Motion Planning

Howie CHoset

What is Motion Planning?

What is Motion Planning?

• Determining where to go

Overview

- The Basics
 - Motion Planning Statement
 - The World and Robot
 - Configuration Space
 - Metrics

Algorithms

- -Start-Goal Methods
- -Map-Based Approaches
- -Cellular Decompositions

The World consists of...

- Obstacles
 - Already occupied spaces of the world
 - In other words, robots can't go there
- Free Space
 - Unoccupied space within the world
 - Robots "might" be able to go here
 - To determine where a robot can go, we need to discuss what a Configuration Space is

Motion Planning Statement

If W denotes the robot's workspace,
And C_i denotes the i'th obstacle,
Then the robot's free space, FS, is
defined as:

FS = W - (
$$\bigcup C_i$$
)
And a path $c \in C^0$ is $c : [0,1] \to FS$
where $c(0)$ is q_{start} and $c(1)$ is q_{goal}

Example of a World (and Robot)

What is a good path?

Basics: Metrics

- There are many different ways to measure a path:
 - Time
 - Distance traveled
 - Expense
 - Distance from obstacles
 - Etc...

But <u>some</u> computing power!

- known direction to goalotherwise local sensing

walls/obstacles & encoders

"Bug 1" algorithm

- 1) head toward goal
- 2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
- 3) return to that closest point (by wall-following) and continue

But <u>some</u> computing power!

- known direction to goalotherwise local sensing

walls/obstacles & encoders

"Bug 1" algorithm

- 1) head toward goal
- 2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
- 3) return to that closest point (by wall-following) and continue

But <u>some</u> computing power!

- known direction to goalotherwise local sensing

walls/obstacles & encoders

"Bug 1" algorithm

- 1) head toward goal
- 2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
- 3) return to that closest point (by wall-following) and continue

Call the line from the starting point to the goal the *m-line*

Call the line from the starting point to the goal the *m-line*

"Bug 2" Algorithm

1) head toward goal on the *m-line*

Call the line from the starting point to the goal the *m-line*

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.
- 3) Leave the obstacle and continue toward the goal

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the mline again.
- 3) Leave the obstacle and continue toward the goal

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.
- 3) Leave the obstacle and continue toward the goal

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the mline again *closer to the goal*.
- 3) Leave the obstacle and continue toward the goal

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the mline again *closer to the goal*.
- 3) Leave the obstacle and continue toward the goal

Start-Goal Algorithm: Lumelsky Bug Algorithms

Lumelsky Bug Algorithms

- Unknown obstacles, known start and goal.
- Simple "bump" sensors, encoders.
- Choose arbitrary direction to turn (left/right) to make all turns, called "local direction"
- Motion is like an ant walking around:
 - In Bug 1 the robot goes all the way around each obstacle encountered, recording the point nearest the goal, then goes around again to leave the obstacle from that point
 - In Bug 2 the robot goes around each obstacle encountered until it can continue on its previous path toward the goal

Assumptions?

Assumptions

- Size of robot
- Perfect sensing
- Perfect control
- Localization (heading)

What else?

Example of a World (and Robot)

Configuration Space: Accommodate Robot Size

Trace Boundary of Workspace

Pick a reference point...

Translate-only, non-circularly

$$QO_i = \{q \in Q \mid R(q) \cap WO_i \neq \emptyset\}.$$

Pick a reference point...

Translate-only, non-circularly symmetric

$$\mathcal{QO}_i = \{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{WO}_i \neq \emptyset\}.$$

Pick a reference point...

