
Motion Planning, Part II

Howie Choset

Motion Planning Statement

If W denotes the robot’s workspace,

And Ci denotes the i’th obstacle,

Then the robot’s free space, FS, is

defined as:

FS = W \ (U Ci)

And a path c is c : [0,1] g FS

where c(0) is qstart and c(1) is qgoal

What is a good path?

Completeness

Basics: Metrics

• There are many different ways to measure a

path:
• Time

• Distance traveled

• Expense

• Distance from obstacles

• Etc…

Start-Goal Algorithm:

Lumelsky Bug Algorithms

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

3) return to that closest point (by

wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

But some computing power!
• known direction to goal

• otherwise local sensing

 walls/obstacles & encoders

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the m-

line again closer to the goal.

3) Leave the obstacle and continue

toward the goal

“Bug 2” Algorithm

Better or worse than Bug1?

Bug 2 Spiral

Start-Goal Algorithm:

Potential Functions

Attractive/Repulsive Potential Field

– Uatt is the “attractive” potential --- move to the

goal

– Urep is the “repulsive” potential --- avoid

obstacles

Artificial Potential Field Methods:

Attractive Potential

)(

)()(

goal

attatt

qk

qUqF





Quadratic Potential

Distance

RRRd  22:

||||),(yyxx bababad 

22)()(),(yyxx bababad 

Path Length

Which is shortest?

Path Length

Depends on metric

Distance to Obstacle(s)

)(min)(qdqD i

The Repulsive Potential

Total Potential Function

+ =

)()()(repatt qUqUqU 

)()(qUqF 

Local Minimum Problem with the Charge Analogy

The Wavefront Planner

• A common algorithm used to determine the
shortest paths between two points

– In essence, a breadth first search of a graph

• For simplification, we’ll present the world as a
two-dimensional grid

• Setup:

– Label free space with 0

– Label start as START

– Label the destination as 2

Representations

• World Representation
– You could always use a large region and distances

– However, a grid can be used for simplicity

Representations: A Grid

• Distance is reduced to discrete steps

– For simplicity, we’ll assume distance is uniform

• Direction is now limited from one adjacent cell to another

– Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

• 8-Point Connectivity • 4-Point Connectivity
– (approximation of the L1 metric)

The Wavefront Planner: Setup

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with

“0” to the current cell + 1

– 4-Point Connectivity or 8-Point Connectivity?

– Your Choice. We’ll use 8-Point Connectivity in our example

The Wavefront in Action (Part 2)

• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells
with values >= 2

• 0’s will only remain when regions are unreachable

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

• You’re done

– Remember, 0’s should only remain if unreachable
regions exist

The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always

move toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly proportional to their

distance from the goal

Two

possible

shortest

paths

shown

This is really a Continuous Solution

Not pixels

Waves bend

L1 distance

Pretty Wavefront

The Configuration Space

• What it is

– A set of “reachable” areas constructed from

knowledge of both the robot and the world

• How to create it

– First abstract the robot as a point object. Then,

enlarge the obstacles to account for the robot’s

footprint and degrees of freedom

– In our example, the robot was circular, so we

simply enlarged our obstacles by the robot’s radius

(note the curved vertices)

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot

(treat as point object) x,y

Translate-only, non-circularly

symmetric

Pick a reference point…

Translate-only, non-circularly

symmetric

Pick a reference point…

With Rotation: how much distance to rotate

Pick a reference point…

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
180 360 270 90

qA

b

a

qB

A

B

Torus

(wraps horizontally and vertically)

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
90 180 135 45

qA

b

a

qB

A

B

Torus

(wraps vertically)

Configuration Space Obstacle

An obstacle in the robot’s workspace

b

a

270

360

180

90

0
90 180 135 45

qB

qA

The C-space representation

of this obstacle…

b

a

How do we get from A to B ?

A

B

Reference configuration

Two Link Path

Thanks to Ken Goldberg

Two Link Path

Rapidly-Exploring Random Tree

Path Planning with RRTs

(Rapidly-Exploring Random Trees)

BUILD_RRT (qinit) {

 T.init(qinit);

 for k = 1 to K do

 qrand = RANDOM_CONFIG();

 EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[Kuffner & LaValle , ICRA’00]

Path Planning with RRTs

(Some Details)

BUILD_RRT (qinit) {

 T.init(qinit);

 for k = 1 to K do

 qrand = RANDOM_CONFIG();

 EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

STEP_LENGTH: How far to sample

1. Sample just at end point

2. Sample all along

3. Small Step

Extend returns

1. Trapped, cant make it

2. Extended, steps toward node

3. Reached, connects to node

STEP_SIZE

1. Not STEP_LENGTH

2. Small steps along way

3. Binary search

Grow two RRTs towards each other

qinit

qgoal

qnew

qtarget

qnear

[Kuffner, LaValle ICRA ‘00]

Map-Based Approaches:

Roadmap Theory
• Properties of a roadmap:

– Accessibility: there exists a collision-free

path from the start to the road map

– Departability: there exists a collision-free

path from the roadmap to the goal.

– Connectivity: there exists a collision-free

path from the start to the goal (on the

roadmap).

 a roadmap exists  a path exists

 Examples of Roadmaps
– Generalized Voronoi Graph (GVG)

– Visibility Graph

Roadmap: Visibility Graph

• Formed by connecting all “visible” vertices, the

start point and the end point, to each other

• For two points to be “visible” no obstacle can

exist between them

– Paths exist on the perimeter of obstacles

• In our example, this produces the shortest path

with respect to the L2 metric. However, the close

proximity of paths to obstacles makes it dangerous

The Visibility Graph in Action (Part 1)

• First, draw lines of sight from the start and goal to all

“visible” vertices and corners of the world.

start

goal

The Visibility Graph in Action (Part 2)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 3)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 4)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph (Done)

• Repeat until you’re done.

start

goal

Visibility Graph Overview

• Start with a map of the world, draw lines of sight from the

start and goal to every “corner” of the world and vertex of

the obstacles, not cutting through any obstacles.

• Draw lines of sight from every vertex of every obstacle

like above. Lines along edges of obstacles are lines of

sight too, since they don’t pass through the obstacles.

• If the map was in Configuration space, each line

potentially represents part of a path from the start to the

goal.

Graph Search

• Who knows it?

Roadmap: GVG

• A GVG is

formed by paths

equidistant from

the two closest

objects

• Remember

“spokes”, start

and goal

• This generates a very safe roadmap which avoids obstacles as

much as possible

Distance to Obstacle(s)

)(min)(qdqD i

Two-Equidistant
• Two-equidistant surface

}0)()(:{ free  xdxdQxS jiij

iQO

jQO

More Rigorous Definition

Going through obstacles

Two-equidistant face

},),()()(:{ jihxdxdxdSSxF hjiijij 

iQO

jQO)()()(xdxdxd jik 
ij SS

kQO

General Voronoi Diagram

U U
1

1 1

GVD


 


n

i

n

ij

ijF

What about concave obstacles?

vs

What about concave obstacles?

vs

id

jd

id

jd

What about concave obstacles?

vs

id

jd

id

jd

id

jd

jd

id

Two-Equidistant
• Two-equidistant surface

 Two-equidistant surjective surface

 Two-equidistant Face

}0)()(:{ free  xdxdQxS jiij

jC

iC

ij S

id

jd

)}()(:{ xdxdSxSS jiijij 

}),()(:{ ihxdxdSSxF hiijij 

U U
1

1 1

GVD


 


n

i

n

ij

ijF

