
Motion Planning

Howie CHoset

What is Motion Planning?

What is Motion Planning?

• Determining where to go

Overview

• The Basics

– Motion Planning Statement

– The World and Robot

– Configuration Space

– Metrics

Algorithms

–Start-Goal Methods

–Map-Based Approaches

–Cellular Decompositions

The World consists of...

• Obstacles

– Already occupied spaces of the world

– In other words, robots can’t go there

• Free Space

– Unoccupied space within the world

– Robots “might” be able to go here

– To determine where a robot can go, we need to discuss
what a Configuration Space is

Motion Planning Statement

If W denotes the robot’s workspace,

And Ci denotes the i’th obstacle,

Then the robot’s free space, FS, is

defined as:

FS = W - (U Ci)

And a path c C0 is c : [0,1] g FS

where c(0) is qstart and c(1) is qgoal

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

What is a good path?

Basics: Metrics

• There are many different ways to measure a

path:
• Time

• Distance traveled

• Expense

• Distance from obstacles

• Etc…

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

3) return to that closest point (by

wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

• known direction to goal

• otherwise local sensing

 walls/obstacles & encoders

But some computing power!

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

3) return to that closest point (by

wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

But some computing power!
• known direction to goal

• otherwise local sensing

 walls/obstacles & encoders

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

3) return to that closest point (by

wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

But some computing power!
• known direction to goal

• otherwise local sensing

 walls/obstacles & encoders

Bug2

Call the line from the starting

point to the goal the m-line
“Bug 2” Algorithm

A better bug?

Call the line from the starting

point to the goal the m-line

1) head toward goal on the m-line

“Bug 2” Algorithm

A better bug?

Call the line from the starting

point to the goal the m-line

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the

m-line again.

“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the

m-line again.

3) Leave the obstacle and continue

toward the goal

OK ?

m-line
“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the m-

line again.

3) Leave the obstacle and continue

toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the

m-line again.

3) Leave the obstacle and continue

toward the goal

NO! How do we fix this?

Goal

Start

“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the m-

line again closer to the goal.

3) Leave the obstacle and continue

toward the goal

Goal

Start

“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,

follow it until you encounter the m-

line again closer to the goal.

3) Leave the obstacle and continue

toward the goal

“Bug 2” Algorithm

Better or worse than Bug1?

Start-Goal Algorithm:

Lumelsky Bug Algorithms

Lumelsky Bug Algorithms

• Unknown obstacles, known start and goal.

• Simple “bump” sensors, encoders.

• Choose arbitrary direction to turn (left/right) to make all turns, called

“local direction”

• Motion is like an ant walking around:

– In Bug 1 the robot goes all the way around each obstacle

encountered, recording the point nearest the goal, then goes around

again to leave the obstacle from that point

– In Bug 2 the robot goes around each obstacle encountered until it

can continue on its previous path toward the goal

Assumptions?

Assumptions

• Size of robot

• Perfect sensing

• Perfect control

• Localization (heading)

What else?

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot

(treat as point object) x,y

Trace Boundary of Workspace

Pick a reference point…

Translate-only, non-circularly

symmetric

Pick a reference point…

Translate-only, non-circularly

symmetric

Pick a reference point…

The Configuration Space

• What it is

– A set of “reachable” areas constructed from

knowledge of both the robot and the world

• How to create it

– First abstract the robot as a point object. Then,

enlarge the obstacles to account for the robot’s

footprint and degrees of freedom

– In our example, the robot was circular, so we

simply enlarged our obstacles by the robot’s radius

(note the curved vertices)

Start-Goal Algorithm:

Potential Functions

Attractive/Repulsive Potential Field

– Uatt is the “attractive” potential --- move to the

goal

– Urep is the “repulsive” potential --- avoid

obstacles

Artificial Potential Field Methods:

Attractive Potential

)(

)()(

goal

attatt

qk

qUqF





Quadratic Potential

Distance

RRRd  22:

||||),(yyxx bababad 

22)()(),(yyxx bababad 

Path Length

Which is shortest?

Path Length

Depends on metric

Distance to Obstacle(s)

)(min)(qdqD i

The Repulsive Potential

Repulsive Potential

Total Potential Function

+ =

)()()(repatt qUqUqU 

)()(qUqF 

Local Minimum Problem with the Charge Analogy

Local Min

The Wavefront Planner

• A common algorithm used to determine the
shortest paths between two points

– In essence, a breadth first search of a graph

• For simplification, we’ll present the world as a
two-dimensional grid

• Setup:

– Label free space with 0

– Label start as START

– Label the destination as 2

Representations

• World Representation
– You could always use a large region and distances

– However, a grid can be used for simplicity

Representations: A Grid

• Distance is reduced to discrete steps

– For simplicity, we’ll assume distance is uniform

• Direction is now limited from one adjacent cell to another

– Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

• 8-Point Connectivity • 4-Point Connectivity
– (approximation of the L1 metric)

The Wavefront Planner: Setup

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with

“0” to the current cell + 1

– 4-Point Connectivity or 8-Point Connectivity?

– Your Choice. We’ll use 8-Point Connectivity in our example

The Wavefront in Action (Part 2)

• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells
with values >= 2

• 0’s will only remain when regions are unreachable

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

• You’re done

– Remember, 0’s should only remain if unreachable
regions exist

The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always

move toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly proportional to their

distance from the goal

Two

possible

shortest

paths

shown

Wavefront (Overview)

• Divide the space into a grid.

• Number the squares starting at the start in

either 4 or 8 point connectivity starting at

the goal, increasing till you reach the start.

• Your path is defined by any uninterrupted

sequence of decreasing numbers that lead to

the goal.

This is really a Continuous Solution

Not pixels

Waves bend

L1 distance

Rapidly-Exploring Random Tree