The Configuration Space

- What it is
 - A set of "reachable" areas constructed from knowledge of both the robot and the world
- How to create it
 - First abstract the robot as a point object. Then, enlarge the obstacles to account for the robot's footprint and degrees of freedom
 - In our example, the robot was circular, so we simply enlarged our obstacles by the robot's radius (note the curved vertices)

Start-Goal Algorithm: Potential Functions

Attractive/Repulsive Potential Field

$$U(q) = U_{\text{att}}(q) + U_{\text{rep}}(q)$$

U_{att} is the "attractive" potential --- move to the goal

U_{rep} is the "repulsive" potential --- avoid obstacles

Artificial Potential Field Methods: Attractive Potential

Quadratic Potential

$$U_{\rm att}(q) = \frac{1}{2} \zeta d^2(q, q_{\rm goal}),$$

$$F_{\text{att}}(q) = \nabla U_{\text{att}}(q) = \nabla \left(\frac{1}{2}\zeta d^2(q, q_{\text{goal}})\right),$$

$$= \frac{1}{2}\zeta \nabla d^2(q, q_{\text{goal}}),$$

$$= \zeta(q - q_{\text{goal}}),$$

Distance

$$d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

$$d(a,b) = |a_x - b_x| + |a_y - b_y|$$

$$d(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

Path Length Which is shortest?

Path Length Depends on metric

Distance to Obstacle(s)

$$d_i(q) = \min_{c \in \mathcal{QO}_i} d(q, c).$$

$$\nabla d_i(q) = \frac{q - c}{d(q, c)}$$

$$D(q) = \min d_i(q)$$

The Repulsive Potential

$$U_{\text{rep}}(q) = \begin{cases} \frac{1}{2} \eta (\frac{1}{D(q)} - \frac{1}{Q^*})^2, & D(q) \le Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

whose gradient is

$$\nabla U_{\text{rep}}(q) = \begin{cases} \eta \left(\frac{1}{Q^*} - \frac{1}{D(q)} \right) \frac{1}{D^2(q)} \nabla D(q), & D(q) \le Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

Repulsive Potential

Total Potential Function

Local Minimum Problem with the Charge Analogy

Local Min

The Wavefront Planner

- A common algorithm used to determine the shortest paths between two points
 - In essence, a breadth first search of a graph
- For simplification, we'll present the world as a two-dimensional grid
- Setup:
 - Label free space with 0
 - Label start as START
 - Label the destination as 2

Representations

- World Representation
 - You could always use a large region and distances
 - However, a grid can be used for simplicity

Representations: A Grid

- Distance is reduced to discrete steps
 - For simplicity, we'll assume distance is uniform
- Direction is now limited from one adjacent cell to another
 - Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

- 8-Point Connectivity 4-Point Connectivity
 - - (approximation of the L1 metric)

The Wavefront Planner: Setup

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with "0" to the current cell + 1
 - 4-Point Connectivity or 8-Point Connectivity?

- Your Choice We'll use 8-Point Connectivity in our example

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values >= 2
 - 0's will only remain when regions are unreachable

								_	_		_			_	_	
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

Repeat again...

														_		
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 4)

• And again...

			_		_									_	_	
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	6	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	2
,	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 5)

• And again until...

																	4
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	7	7	7	7	7	
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6	
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5	
2	0	0	0	0	0	0	0	0	0	0	7	6	5	4	4	4	
1	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	3	
0	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	2	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

The Wavefront in Action (Done)

- You're done
 - Remember, 0's should only remain if unreachable regions exist

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	0	1	2	3	4	5	6	7 8	3 9) 1	0 1	.1 1	12	13	14	15

The Wavefront, Now What?

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two
possible
shortest
paths
shown

7	18	47	4.0	4 -	4.4	10	40	44	40	9	9	9	9	9	9	9
6	17	74	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	. Б	1	1	1	1	1	1	1	1	1	6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5	1	5	5
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4		4
1	17	16	15	14	13	10	11	10	9	8	7	6	5	4	3	
0	17	16	15	14	13	12	ŀ	10	-	0	_	-	-			2
	0	1	2	3	4	5	6	7 8	3 9	9 1	0 1	.1 :	12	13	14	15

Wavefront (Overview)

- Divide the space into a grid.
- Number the squares starting at the start in either 4 or 8 point connectivity starting at the goal, increasing till you reach the start.
- Your path is defined by any uninterrupted sequence of decreasing numbers that lead to the goal.

This is really a Continuous Solution

Not pixels

Waves bend

L1 distance

Rapidly-Exploring Random Tree

