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What is Motion Planning? 



What is Motion Planning? 

• Determining where to go 



Overview 

• The Basics 

– Motion Planning Statement 

– The World and Robot 

– Configuration Space 

– Metrics 



Algorithms 

 

–Start-Goal Methods 

–Map-Based Approaches 

–Cellular Decompositions 



The World consists of... 

• Obstacles 

– Already occupied spaces of the world 

– In other words, robots can’t go there 

• Free Space 

– Unoccupied space within the world 

– Robots “might” be able to go here 

– To determine where a robot can go, we need to discuss 
what a Configuration Space is 



Motion Planning Statement 

If W denotes the robot’s workspace, 

And Ci denotes the i’th obstacle, 

Then the robot’s free space, FS, is 

defined as: 

FS = W - ( U Ci ) 

And a path c      C0 is c : [0,1] g FS 

where c(0) is qstart and c(1) is qgoal  

 



Example of a World (and Robot) 

Obstacles 

Free Space 

Robot 

x,y 



What is a good path? 



Basics: Metrics 

• There are many different ways to measure a 

path: 
• Time 

• Distance traveled 

• Expense 

• Distance from obstacles 

• Etc… 



1) head toward goal 

2) if an obstacle is encountered, 

circumnavigate it and remember 

how close you get to the goal 

3) return to that closest point (by 

wall-following) and continue 

Bug 1 

“Bug 1” algorithm 

Vladimir Lumelsky & Alexander Stepanov:  Algorithmica 1987 

• known direction to goal 

• otherwise local sensing  

       walls/obstacles  &  encoders 

But some computing power! 
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Bug2 

Call the line from the starting 

point to the goal the m-line 
“Bug 2” Algorithm 
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A better bug? 
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2) if an obstacle is in the way, 

follow it until you encounter the 

m-line again. 

3) Leave the obstacle and continue 

toward the goal 

OK ? 
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Start-Goal Algorithm: 

Lumelsky Bug Algorithms 



Lumelsky Bug Algorithms 

• Unknown obstacles, known start and goal. 

• Simple “bump” sensors, encoders. 

• Choose arbitrary direction to turn (left/right) to make all turns, called 

“local direction” 

• Motion is like an ant walking around: 

– In Bug 1 the robot goes all the way around each obstacle 

encountered, recording the point nearest the goal, then goes around 

again to leave the obstacle from that point 

– In Bug 2 the robot goes around each obstacle encountered until it 

can continue on its previous path toward the goal 



Assumptions? 



Assumptions 

• Size of robot 

• Perfect sensing 

• Perfect control 

• Localization (heading) 

 

 

What else? 



Example of a World (and Robot) 

Obstacles 

Free Space 

Robot 

x,y 



Configuration Space: Accommodate Robot Size 

Obstacles 

Free Space 

Robot 

(treat as point object) x,y 



Trace Boundary of Workspace 

Pick a reference point… 



Translate-only, non-circularly 

symmetric 

Pick a reference point… 



Translate-only, non-circularly 

symmetric 

Pick a reference point… 



The Configuration Space 

• What it is 

– A set of “reachable” areas constructed from 

knowledge of both the robot and the world 

• How to create it 

– First abstract the robot as a point object.  Then, 

enlarge the obstacles to account for the robot’s 

footprint and degrees of freedom 

– In our example, the robot was circular, so we 

simply enlarged our obstacles by the robot’s radius 

(note the curved vertices) 



Start-Goal Algorithm: 

Potential Functions 



Attractive/Repulsive Potential Field 
 

 

 

– Uatt is the “attractive” potential --- move to the 

goal 

 

– Urep is the “repulsive” potential --- avoid 

obstacles 

 

 

 

 

 



Artificial Potential Field Methods: 

Attractive Potential 
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Quadratic Potential 



Distance 
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Path Length 

Which is shortest? 



Path Length 

Depends on metric 



Distance to Obstacle(s) 
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The Repulsive Potential 



Repulsive Potential 



Total Potential Function 
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Local Minimum Problem with the Charge Analogy 



Local Min 



The Wavefront Planner 

• A common algorithm used to determine the 
shortest paths between two points 

– In essence, a breadth first search of a graph 

• For simplification, we’ll present the world as a 
two-dimensional grid 

• Setup: 

– Label free space with 0 

– Label start as START 

– Label the destination as 2 



Representations 

• World Representation 
– You could always use a large region and distances 

– However, a grid can be used for simplicity 



Representations: A Grid 

• Distance is reduced to discrete steps 

– For simplicity, we’ll assume distance is uniform 

• Direction is now limited from one adjacent cell to another 

– Time to revisit Connectivity (Remember Vision?) 



Representations: Connectivity 

• 8-Point Connectivity • 4-Point Connectivity 
– (approximation of the L1 metric) 



The Wavefront Planner: Setup 



The Wavefront in Action (Part 1) 

• Starting with the goal, set all adjacent cells with 

“0” to the current cell + 1 

– 4-Point Connectivity or 8-Point Connectivity? 

– Your Choice.  We’ll use 8-Point Connectivity in our example 



The Wavefront in Action (Part 2) 

• Now repeat with the modified cells 

– This will be repeated until no 0’s are adjacent to cells 
with values >= 2 

• 0’s will only remain when regions are unreachable 



The Wavefront in Action (Part 3) 

• Repeat again... 



The Wavefront in Action (Part 4) 

• And again... 



The Wavefront in Action (Part 5) 

• And again until... 



The Wavefront in Action (Done) 

• You’re done 

– Remember, 0’s should only remain if unreachable 
regions exist 



The Wavefront, Now What? 

• To find the shortest path, according to your metric, simply always 

move toward a cell with a lower number 

– The numbers generated by the Wavefront planner are roughly proportional to their 

distance from the goal 

Two 

possible 

shortest 

paths 

shown 



Wavefront (Overview) 

• Divide the space into a grid. 

• Number the squares starting at the start in 

either 4 or 8 point connectivity starting at 

the goal, increasing till you reach the start. 

• Your path is defined by any uninterrupted 

sequence of decreasing numbers that lead to 

the goal. 

 



This is really a Continuous Solution 

Not pixels 

 

Waves bend 

 

L1 distance 



Rapidly-Exploring Random Tree 


