
Motion Planning, Part III 

Graph Search, Part I 

Howie Choset 



Happy President’s Day 



The Configuration Space 

• What it is 

– A set of “reachable” areas constructed from 

knowledge of both the robot and the world 

• How to create it 

– First abstract the robot as a point object.  Then, 

enlarge the obstacles to account for the robot’s 

footprint and degrees of freedom 

– In our example, the robot was circular, so we 

simply enlarged our obstacles by the robot’s radius 

(note the curved vertices) 



Example of a World (and Robot) 

Obstacles 

Free Space 

Robot 

x,y 



Configuration Space: Accommodate Robot Size 

Obstacles 

Free Space 

Robot 

(treat as point object) x,y 



Translate-only, non-circularly 

symmetric 

Pick a reference point… 



Translate-only, non-circularly 

symmetric 

Pick a reference point… 



With Rotation: how much distance to rotate 

Pick a reference point… 



Where do we put          ? 

Configuration Space “Quiz” 

An obstacle in the robot’s workspace 

b 

a 

270 

360 

180 

90 

0 
180 360 270 90 

qA 

b 

a 

qB 

A 

B 

Torus 

(wraps horizontally and vertically) 



Where do we put          ? 

Configuration Space “Quiz” 

An obstacle in the robot’s workspace 

b 

a 

270 

360 

180 

90 

0 
90 180 135 45 

qA 

b 

a 

qB 

A 

B 

Torus 

(wraps vertically) 



Configuration Space Obstacle 

An obstacle in the robot’s workspace 

b 

a 

270 

360 

180 

90 

0 
90 180 135 45 

qB 

qA 

The C-space representation 

of this obstacle… 

b 

a 

How do we get from A to B ? 

A 

B 

Reference configuration 



Two Link Path 

Thanks to Ken Goldberg 



Two Link Path 



Total Potential Function 
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Local Minimum Problem with the Charge Analogy 



Representations 

• World Representation 
– You could always use a large region and distances 

– However, a grid can be used for simplicity 



Representations: A Grid 

• Distance is reduced to discrete steps 

– For simplicity, we’ll assume distance is uniform 

• Direction is now limited from one adjacent cell to another 

– Time to revisit Connectivity (Remember Vision?) 



Representations: Connectivity 

• 8-Point Connectivity • 4-Point Connectivity 
– (approximation of the L1 metric) 



The Wavefront Planner: Setup 



The Wavefront in Action (Part 1) 

• Starting with the goal, set all adjacent cells with 

“0” to the current cell + 1 

– 4-Point Connectivity or 8-Point Connectivity? 

– Your Choice.  We’ll use 8-Point Connectivity in our example 



The Wavefront in Action (Part 2) 

• Now repeat with the modified cells 

– This will be repeated until no 0’s are adjacent to cells 
with values >= 2 

• 0’s will only remain when regions are unreachable 



The Wavefront in Action (Part 3) 

• Repeat again... 



The Wavefront in Action (Part 4) 

• And again... 



The Wavefront in Action (Part 5) 

• And again until... 



The Wavefront in Action (Done) 

• You’re done 

– Remember, 0’s should only remain if unreachable 
regions exist 



The Wavefront, Now What? 

• To find the shortest path, according to your metric, simply always 

move toward a cell with a lower number 

– The numbers generated by the Wavefront planner are roughly proportional to their 

distance from the goal 

Two 

possible 

shortest 

paths 

shown 



This is really a Continuous Solution 

Not pixels 

 

Waves bend 

 

L1 distance 



Pretty Wavefront 



Rapidly-Exploring Random Tree 



Path Planning with RRTs 

(Rapidly-Exploring Random Trees) 

BUILD_RRT (qinit)  { 

   T.init(qinit);  

   for k =  1 to K do  

      qrand = RANDOM_CONFIG();     

      EXTEND(T, qrand) 

} 

EXTEND(T, qrand) 

qnear 

qnew 

qinit 

qrand 

[ Kuffner & LaValle , ICRA’00] 



Path Planning with RRTs 

(Some Details) 

BUILD_RRT (qinit)  { 

   T.init(qinit);  

   for k =  1 to K do  

      qrand = RANDOM_CONFIG();     

      EXTEND(T, qrand) 

} 

EXTEND(T, qrand) 

qnear 

qnew 

qinit 

qrand 

STEP_LENGTH: How far to sample 

1. Sample just at end point 

2. Sample all along 

3. Small Step 

 

Extend returns 

1. Trapped, cant make it 

2. Extended, steps toward node 

3. Reached, connects to node 

 

STEP_SIZE 

1. Not STEP_LENGTH 

2. Small steps along way 

3. Binary search 



Grow two RRTs towards each other 

qinit 

qgoal 

qnew 

qtarget 

qnear 

[ Kuffner, LaValle  ICRA ‘00] 



Map-Based Approaches: 

Roadmap Theory 
• Properties of a roadmap: 

– Accessibility: there exists a collision-free 

path from the start to the road map 

– Departability: there exists a collision-free 

path from the roadmap to the goal. 

