Motion Planning, Part III Graph Search, Part I

Howie Choset

Happy President's Day

The Configuration Space

- What it is
- A set of "reachable" areas constructed from knowledge of both the robot and the world
- How to create it
- First abstract the robot as a point object. Then, enlarge the obstacles to account for the robot's footprint and degrees of freedom
- In our example, the robot was circular, so we simply enlarged our obstacles by the robot's radius (note the curved vertices)

Example of a World (and Robot)

Free Space

Obstacles

Robot

Configuration Space: Aceommodate Robot sic

Free Space

Obstacles

Robot
(treat as point object)

Translate-only, non-circularly

$$
\mathcal{Q O}_{i}=\left\{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{W} \mathcal{O}_{i} \neq \emptyset\right\} .
$$

Pick a reference point...

Translate-only, non-circularly symmetric

$$
\mathcal{Q O}_{i}=\left\{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{W} \mathcal{O}_{i} \neq \emptyset\right\} .
$$

Pick a reference point...

With Rotation: how much distance to rotate

$$
\mathcal{Q O}_{i}=\left\{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{W} \mathcal{O}_{i} \neq \emptyset\right\} .
$$

Pick a reference point...

Configuration Space "Quiz"

An obstacle in the robot's workspace

Where do we put
 ?

Configuration Space "Quiz"

Where do we put

(wraps vertically)

Configuration Space Obstacle

How do we get from A to B ?

Reference configuration

An obstacle in the robot's workspace
The C-space representation of this obstacle...

Two Link Path

Thanks to Ken Goldberg

Two Link Path

Total Potential Function

$$
U(q)=U_{\mathrm{att}}(q)+U_{\mathrm{rep}}(q)
$$

$$
F(q)=-\nabla U(q)
$$

$=$

Local Minimum Problem with the Charge Analogy

Representations

- World Representation
- You could always use a large region and distances
- However, a grid can be used for simplicity

| | | | | | | | | | | | | | | | | | | |
| :--- |

Representations: A Grid

- Distance is reduced to discrete steps
- For simplicity, we'll assume distance is uniform
- Direction is now limited from one adjacent cell to another
- Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

- 8-Point Connectivity • 4-Point Connectivity
- (approximation of the L1 metric)

The Wavefront Planner: Setup

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with " 0 " to the current cell +1
- 4-Point Connectivity or 8-Point Connectivity?
- Your Choice. We'll use 8-Point Connectivitv in our examnle

7	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	$\mathbf{1}$	0	0	0	0							
3	0	0	0	0	$\mathbf{1}$	0	0	0	0							
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
\mathbf{n}	\mathbf{n}	$\mathbf{2}$														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
- This will be repeated until no 0's are adjacent to cells with values $>=2$
- 0 's will only remain when regions are unreachable

7	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	$\mathbf{1}$	0	0	0	0							
3	0	0	0	0	$\mathbf{1}$	0	0	0	0							
2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	$\mathbf{2}$
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

- Repeat again...

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	0	1	12	13	14	15

The Wavefront in Action (Part 4)

- And again...

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	6	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	0	1	12	13	14	15

The Wavefront in Action (Part 5)

- And again until...

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	7	7	7	7	7
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	7	6	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	0	11	12	13	14	15

The Wavefront in Action (Done)

- You're done
- Remember, 0's should only remain if unreachable regions exist

7	$\mathbf{1 8}$	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	$\mathbf{1}$	6	6	6	6							
3	17	16	15	14	$\mathbf{1}$	5	5	5	5							
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	$\mathbf{2}$
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront, Now What?

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
- The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two possible shortest paths shown

76	18										9	9	9	9	9	9
	17	17	16	15	14	13	12	11	10	9		8	8	8	8	8
5	17	16	${ }^{5}$	15	14	13	12	11	10	9	8		7	7	7	7
4	17	16	15	5	1	1	1	1	1	1	1	1		6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5		5	5
2	17	16	15	14	1	12	11	10	9	8	7	6	5	4		4
1	17	16	15	14	13	1	11	10	9	8	7	6	5	4	3	
0	17	16	15	14	13	12										
	0	1	2	3	4	5	6			1					14	15

Not pixels
Waves bend
L1 distance

Pretty Wavefront

Rapidly-Exploring Random Tree

Path Planning with RRTs (Rapidly-Exploring Random Trees)

```
BUILD_RRT (qinit ) {
    T.init(q}\mp@subsup{q}{init}{\prime})
    for }k=1\mathrm{ to K do
        q}\mp@subsup{q}{\mathrm{ rand }}{}=\mathrm{ RANDOM_CONFIG();
        EXTEND}(T,\mp@subsup{q}{rand}{}
```

$\operatorname{EXTEND}\left(T, q_{\text {rand }}\right)$

Path Planning with RRTs (Some Details)

STEP_LENGTH: How far to sample

1. Sample just at end point
2. Sample all along
3. Small Step

Extend returns

1. Trapped, cant make it
2. Extended, steps toward node
3. Reached, connects to node

STEP_SIZE

1. Not STEP_LENGTH
2. Small steps along way
3. Binary search
$\operatorname{EXTEND}\left(T, q_{\text {rand }}\right)$

Grow two RRTs towards each other

Map-Based Approaches: Roadmap Theory

- Properties of a roadmap:
- Accessibility: there exists a collision-free path from the start to the road map
- Departability: there exists a collision-free path from the roadmap to the goal.
- Connectivity: there exists a collision-free path from the start to the goal (on the roadmap).

