Motion Planning, Part IV Graph Search Part II

Howie Choset

Map-Based Approaches: Roadmap Theory

- Properties of a roadmap:
- Accessibility: there exists a collision-free path from the start to the road map
- Departability: there exists a collision-free path from the roadmap to the goal.
- Connectivity: there exists a collision-free path from the start to the goal (on the roadmap).

- a roadmap exists \Leftrightarrow a path exists
- Examples of Roadmaps
- Generalized Voronoi Graph (GVG)
- Visibility Graph

The Visibility Graph in Action (Part 1)

- First, draw lines of sight from the start and goal to all "visible" vertices and corners of the world.

The Visibility Graph in Action (Part 2)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 3)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 4)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph (Done)

- Repeat until you're done.

Graph Search Howie Choset 16-311

Informed Search: A*

Notation

- $n \rightarrow$ node/state
- $c\left(n_{1}, n_{2}\right) \rightarrow$ the length of an edge connecting between n_{1} and n_{2}
- $\boldsymbol{b}\left(\boldsymbol{n}_{1}\right)=\boldsymbol{n}_{2} \rightarrow$ backpointer of a node n_{1} to a node n_{2}.

Informed Search: A*

- Evaluation function, $f(n)=g(n)+h(n)$
- Operating cost function, $g(n)$
- Actual operating cost having been already traversed
- Heuristic function, $\boldsymbol{h}(\boldsymbol{n})$
- Information used to find the promising node to traverse
- Admissible \rightarrow never overestimate the actual path cost

Example (1/5)

Priority $=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$
Note:
$g(x)=$ sum of all previous arc costs, $c(x)$, from start to x

Example: $c(H)=2$

Example (2/5)

First expand the start node

$B(3)$
$A(4)$
$C(4)$

If goal not found, expand the first node in the priority queue (in this case, B)

$H(3)$
$A(4)$
$C(4)$
$I(5)$
$G(7)$

Note: for eachstjpanded node,
you also need a pointer to its respective parent. For example, nodes A, B and C point to Start

Example (3/5)

We've found a path to the goal:
Start $=>$ A $=>$ E $=>$ Goal (from the pointers)

Are we done?

There might be a shorter path, but assuming non-negative arc costs, nodes with a lower pric than the goal cannot yield a better path.

In this example, nodes with a priority greater th equal to 5 can be pruned.

Why don't we expand nodes with an equivaten (why not expand nodes D and I?)

We can continue to throw away nodes with priority levels lower than the lowest goal found.

As we can see from this example, there was a shorter path through node K. To find the path, simply follow the back pointers.

Therefore the path would be:
Start => C => K => Goal

Monotonic

- never overestimates the cost of getting from a node to its neighbor.
- for all paths x, y where y is a successor of x, i.e.,

$$
h(x) \leq g(y)-g(x)+h(y)
$$

- $\mathrm{h}(\mathrm{A})=3 \quad \mathrm{~g}(\mathrm{~A})=1 \quad \mathrm{~h}(\mathrm{E})=1 \quad \mathrm{~g}(\mathrm{E})=2$

$$
\mathrm{h}(\mathrm{~A})=3 \not \& \mathrm{~g}(\mathrm{E})-\mathrm{g}(\mathrm{~A})+\mathrm{h}(\mathrm{E})=2-1+1=2
$$

Non-opportunistic

1. Put S on priority Q and expand it
2. Expand A because its priority value is 7
3. The goal is reached with priority value 8
4. This is less than B's priority value which is 13

Roadmap: GVG

- A GVG is formed by paths equidistant from the two closest objects
- Remember
"spokes", start and goal

- This generates a very safe roadmap which avoids obstacles as much as possible

Distance to Obstacle(s)

$$
\begin{aligned}
& d_{i}(q)=\min _{c \in \mathcal{Q O}_{i}} d(q, c) . \\
& \nabla d_{i}(q)=\frac{q-c}{d(q, c)}
\end{aligned}
$$

$D(q)=\min d_{i}(q)$

Two-Equidistant

- Two-equidistant surface

$$
S_{i j}=\left\{x \in Q_{\mathrm{fix}}: d_{i}(x)-d_{j}(x)=0\right\}
$$

More Rigorous Definition

Going through obstacles

$\int S_{i j} d_{k}(x) \leq d_{i}(x)=d_{j}(x)$

Two-equidistant face

$$
F_{i j}=\left\{x \in S S_{i j}: d_{i}(x)=d_{j}(x) \leq d_{h}(x), \forall h \neq i, j\right\}
$$

General Voronoi Diagram

$$
\mathrm{GVD}=\bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{i j}
$$

What about concave obstacles?

What about concave obstacles?

What about concave obstacles?

