
Motion Planning, Part IV 

Graph Search Part II 

Howie Choset 



Map-Based Approaches: 

Roadmap Theory 
• Properties of a roadmap: 

– Accessibility: there exists a collision-free 

path from the start to the road map 

– Departability: there exists a collision-free 

path from the roadmap to the goal. 

– Connectivity: there exists a collision-free 

path from the start to the goal (on the 

roadmap). 

 a roadmap exists  a path exists 

 Examples of Roadmaps 
– Generalized Voronoi Graph (GVG) 

– Visibility Graph 



The Visibility Graph in Action (Part 1) 

• First, draw lines of sight from the start and goal to all 

“visible” vertices and corners of the world. 

start 

goal 



The Visibility Graph in Action (Part 2) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph in Action (Part 3) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph in Action (Part 4) 

• Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of sight. 

start 

goal 



The Visibility Graph (Done) 

• Repeat until you’re done. 

start 

goal 



Graph Search 
Howie Choset 
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9 

Informed Search: A* 

 

 

 

 
 

 

 

Notation 

• n → node/state 

• c(n1,n2) → the length of an edge connecting  

between n1 and n2 

• b(n1) = n2 → backpointer of a node n1 to a 

node n2.  
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Informed Search: A* 

 

 

 

 
 

 

 

 

 

 

• Evaluation function, f(n) = g(n) + h(n) 

• Operating cost function, g(n) 

– Actual operating cost having been already traversed 

• Heuristic function, h(n) 

– Information used to find the promising node to traverse 

– Admissible → never overestimate the actual path cost 

 

Cost on a grid 
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Example (1/5) 

h(x) 

c(x) 

Legend 

Priority = g(x) + h(x) 

g(x) = sum of all previous arc costs, c(x), 

           from start to x 
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Example (2/5) 

B(3) 

A(4) 

C(4) 

H(3) 

A(4) 

C(4) 

I(5) 

G(7) 

First expand the start node 

If goal not found, 

expand the first node 

in the priority queue 

(in this case, B) 

Insert the newly expanded 

nodes into the priority queue 

and continue until the goal is 

found, or the priority queue is 

empty (in which case no path 

exists) Note: for each expanded node, 

you also need a pointer to its respective 

parent.  For example, nodes A, B and C 

point to Start 

GOAL 
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Example (3/5) 
B(3) 

A(4) 

C(4) 

H(3) 

A(4) 

C(4) 

I(5) 

G(7) 

No expansion 

E(3) 

C(4) 

D(5) 

I(5) 

F(7) 

G(7) 

GOAL(5) 

We’ve found a path to the goal: 

Start => A => E => Goal 
(from the pointers) 

 

Are we done? GOAL 
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Example (4/5) 
B(3) 

A(4) 

C(4) 

H(3) 

A(4) 

C(4) 

I(5) 

G(7) 

No expansion 

E(3) 

C(4) 

D(5) 

I(5) 

F(7) 

G(7) 

GOAL(5) 

There might be a shorter path, but assuming 

non-negative arc costs, nodes with a lower priority 

than the goal cannot yield a better path. 

 

In this example, nodes with a priority greater than or 

equal to 5 can be pruned. 

 

Why don’t we expand nodes with an equivalent priority? 

(why not expand nodes D and I?) 
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Example (5/5) 
B(3) 

A(4) 

C(4) 

H(3) 

A(4) 

C(4) 

I(5) 

G(7) 

No expansion 

E(3) 

C(4) 

D(5) 

I(5) 

F(7) 

G(7) 

GOAL(5) 

We can continue to throw away nodes with 

priority levels lower than the lowest goal found. 

 

As we can see from this example, there was a 

shorter path through node K.  To find the path, simply 

follow the back pointers. 

 

Therefore the path would be: 

Start => C => K => Goal 

K(4) 

L(5) 

J(5) 

GOAL(4) 

If the priority queue still wasn’t empty, we would 

continue expanding while throwing away nodes 

with priority lower than 4. 

(remember, lower numbers = higher priority) 
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Monotonic 
• never overestimates the cost of getting from a node 

to its neighbor.  

