
Motion Planning, Part IV

Graph Search Part II

Howie Choset

Map-Based Approaches:

Roadmap Theory
• Properties of a roadmap:

– Accessibility: there exists a collision-free

path from the start to the road map

– Departability: there exists a collision-free

path from the roadmap to the goal.

– Connectivity: there exists a collision-free

path from the start to the goal (on the

roadmap).

 a roadmap exists  a path exists

 Examples of Roadmaps
– Generalized Voronoi Graph (GVG)

– Visibility Graph

The Visibility Graph in Action (Part 1)

• First, draw lines of sight from the start and goal to all

“visible” vertices and corners of the world.

start

goal

The Visibility Graph in Action (Part 2)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 3)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 4)

• Second, draw lines of sight from every vertex of every obstacle

like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph (Done)

• Repeat until you’re done.

start

goal

Graph Search
Howie Choset

16-311

9

Informed Search: A*

Notation

• n → node/state

• c(n1,n2) → the length of an edge connecting

between n1 and n2

• b(n1) = n2 → backpointer of a node n1 to a

node n2.

10

Informed Search: A*

• Evaluation function, f(n) = g(n) + h(n)

• Operating cost function, g(n)

– Actual operating cost having been already traversed

• Heuristic function, h(n)

– Information used to find the promising node to traverse

– Admissible → never overestimate the actual path cost

Cost on a grid

11

Example (1/5)

h(x)

c(x)

Legend

Priority = g(x) + h(x)

g(x) = sum of all previous arc costs, c(x),

 from start to x

Example: c(H) = 2 GOAL

3
3 3

3

3

3 3

1

1 2 2

3

3

3

2

2

0 Start

2

2 4
1

1

1 1

1

1 1

1 1

A

B

C D

E F

G H I

J K

L

Note:

12

Example (2/5)

B(3)

A(4)

C(4)

H(3)

A(4)

C(4)

I(5)

G(7)

First expand the start node

If goal not found,

expand the first node

in the priority queue

(in this case, B)

Insert the newly expanded

nodes into the priority queue

and continue until the goal is

found, or the priority queue is

empty (in which case no path

exists) Note: for each expanded node,

you also need a pointer to its respective

parent. For example, nodes A, B and C

point to Start

GOAL

3
3 3

3

3

3 3

1

1 2 2

3

3

3

2

2

0 Start

2

2 4
1

1

1 1

1

1 1

1 1

A

B

C D

E F

G H I

J K

L

13

Example (3/5)
B(3)

A(4)

C(4)

H(3)

A(4)

C(4)

I(5)

G(7)

No expansion

E(3)

C(4)

D(5)

I(5)

F(7)

G(7)

GOAL(5)

We’ve found a path to the goal:

Start => A => E => Goal
(from the pointers)

Are we done? GOAL

3
3 3

3

3

3 3

1

1 2 2

3

3

3

2

2

0 Start

2

2 4
1

1

1 1

1

1 1

1 1

A

B

C D

E F

G H I

J K

L

14

Example (4/5)
B(3)

A(4)

C(4)

H(3)

A(4)

C(4)

I(5)

G(7)

No expansion

E(3)

C(4)

D(5)

I(5)

F(7)

G(7)

GOAL(5)

There might be a shorter path, but assuming

non-negative arc costs, nodes with a lower priority

than the goal cannot yield a better path.

In this example, nodes with a priority greater than or

equal to 5 can be pruned.

Why don’t we expand nodes with an equivalent priority?

(why not expand nodes D and I?)

GOAL

3
3 3

3

3

3 3

1

1 2 2

3

3

3

2

2

0 Start

2

2 4
1

1

1 1

1

1 1

1 1

A

B

C D

E F

G H I

J K

L

15

Example (5/5)
B(3)

A(4)

C(4)

H(3)

A(4)

C(4)

I(5)

G(7)

No expansion

E(3)

C(4)

D(5)

I(5)

F(7)

G(7)

GOAL(5)

We can continue to throw away nodes with

priority levels lower than the lowest goal found.

As we can see from this example, there was a

shorter path through node K. To find the path, simply

follow the back pointers.

Therefore the path would be:

Start => C => K => Goal

K(4)

L(5)

J(5)

GOAL(4)

If the priority queue still wasn’t empty, we would

continue expanding while throwing away nodes

with priority lower than 4.

(remember, lower numbers = higher priority)

GOAL

3
3 3

3

3

3 3

1

1 2 2

3

3

3

2

2

0 Start

2

2 4
1

1

1 1

1

1 1

1 1

A

B

C D

E F

G H I

J K

L

16

Monotonic
• never overestimates the cost of getting from a node

to its neighbor.