∇d_{i}

Two-Equidistant

- Two-equidistant surface

$$
S_{i j}=\left\{x \in Q_{\text {sex }}: d_{i}(x)-d_{j}(x)=0\right\}
$$

Two-equidistant surjective surface

$$
S S_{i j}=\left\{x \in S_{i j}: \nabla d_{i}(x) \neq \nabla d_{j}(x)\right\}
$$

Two-equidistant Face

$$
F_{i j}=\left\{x \in S S_{i j}: d_{i}(x) \leq d_{h}(x), \forall h \neq i\right\}
$$

$$
\mathrm{GVD}=\bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{i j}
$$

Voronoi Diagram: Metrics

$\left\{(x, y): x^{2}+y^{2}=\right.$ const $\}$
L1
L2

Voronoi Diagram (L2)

Note the curved edges

Voronoi Diagram (L1)

Note the lack of curved edges

Exact Cell vs. Approximate Cell

- Cell: simple region

Adjacency Graph

- Node correspond to a cell
- Edge connects nodes of adjacent cells
- Two cells are adjacent if they share a common boundary

Set Notation

Some set notation

- Interior of $A(\operatorname{int}(\mathrm{~A}))$ is the largest open subset of A
- Closure of $A(\mathrm{cl}(\mathrm{A}))$ is the smallest closesd set that contains A
- Complement of $A(\bar{A})$ is everything not in A.
- Boundary of $A(\partial A)$ is the closure of A take away its interior.

Examples

Examples

- int $[0,1]=(0,1), \operatorname{int}(0,1)=(0,1)$
- $\mathrm{cl}[0,1]=[0,1], \mathrm{cl}(0,1)=[0,1]$
- $[0,1]=(-\infty, 0) \cup(1, \infty)$
- $\partial[0,1]=\partial(0,1)=\{0,1\}$

Definition

Exact Cellular Decomposition (as opposed to approximate)

- ν_{i} is a cell
- $\operatorname{int}\left(\nu_{i}\right) \cap \operatorname{int}\left(\nu_{j}\right)=\emptyset$ if and only if $i \neq j$
- $F s \cap\left(\operatorname{cl}\left(\nu_{i}\right) \cap \operatorname{cl}\left(\nu_{j}\right)\right) \neq \emptyset$ if ν_{i} and ν_{j} are adjacent cells
- $F s=\mathrm{U}_{i}\left(\nu_{i}\right)$

Cell Decompositions: Trapezoidal Decomposition

- A way to divide the world into smaller regions
- Assume a polygonal world

Cell Decompositions: Trapezoidal Decomposition

- Simply draw a vertical line from each vertex until you hit an obstacle. This reduces the world to a union of trapezoid-shaped cells

Applications: Coverage

- By reducing the world to cells, we've essentially abstracted the world to a graph.

Find a path

- By reducing the world to cells, we've essentially abstracted the world to a graph.

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Find a path

- With an adjacency graph, a path from start to goal can be found by simple traversal

Connect Midpoints of Traps

Applications: Coverage

- First, a distinction between sensor and detector must be made
- Sensor: Senses obstacles
- Detector: What actually does the coverage
- We'll be observing the simple case of having an omniscient sensor and having the detector's footprint equal to the robot's footprint

Howie Choset Robotics Institute

$$
\underset{\text { (snake robots) }}{G O D G O}
$$

Cell Decompositions: Trapezoidal Decomposition

- How is this useful? Well, trapezoids can easily be covered with simple back-and-forth sweeping motions. If we cover all the trapezoids, we can effectively cover the entire "reachable" world.

Applications: Coverage

- Simply visit all the nodes, performing a sweeping motion in each, and you're done.

Cell Decomp. in Terms of Critical Points

slice

- Slice is a level set
- Slice function: $h(x, y)=x$, slice $=\{(x, y) \mid h(x, y)=\lambda\}$
- At a critical point x of $\left.h\right|_{M}, \nabla h(x)=\nabla m(x) \quad$ where $M=\{x \mid m(x)=0\}$

1-connected
$h(x, y)=a 1$

2-connected
$h(x, y)=a 2$

> 1-connected
$h(x, y)=a 3$

2-connected
$h(x, y)=a 4$

- Connectivity of the slice in the free space changes at the critical points (Morse theory)

- Each cell can be covered by back and forth motions

Cell-Decomposition Approach

Define Decomposition

- Completeness

Sensor-based Construction

Define Other
Decompositions

- Other patterns
- Extended detector

Provably completeness $=$ guaranteed completeness

Localization

*mapping too
$25 \mathrm{~m} \times 30 \mathrm{~m}$

Successful Experiment:

Stopped because of robot battery limitations

Operational Hierarchy

Calibrate robots' initial location and go

Probabilistic Coverage

Surface Depo

- Process Variables
- Uniformity
- Waste
- Positioning

- Cycle-time
- Time-to-completion
- Programming time

Conclusion: Complete Overview

The Basics

- Motion Planning Statement
- The World and Robot
- Configuration Space
- Metrics
- Path Planning Algorithms
- Start-Goal Methods
- Lumelsky Bug Algorithms
- Potential Charge Functions
- The Wavefront Planner
- Map-Based Approaches
- Generalized Voronoi Graphs
- Visibility Graphs
- Cellular Decompositions => Coverage
- D Done with Motion Planning!

