CarnegieMellon

PID Controls

Howie Choset
(thanks to George Kantor and Wikipedia)

http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm
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Force Balance

d
Fe L imi) = ms
o (mx) = mx

Force = Mass x acceleration
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o (mx) = mx
F = —kX
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Force Balance

Force = Mass x acceleration
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Force = spring constant x displacement
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Force Balance

F = i (mx) = mi Force = Mass x acceleration
dt
l x(t)
k \
1 " o
F = —kX

Force = spring constant x displacement
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Standard Form of DEQ

T + —ax=10
m
o \g‘? Natural frequency (rads/sec)
\/ ®
£ + u.:ﬂ? r =
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Standard Form of DEQ
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Vary Natural Frequency
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modificd by O .Russell, 1497
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Different Frequencies

x(t) = Acos(wgyt) + B sin(wyt)

1.5

1F

051

a

L5k

Ak

1.4

(l)O:

/™

q — =1

wil=.5 |

wl=5

il

|
10

14

3| = |

N

ROBOTICS
TTTTTTTTT



Can we go forever
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Mass Spring Damper

Fs = —kx § k ’_b
4=—Cv=—c-=—ck § m
2 \ |
Ftot—ma=mﬂ—mx §
dt? c
C k
mx = —kx — cx = 5C‘+E5C+Ex=()
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2"d Order ODE

.. Cc . k
X+—x+—x=0
m m
k
(1)0=VE
Vo o=—
2\Vmk

¥+ 2{wex + wix =0

Natural (undamped)
frequency (rads/sec)

Damping ratio

(unitless)
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2"d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo, Natural (undamped) frequency

¢ Dampingratio | 1
| LInderdamped
Solutions: 06| —tenly dom |
04F

Critically damped (¢ = 1) 02|

Overdamped (¢ > 1) o \/ \/ \

(( < 1) i 5 10 15
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2"d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo, Natural (undamped) frequency

1

¢ Dampingratio | ]
' querdamped
Solutions: 0s | _S‘d”;:ﬁdm” _
0.4} |
0.2} \
0 )
02t
04t
06}
08}
(( < 1) o 15

x(t) = ev‘ff”ot(/l cos(va)dt) + B}sm(a)dt))
Decay Oscillation, damped natural frequency Wy = Won / 1 — (2 ﬁ
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2"d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo, Natural (undamped) frequency

1

¢( Damping ratio N ]
Solutions: 0s | _S‘g”ﬁ';ﬁdm“ _
02t \
0 |
Overdamped (¢ > 1) N
x(t) = Ae’+t + Be?-t 05
Y+ = wo(=¢ £+{* - 1) ol
(( < 1) o 15

x(t) = ev‘ff”ot(A cos(Ya)dt) + B}sm(a)dt))
Decay Oscillation, damped natural frequency Wy = Won / 1 — (2 ﬁ
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2"d Order ODE Solutions

X+ 2{wex + wix =0

Recall: wo, Natural (undamped) frequency
( Dampingratio

Pk
— Undamped

Underdamped
— Critically damped | |

Solutions: 06 o dmpd

0.4r

Critically damped (¢ = 1) o2}

x(t) = (A + Bt)e @ot o—

Overdamped (¢ > 1) ol

x(t) = Ae’+t + Be?-t 05
Y+ = wo(—¢ £+/{*—1) 0s}

(¢ <1) k "
x(t) = e‘ff‘)ot(A cos(wgyt) + B}sm(a)dt))
Y Y
Decay Oscillation, damped natural frequency Wy = Won / 1 — (2 ﬁ
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envelope
Maxima
C =01

C =02

T =03
=05
=1

1..5 1.1

B
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da dz 5 _ F(t)
a2 + Qf:wng + wpx = —=

m

F(t) _ Jwg t20
0 t<0

x(t)=1- E—Cwutsm (m wol + EP)
sin( )
COS @ — C

As time goes on, X(t) goes to 1

—wd=6

2

c— 1y =D

==eStep

1.6 h

Step Response
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Open Loop Controller

Desired CControId Actual Robot

esire ommands Robot =

state ——* Controller > | ——» State(Position,
e Kinematics Velocity, etc.)

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Desired
State

—» Controller

CarnegieMellon

Open Loop Controller

Control
Commands

Plant

Actual Robot
|, State(Position,
Velocity, etc.)