– Connectivity: there exists a collision-free 

path from the start to the goal (on the 

roadmap). 

 a roadmap exists  a path exists 

 Examples of Roadmaps 
– Generalized Voronoi Graph (GVG) 

– Visibility Graph 



Roadmap: Visibility Graph 

• Formed by connecting all “visible” vertices, the 

start point and the end point, to each other 

• For two points to be “visible” no obstacle can 

exist between them 

– Paths exist on the perimeter of obstacles 

• In our example, this produces the shortest path 

with respect to the L2 metric.  However, the close 

proximity of paths to obstacles makes it dangerous 



The Visibility Graph in Action (Part 1) 

• First, draw lines of sight from the start and goal to all 

“visible” vertices and corners of the world. 

start 

goal 



The Visibility Graph in Action (Part 2) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph in Action (Part 3) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph in Action (Part 4) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph (Done) 

• Repeat until you’re done. 

start 

goal 



Visibility Graph Overview 

• Start with a map of the world, draw lines of sight from the 

start and goal to every “corner” of the world and vertex of 

the obstacles, not cutting through any obstacles. 

• Draw lines of sight from every vertex of every obstacle 

like above.  Lines along edges of obstacles are lines of 

sight too, since they don’t pass through the obstacles. 

• If the map was in Configuration space, each line 

potentially represents part of a path from the start to the 

goal. 



Graph Search 
Howie Choset 

16-311 
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Outline 

• Overview of Search Techniques 

• A* Search 
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Graphs 

Collection of Edges and Nodes (Vertices) 

A tree 
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Grids 
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Stacks and Queues 

Stack: First in, Last out (FILO) 

 

Queue: First in, First out (FIFO) 
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Depth First Search 

Worst case 

performance 

O( | V | + | E | ) for explicit graphs traversed without 

repetition, 

Worst case space 

complexity 

O( | V | ) if entire graph is traversed without repetition, 

O(longest path length searched) for implicit graphs 

without elimination of duplicate nodes 

algorithm  dft(x) 

     visit(x)      

     FOR each y such that (x,y) is an edge  

          IF y was not visited yet  

                  THEN dft(y)   

Copied from wikipedia 

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
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Breadth First Search 
visit(start node)   

queue <- start node   

WHILE queue is nor empty DO     

 x <- queue     

 FOR each y such that (x,y) is an edge                     

  and y has not been visited yet DO       

                 visit(y)       

    queue <- y     

              END   

END   
wikipedia 

http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch14.html 
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Depth First and Breadth First 
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Wavefront Planner: A BFS 
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Search 

• Uninformed Search 

– Use no information obtained from the 

environment 

– Blind Search: BFS (Wavefront), DFS 

• Informed Search 

– Use evaluation function 

– More efficient 

– Heuristic Search: A*, D*, etc. 
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B C

G

D

FE

I J

A

M

H K

NL

Uninformed Search 

 

 

Graph Search from A to N 

BFS 
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Dijkstra’s Search: f(n) = g(n) 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

Pop lowest f first 



54 

Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C) 

 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C) 

 

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4) 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C) 

 

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4) 

 

5. O = {5, 3}; C = {S, 2, 4, 1} 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C) 

 

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4) 

 

5. O = {5, 3}; C = {S, 2, 4, 1} 

 

6. O = {3, G}; C = {S, 2, 4 1,5} (goal points to 5 which points to 4 which points to S) 

Pop lowest f first 
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Dijkstra’s Search: f(n) = g(n) 

1. O = {S} 

 

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S) 

 

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C) 

 

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4) 

 

5. O = {5, 3}; C = {S, 2, 4, 1} 

 

6. O = {3, G}; C = {S, 2, 4 1,5} (goal points to 5 which points to 4 which points to S) 

 

7. O = {3}; C = {S, 2, 4, 1,5} (Path found because Goal was popped) 

Pop lowest f first 
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Informed Search: A* 

 

 

 

 
 

 

 