- a roadmap exists \Leftrightarrow a path exists
- Examples of Roadmaps
- Generalized Voronoi Graph (GVG)
- Visibility Graph

Roadmap: Visibility Graph

- Formed by connecting all "visible" vertices, the start point and the end point, to each other
- For two points to be "visible" no obstacle can exist between them
- Paths exist on the perimeter of obstacles
- In our example, this produces the shortest path with respect to the L2 metric. However, the close proximity of paths to obstacles makes it dangerous

The Visibility Graph in Action (Part 1)

- First, draw lines of sight from the start and goal to all "visible" vertices and corners of the world.

The Visibility Graph in Action (Part 2)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 3)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 4)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph (Done)

- Repeat until you're done.

Visibility Graph Overview

- Start with a map of the world, draw lines of sight from the start and goal to every "corner" of the world and vertex of the obstacles, not cutting through any obstacles.
- Draw lines of sight from every vertex of every obstacle like above. Lines along edges of obstacles are lines of sight too, since they don't pass through the obstacles.
- If the map was in Configuration space, each line potentially represents part of a path from the start to the goal.

Graph Search Howie Choset 16-311

Outline

- Overview of Search Techniques
- A* Search

Graphs

Collection of Edges and Nodes (Vertices)

A tree

43

Grids

nl	12	11
-1	4	ns
[17	418	\|17

al	nit	n
-1	nis	103
E7	[st

Stacks and Queues

Stack: First in, Last out (FILO)
Queue: First in, First out (FIFO)

Depth First Search

algorithm $\operatorname{dft}(\mathrm{x})$
visit(x)
FOR each y such that (x, y) is an edge
IF y was not visited yet THEN dft(y)

Copied from wikipedia

Worst case
performance
Worst case space complexity
$O(|V|+|E|)$ for explicit graphs traversed without repetition,
$O(|V|)$ if entire graph is traversed without repetition, O(longest path length searched) for implicit graphs without elimination of duplicate nodes
visit(start node)

Breadth First Search

 queue <- start node WHILE queue is nor empty D^{1} x <- queue FOR each y such that (and y has not br visit(y) queue <- y END
END

Depth First and Breadth First

Wavefront Planner: A BFS

Search

- Uninformed Search
- Use no information obtained from the environment
- Blind Search: BFS (Wavefront), DFS
- Informed Search
- Use evaluation function
- More efficient
- Heuristic Search: A*, D*, etc.

Uninformed Search

Graph Search from A to N

- BFS

Dijkstra's Search: $f(n)=g(n)$

Pop lowest f first

Dijkstra's Search: $f(n)=g(n)$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$

Dijkstra's Search: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $O=\{1,2,4,5\} ; C=\{S\}(1,2,4,5$ all back point to $S)$

Dijkstra's Search: $f(n)=g(n)$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $O=\{1,2,4,5\} ; C=\{S\}(1,2,4,5$ all back point to $S)$
3. $\mathrm{O}=\{1,4,5\} ; \mathrm{C}=\{\mathrm{S}, 2\}$ (there are no adjacent nodes not in C)

Dijkstra's Search: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $O=\{1,2,4,5\} ; C=\{S\}(1,2,4,5$ all back point to $S)$
3. $\mathrm{O}=\{1,4,5\} ; \mathrm{C}=\{\mathrm{S}, 2\}$ (there are no adjacent nodes not in C)
4. $O=\{1,5,3\} ; C=\{S, 2,4\}(1,2,4$ point to $S ; 5$ points to 4$)$

Dijkstra's Search: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $\mathrm{O}=\{1,2,4,5\} ; \mathrm{C}=\{\mathrm{S}\}(1,2,4,5$ all back point to S$)$
3. $\mathrm{O}=\{1,4,5\} ; \mathrm{C}=\{\mathrm{S}, 2\}$ (there are no adjacent nodes not in C)
4. $\mathrm{O}=\{1,5,3\} ; \mathrm{C}=\{\mathrm{S}, 2,4\}(1,2,4$ point to $\mathrm{S} ; 5$ points to 4$)$
5. $\mathrm{O}=\{5,3\} ; \mathrm{C}=\{\mathrm{S}, 2,4,1\}$