 

• for all paths x,y where y is a successor of x, i.e., 

 

• h(A) = 3    g(A) = 1     h(E) = 1    g(E) = 2  

 

     

h(y)  g(x) - g(y)   h(x) 

  2  11-2  h(E)g(A)-g(E)  3h(A) 
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Non-opportunistic 
1. Put S on priority Q and expand it 

2. Expand A because its priority value is 7 

3. The goal is reached with priority value 8 

4. This is less than B’s priority value which is 13 

 



Roadmap: GVG 

• A GVG is 

formed by paths 

equidistant from 

the two closest 

objects 

• Remember 

“spokes”, start 

and goal 

• This generates a very safe roadmap which avoids obstacles as 

much as possible 



Distance to Obstacle(s) 

)(min)( qdqD i



Two-Equidistant 
• Two-equidistant surface 
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More Rigorous Definition 

Going through obstacles 

 

 

 

 

 

Two-equidistant face 
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General Voronoi Diagram 
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What about concave obstacles? 

vs 



What about concave obstacles? 

vs 

id
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What about concave obstacles? 

vs 
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Two-Equidistant 
• Two-equidistant surface 

      

    Two-equidistant surjective surface 

 

 

    Two-equidistant Face 
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Voronoi Diagram: Metrics 



Voronoi Diagram (L2) 

Note the 

curved 

edges 



Voronoi Diagram (L1) 

Note the 

lack of 

curved 

edges 



Exact Cell vs. Approximate Cell 

• Cell: simple region 



Adjacency Graph 
– Node correspond to a cell 

– Edge connects nodes of adjacent cells 
• Two cells are adjacent if they share a common boundary 
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Set Notation 



Examples 



Definition 



Cell Decompositions: Trapezoidal Decomposition 

• A way to divide the world into smaller regions 

• Assume a polygonal world 



Cell Decompositions: Trapezoidal Decomposition 

• Simply draw a vertical line from each vertex until you hit an obstacle.  This 

reduces the world to a union of trapezoid-shaped cells 



Applications: Coverage 

• By reducing the world to cells, we’ve essentially abstracted the world to a 

graph. 



Find a path 

• By reducing the world to cells, we’ve essentially abstracted the world to a 

graph. 



Find a path 

• With an adjacency graph, a path from start to goal can be found by simple 

traversal 

start goal 
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Find a path 
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Find a path 

• With an adjacency graph, a path from start to goal can be found by simple 

traversal 

start goal 



Find a path 

• With an adjacency graph, a path from start to goal can be found by simple 

traversal 

start goal 



Connect Midpoints of Traps 



Applications: Coverage 

• First, a distinction between sensor and 
detector must be made 

• Sensor: Senses obstacles 

• Detector: What actually does the coverage 

• We’ll be observing the simple case of 
having an omniscient sensor and having the 
detector’s footprint equal to the robot’s 
footprint 



Howie Choset 

Robotics Institute 

(snake robots) 



Cell Decompositions: Trapezoidal Decomposition 

• How is this useful?  Well, trapezoids can easily be covered with simple back-and-forth 
sweeping motions.  If we cover all the trapezoids, we can effectively cover the entire 
“reachable” world. 



Applications: Coverage 

• Simply visit all the nodes, performing a sweeping motion in each, and you’re 

done. 



•Slice is a level set 

  

•Slice function: h(x,y)= x, slice={(x,y)|h(x,y)=}  

 

• At a critical point x of                                  where  M = {x|m(x)=0} )()(,| xmxhh M 

h

m

Cell Decomp. in Terms of Critical Points 



1-connected 

h(x,y) = a1 



2-connected 

h(x,y) = a2 



1-connected 

h(x,y) = a3 



2-connected 

h(x,y) = a4 



• Connectivity of the slice in the free space  

  changes at the critical points (Morse theory) 

a1 a2 a3 a4 



• Each cell can be covered by back and 

  forth motions 



Cell-Decomposition Approach 

• Define Decomposition 

– Completeness 

 

• Sensor-based Construction 

 

• Define Other 
Decompositions 

– Other patterns 

– Extended detector  

 



Provably completeness = guaranteed completeness 
 
 



25m x 30m 
Successful Experiment: 
Stopped because of robot battery 
limitations 

Simultaneous Coverage* and 

Localization 

*mapping too 



Path Planning Where to cover and map 

Position Planning How to collaboratively move and 

maintain low position error (w/o 

GPS) 

Local Planning Obstacle detection/avoidance 

 

Terrain features to inform Path 

Planner 

Operational Hierarchy 

Calibrate robots’ initial location and go 



Probabilistic Coverage  

 



Surface Deposition 

• Process Variables 

– Uniformity 

– Waste 

– Positioning 

• Cycle-time 

– Time-to-completion 

– Programming time 

 



Conclusion: Complete Overview 

• The Basics 
– Motion Planning Statement 

– The World and Robot 

– Configuration Space 

– Metrics 

• Path Planning Algorithms 
– Start-Goal Methods 

• Lumelsky Bug Algorithms 

• Potential Charge Functions 

• The Wavefront Planner 

– Map-Based Approaches 

• Generalized Voronoi Graphs 

• Visibility Graphs 

– Cellular Decompositions => Coverage 

• Done with Motion Planning! 