Notation 

• n → node/state 

• c(n1,n2) → the length of an edge connecting  

between n1 and n2 

• b(n1) = n2 → backpointer of a node n1 to a 

node n2.  
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Informed Search: A* 

 

 

 

 
 

 

 

 

 

 

• Evaluation function, f(n) = g(n) + h(n) 

• Operating cost function, g(n) 

– Actual operating cost having been already traversed 

• Heuristic function, h(n) 

– Information used to find the promising node to traverse 

– Admissible → never overestimate the actual path cost 

 

Cost on a grid 
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A*: Algorithm 

     The search requires 2 

lists to store 

information about 

nodes 
1) Open list (O) stores nodes 

for expansions 

2) Closed list (C) stores 

nodes which we have 

explored 

 

 

 
 

 

 

 

 

 

Start

Pick n
best

 from O such

that f(n
best

) < f(n)

Remove n
best

 from O

and add it to C

n
best

 = goal?

End

YN

Expand all nodes x

that are neighbors of

n
best

 and not in C

x is not in O?

Add x to Oupdate b(x)=n
best 

if

(g(n
best

)+c(n
best

,x)<g(x))

O is empty? EndY

N

YN
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A*: Example (1/6) 
 

 
 

 

 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Heuristics 

A = 14        H = 8  

B = 10        I  = 5 

C = 8         J =  2 

D = 6         K = 2 

E = 8         L = 6 

F =  7        M = 2 

G = 6         N = 0 

Legend 
operating cost 
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A*: Example (2/6) 
 

 
 

 

 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Heuristics 
A = 14,  B = 10, C = 8, D = 6, E = 8, F = 7, G = 6 

H =  8,   I  =  5,  J  = 2, K = 2, L = 6, M = 2, N = 0 

Closed List Open List - Priority Queue

A(0) E(11)

B(14)

H(14)

E(y) = E(f(n))

where f(n) = g(n) + h(n)

       = 3 + 8 = 11

Expand

A(x) = A(g(n))



65 

A*: Example (3/6) 
 

 
 

 

 

Heuristics 
A = 14,  B = 10, C = 8, D = 6, E = 8, F = 7, G = 6 

H =  8,   I  =  5,  J  = 2, K = 2, L = 6, M = 2, N = 0 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Since A → B is smaller 

than A → E → B, the f-

cost value of B in an 

open list needs not be 

updated 

Closed List Open List - Priority Queue

A(0)

B(14)

H(14)

E(3)

F(14)

Update Add new node

I(11)

B(16) >

H(15) >
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A*: Example (4/6) 
 

 
 

 

 

Heuristics 
A = 14,  B = 10, C = 8, D = 6, E = 8, F = 7, G = 6 

H =  8,   I  =  5,  J  = 2, K = 2, L = 6, M = 2, N = 0 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Closed List Open List - Priority Queue

A(0)

H(14)

F(14)

E(3)

L(15)

Update Add new node

J(12)

H(18)

F(17) >

M(12)

B(14)I(6)

>
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A*: Example (5/6) 

 

 
 

 

 

Heuristics 
A = 14,  B = 10, C = 8, D = 6, E = 8, F = 7, G = 6 

H =  8,   I  =  5,  J  = 2, K = 2, L = 6, M = 2, N = 0 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Closed List Open List - Priority Queue 

A(0) 

H(14) 

F(14) 

E(3) 

L(15) 

Update Add new node 

F(21) > 

M(12) 

B(14) I(6) 

J(10) 

N(13) 

K(16) 

G(19) 

M(16) > 
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A*: Example (6/6) 
 

 
 

 

 

Heuristics 
A = 14,  B = 10, C = 8, D = 6, E = 8, F = 7, G = 6 

H =  8,   I  =  5,  J  = 2, K = 2, L = 6, M = 2, N = 0 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Since the path to N from 

M is greater than that 

from J, the optimal path 

to N is the one traversed 

from J 

Closed List Open List - Priority Queue 

A(0) 

B(14) 

H(14) 

E(3) 

F(14) 

I(6) 

Update Add new node 

J(10) 

N(13) 

L(15) 

K(16) 

G(19) 

M(10) 

N(14) 

L(24) 

> 

> 

Goal 
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A*: Example Result 
 

 
 

 

 

B C

G

D

FE

I J

A

M

H K

NL

3

4

6

4

4 4 4

4 4
6

4

4

4

4 3 4

3
2

4 4 4

2
3

4 3

3 3 33 3

Generate the path 

from the goal node 

back to the start node 

through the back-

pointer attribute 