• for all paths x,y where y is a successor of x, i.e.,

• h(A) = 3 g(A) = 1 h(E) = 1 g(E) = 2

h(y) g(x) - g(y) h(x) 

 2 11-2 h(E)g(A)-g(E) 3h(A) 

17

Non-opportunistic
1. Put S on priority Q and expand it

2. Expand A because its priority value is 7

3. The goal is reached with priority value 8

4. This is less than B’s priority value which is 13

Roadmap: GVG

• A GVG is

formed by paths

equidistant from

the two closest

objects

• Remember

“spokes”, start

and goal

• This generates a very safe roadmap which avoids obstacles as

much as possible

Distance to Obstacle(s)

)(min)(qdqD i

Two-Equidistant
• Two-equidistant surface

}0)()(:{ free  xdxdQxS jiij

iQO

jQO

More Rigorous Definition

Going through obstacles

Two-equidistant face

},),()()(:{ jihxdxdxdSSxF hjiijij 

iQO

jQO)()()(xdxdxd jik 
ij SS

kQO

General Voronoi Diagram

 
1

1 1

GVD


 


n

i

n

ij

ijF

What about concave obstacles?

vs

What about concave obstacles?

vs

id

jd

id

jd

What about concave obstacles?

vs

id

jd

id

jd

id

jd

jd

id

Two-Equidistant
• Two-equidistant surface

 Two-equidistant surjective surface

 Two-equidistant Face

}0)()(:{ free  xdxdQxS jiij

jC

iC

ij S

id

jd

)}()(:{ xdxdSxSS jiijij 

}),()(:{ ihxdxdSSxF hiijij 

 
1

1 1

GVD


 


n

i

n

ij

ijF

Voronoi Diagram: Metrics

Voronoi Diagram (L2)

Note the

curved

edges

Voronoi Diagram (L1)

Note the

lack of

curved

edges

Exact Cell vs. Approximate Cell

• Cell: simple region

Adjacency Graph
– Node correspond to a cell

– Edge connects nodes of adjacent cells
• Two cells are adjacent if they share a common boundary

c11

c1

c2

c4

c3

c6

c5
c8

c7

c

10

c9

c12

c13

c14

c15

c1 c10

c2

c3

c4 c5

c6

c7

c8

c9

c11

c12

c13

c14

c15

Set Notation

Examples

Definition

Cell Decompositions: Trapezoidal Decomposition

• A way to divide the world into smaller regions

• Assume a polygonal world

Cell Decompositions: Trapezoidal Decomposition

• Simply draw a vertical line from each vertex until you hit an obstacle. This

reduces the world to a union of trapezoid-shaped cells

Applications: Coverage

• By reducing the world to cells, we’ve essentially abstracted the world to a

graph.

Find a path

• By reducing the world to cells, we’ve essentially abstracted the world to a

graph.

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path

• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Connect Midpoints of Traps

Applications: Coverage

• First, a distinction between sensor and
detector must be made

• Sensor: Senses obstacles

• Detector: What actually does the coverage

• We’ll be observing the simple case of
having an omniscient sensor and having the
detector’s footprint equal to the robot’s
footprint

Howie Choset

Robotics Institute

(snake robots)

Cell Decompositions: Trapezoidal Decomposition

• How is this useful? Well, trapezoids can easily be covered with simple back-and-forth
sweeping motions. If we cover all the trapezoids, we can effectively cover the entire
“reachable” world.

Applications: Coverage

• Simply visit all the nodes, performing a sweeping motion in each, and you’re

done.

•Slice is a level set

•Slice function: h(x,y)= x, slice={(x,y)|h(x,y)=}

• At a critical point x of where M = {x|m(x)=0})()(,| xmxhh M 

h

m

Cell Decomp. in Terms of Critical Points

1-connected

h(x,y) = a1

2-connected

h(x,y) = a2

1-connected

h(x,y) = a3

2-connected

h(x,y) = a4

• Connectivity of the slice in the free space

 changes at the critical points (Morse theory)

a1 a2 a3 a4

• Each cell can be covered by back and

 forth motions

Cell-Decomposition Approach

• Define Decomposition

– Completeness

• Sensor-based Construction

• Define Other
Decompositions

– Other patterns

– Extended detector

Provably completeness = guaranteed completeness

25m x 30m
Successful Experiment:
Stopped because of robot battery
limitations

Simultaneous Coverage* and

Localization

*mapping too

Path Planning Where to cover and map

Position Planning How to collaboratively move and

maintain low position error (w/o

GPS)

Local Planning Obstacle detection/avoidance

Terrain features to inform Path

Planner

Operational Hierarchy

Calibrate robots’ initial location and go

Probabilistic Coverage

Surface Deposition

• Process Variables

– Uniformity

– Waste

– Positioning

• Cycle-time

– Time-to-completion

– Programming time

Conclusion: Complete Overview

• The Basics
– Motion Planning Statement

– The World and Robot

– Configuration Space

– Metrics

• Path Planning Algorithms
– Start-Goal Methods

• Lumelsky Bug Algorithms

• Potential Charge Functions

• The Wavefront Planner

– Map-Based Approaches

• Generalized Voronoi Graphs

• Visibility Graphs

– Cellular Decompositions => Coverage

• Done with Motion Planning!