Dijkstra's Search: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $\mathrm{O}=\{1,2,4,5\} ; \mathrm{C}=\{\mathrm{S}\}(1,2,4,5$ all back point to S$)$
3. $\mathrm{O}=\{1,4,5\} ; \mathrm{C}=\{\mathrm{S}, 2\}$ (there are no adjacent nodes not in C)
4. $O=\{1,5,3\} ; C=\{S, 2,4\}(1,2,4$ point to $S ; 5$ points to 4$)$
5. $\mathrm{O}=\{5,3\} ; \mathrm{C}=\{\mathrm{S}, 2,4,1\}$
6. $\mathrm{O}=\{3, \mathrm{G}\} ; \mathrm{C}=\{\mathrm{S}, 2,41,5\}$ (goal points to 5 which points to 4 which points to S)

Dijkstra's Search: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})$

Pop lowest f first

1. $\mathrm{O}=\{\mathrm{S}\}$
2. $O=\{1,2,4,5\} ; C=\{S\}(1,2,4,5$ all back point to $S)$
3. $\mathrm{O}=\{1,4,5\} ; \mathrm{C}=\{\mathrm{S}, 2\}$ (there are no adjacent nodes not in C)
4. $\mathrm{O}=\{1,5,3\} ; \mathrm{C}=\{\mathrm{S}, 2,4\}(1,2,4$ point to $\mathrm{S} ; 5$ points to 4$)$
5. $O=\{5,3\} ; \mathrm{C}=\{\mathrm{S}, 2,4,1\}$
6. $\mathrm{O}=\{3, \mathrm{G}\} ; \mathrm{C}=\{\mathrm{S}, 2,41,5\}$ (goal points to 5 which points to 4 which points to S)
7. $O=\{3\} ; C=\{S, 2,4,1,5\}$ (Path found because Goal was popped)

Informed Search: A*

Notation

- $n \rightarrow$ node/state
- $c\left(n_{1}, n_{2}\right) \rightarrow$ the length of an edge connecting between n_{1} and n_{2}
- $\boldsymbol{b}\left(\boldsymbol{n}_{1}\right)=\boldsymbol{n}_{2} \rightarrow$ backpointer of a node n_{1} to a node n_{2}.

Informed Search: A*

- Evaluation function, $f(n)=g(n)+h(n)$
- Operating cost function, $g(n)$
- Actual operating cost having been already traversed
- Heuristic function, $\boldsymbol{h}(\boldsymbol{n})$
- Information used to find the promising node to traverse
- Admissible \rightarrow never overestimate the actual path cost

Cost on a grid

A*: Algorithm

The search requires 2 lists to store information about nodes

1) Open list (\mathbf{O}) stores nodes for expansions
2) Closed list (C) stores nodes which we have explored

A*: Example (1/6)

Heuristics

$A=14$	$H=8$
$B=10$	$I=5$
$C=8$	$J=2$
$D=6$	$K=2$
$E=8$	$L=6$
$F=7$	$M=2$
$G=6$	$N=0$

Legend \bigcirc operating cost

A*: Example (2/6)

Heuristics

$A=14, B=10, C=8, D=6, E=8, F=7, G=6$
$H=8, \quad I=5, J=2, K=2, L=6, M=2, N=0$

A*: Example (3/6)

Closed List Open List - Priority Queue

Heuristics

$A=14, B=10, C=8, D=6, E=8, F=7, G=6$
$\mathrm{H}=8, \quad \mathrm{I}=5, \mathrm{~J}=2, \mathrm{~K}=2, \mathrm{~L}=6, \mathrm{M}=2, \mathrm{~N}=0$

\square Update

Since $A \rightarrow B$ is smaller than $\mathrm{A} \rightarrow \mathrm{E} \rightarrow \mathrm{B}$, the $\mathrm{f}-$ cost value of B in an open list needs not be updated

A*: Example (4/6)

\square Update \square Add new node

Heuristics
$A=14, \quad B=10, C=8, D=6, E=8, F=7, G=6$
$H=8, \quad I=5, \quad J=2, K=2, L=6, M=2, N=0$

A*: Example (5/6)

Closed List Open List - Priority Queue

\square Update \qquad Add new node

Heuristics

$$
\begin{aligned}
& A=14, \quad B=10, C=8, D=6, E=8, F=7, G=6 \\
& H=8, \quad I=5, \quad J=2, K=2, L=6, M=2, N=0
\end{aligned}
$$

A*: Example (6/6)

Closed List Open List - Priority Queue

Heuristics

$A=14, B=10, C=8, D=6, E=8, F=7, G=6$
$H=8, I=5, J=2, K=2, L=6, M=2, N=0$

Since the path to N from M is greater than that from J, the optimal path to N is the one traversed from J

A*: Example Result

Generate the path from the goal node back to the start node through the backpointer attribute

