Example (6/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6

H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Since the path to N from

M is greater than that

from J, the optimal path

to N is the one traversed

from J

Closed List Open List - Priority Queue

A(0)

B(14)

H(14)

E(3)

F(14)

I(6)

Update Add new node

J(10)

N(13)

L(15)

K(16)

G(19)

M(10)

N(14)

L(24)

>

>

Goal

69

A*: Example Result

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Generate the path

from the goal node

back to the start node

through the back-

pointer attribute