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is

done properly
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Desired
State

CarnegieMellon

Open Loop Controller

Control
Commands

— Controller » Plant ——— OUtpUt

controller tells your system to do something, but
doesn’t use the results of that action to verify the
results or modify the commands to see that the job is
done properly
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Closed Loop Controller

Give it a velocity command
and get a velocity output

Ref +

Controller

Controller Evaluation

Steady State Error

Rise Time (to get to ~90%)

Overshoot

Settling Time (Ring) (time to steady state)
Stability

Plant
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PID Feedback

a dr -u(t)

1 _
u(t) = Kpe(t) + K; /e(t}dt + fi’ﬂme{t).z
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P Feedback

dfz 4 Er,fmg - = 4 We —m -Kx

T + 2CwoT (u.:ﬂ?+ K)Yx=0

It is like changing the spring constant
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- Proportional Feedback

S35 o=« 2+ plant “.e
L l

Set desired position to zero

Note that the oscillation dies out at
approximately the same rate but has
higher frequency. This can be thought of
as “stiffening the spring”.
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joint angle

Proportional/Damping

- g ee | . =
@D——"(- : E;L_?UL&,_H

plant

single joint trajecory under PD control. kp =5 kd =1

ngle

jointa

08
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We can increase the
damping (i.e., increase
the rate at which the
oscillation dies out)

single joint trajecory under PD control. k= 5k, =5
T

0.7+

0.6

04t

0.3

02

Increasing damping slows everything down (note deriv is an approx and turning the gain high, can cause problems because in a sense it amp

0
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PD works well if desired point is an equilibrium of system, which makes
sense because when you are at target, PD does not exert force

Non-zero desired PD

single joint trajecory under PD control. kp =5k, =5
1.6

141

121

1k

0.8

joint angle

Settle time same

04r

Steady state error!

0.2

0

| i I I I | i
6 8 10 12 14 16 18 20

At set point, applying no force so end up settling at equilibrium
that balances force due to error and force due to spring (damper
goes away In steady state because depends on derivative).

Crank up P gain, steady state error gets smaller, but that causes

overshoot, oscillations, etc which you don’t want .
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PID Control

lepe 4 loé - L;S:raﬁ‘

.

f s

plant

CarnegieMellon

single jaint trajecory under PID cantral k, = 5. k, <5 k =0.1

10
time (seconds)

System does its
dynamic thing and
then gradually
integrates to correct
for steady state error

single joint trajecory under PID cantrol. k= 5, k, =5 k =1

joint angle
o
s

0.2

time (seconds)

As increase | gain, gets
faster, good response

25

051

single joint trajecory under PID control. k, = 5.k, «5 =10

L]

L L
14 16 1. 20

Integral gets so bad, it starts
to interfere with other
dynamics, lead to unintended
motions which could lead to
instability

H
2 a
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Closed Loop Response (Proportional Feedback)

=lep response with Froportion Control

1.2
Proportional Control /\
p 1L
Easy to implement 0sl
Input/Output units agree S
Improved rise time 990
I
04|
Steady State Error (true)
02|
NP: N Overshoot* ; | | |
NP: .\ Settling time* 0 1 Zime (secd 4 5
NP: . other problems
R + 0
Controller Plant
@

*In some other systems, not mass-spring AOROTICS
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Closed Loop Response (Pl Feedback)

Proportional/Integral Control .

Kp+gK|

Amplitude

Bigger Overshoot and Settling
Saturate counters/op-amps

NP: AN Overshoot
NP: .\ Settling time

N . NOvershoot

Ref + K+

1 0
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Closed Loop Response (PID Feedback)

Proportional/Integral/Differential

KIOJr%KI +sKp

Sensitive to high frequency noise
Hard to tune

NP: N Overshoot
NP N7 Settling time 15 y 2_I5 3
M; . NOvershoot
ND: NSteady State Error
R T Kp+%K,+sKD Plant

B
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Quick and Dirty Tuning

Tune P to get the rise time you want
Tune D to get the setting time you want
Tune | to get rid of steady state error
Repeat

More rigorous methods — Ziegler Nichols, Self-
tuning,

Scary thing happen when you introduce the | term
— Wind up (example with brick wall)
— Instability around set point

TTTTTTTTT



CarnegieMellon

Feed Forward ot

Decouples Damping from PID

To compute Ky
Try different open loop inputs and measure-output velocities
For each trial I, o |
Tweak from there. K,==, K,=avgK;

Ky

+
R Controller Plant
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