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ABSTRACT 

We present a new triangle scan conversion algorithm that works 
entirely in homogeneous coordinates. By using homogeneous 
coordinntes, the algorithm avoids costly clipping tests which make 
pipelining or hardware implementations of previous scan 
conversion algorithms difticult. The algorithm handles clipping 
by the addition of clip edges, without the need to actually split the 
clipped triangle. Furthermore, the algorithm can render true 
homogeneous triangles, including external triungles that should 
pass through infinity with two visible sections. An 
implementation of the algorithm on Pixel-Planes 5 runs about 
33% faster than a similar implementation of the previous 
algorithm. 
CR Categories and Subject Descriptors: 1.3.1 (Computer 
Graphics]: Hardware Architecture - Parallel Processing; 1.3.3 
[Computer Graphics]: Picture/Image Generation; 1.3.7 [Computer 
Graphics]: Three-Dimensional Graphics and Realism - Visible 
line/surface algorithms. 
Additional Keywords: homogeneous coordinates, scan 
conversion, rasterlzation, clipping 

1 INTRODUCTION 

Homogeneous coordinates are commonly used for transformations 
in 3D graphics. They are popular because rotation, scaling. 
translation and perspective are all linear in homogeneous space. 
As a result, transformations can be expressed uniformly in matrix 
form and can be easily combined into a single composite matrix. 
While homogeneous coordinates are used for 3D transformations, 
points are converted back to true 3D after hither clipping. One of 
the reasons that hither clipping is required is to avoid singularities 
in this conversion. 

We present a method for triangle scan conversion in which all 
computations occur in homogeneous space. In a comparison of 
similar implementations of the new algorithm and the previous 
nlgorithm on Pixel-Planes 5 [Fuchs89], the new algorithm ran 
about 33% faster. 

With the new method, no hither clipping is required at all for 
the (rather uninteresting) case using only flat shading and no z- 
buffering, Even triangles that touch or cross the camera plane are 
rendered correctly. 
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A K&r ctip edge must be used when values are interpolated 
across the triangle (Z, color, texture coordinates, etc.). Even so, 
the algorithm never splits the triangle and does not have to 
compute new shading parameter values or vertex locations at the 
clipping plane. This is at the “cost” of having to use perspective- 
correct interpolation for every parameter. 

The new algorithm requires more total operations, due to the 
perspective-correct interpolation of all parameters. However, 
support for these perspective-correction operations exists in 
current hardware. As our tests show, the algorithm can run faster 
on actual hardware. The computation required is more regular 
than previous algorithms, avoiding costly branches for clipping. 
The algorithm allows heavy pipelining of the transformation and 
setup processing, and is more amenable to hardware 
implementation. As most highly parallel graphics hardware 
systems have more processing power at the pixel level than at the 
transformation level, and must already handle perspective 
correction of texture coordinates, we expect scan conversion with 
2D homogeneous coordinates to be a faster alternative on a range 
of hardware graphics systems. 

2 PRIOR WORK 
Traditional triangle scan conversion algorithms walk along 

polygon edges and fill across scan lines. Pineda observed that 
these algorithms do not extend well to parallel implementations 
[PinedaSS]. 

The Pixel-Planes [Fuchs851 and Pineda [PinedaSS] scan 
conversion algorithms do parallelize well. In both of these 
algorithms, each triangle edge is represented by a linear edge 
function. The edge function is positive inside the edge and 
negative outside. Within a triangle, all of the edge functions are 
positive; outside the triangle, at least one edge function is 
negative. Both the Pixel-Planes and Pineda algorithms take 
advantage of the linearity of the edge functions. In the Pixel- 
Planes family of graphics systems, a hardware multiplier tree 
computes the value of each linear edge function at a large number 
of pixels simultaneously. In the Pineda algorithm, the value of an 
edge function at a pixel is computed incrementally, with a single 
addition, from the value at the previous pixel. Both methods 
compute the coefficients of the edge function from the 2D screen 
coordinates in the same way. For the edge between (XL,, Y&t) and 
(Xi. YJ, the edge function Bj is computed as 

dXt = Xi- Xi.1 
dYt = Yt - Yt.1 

e(X,Y)=(X-Xi)dXi - (Y-Yi)dYt 

Similar equations are used to compute the coefficients for linear 
functions to interpolate parameters across the triangle (color, 
texture coordinates, etc.). Hidden in these equations are the 
divisions required to project each of the three vertices onto the 
screen and another division required to normalize the parameter 
interpolation equations. The new algorithm computes equivalent 
edge functions and parameter interpolation functions using 2D 
homogeneous screen coordinates without computing the actual 
screen coordinates. 
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The new algorithm can be derived from the 2D equivalent to 
the 3D homogeneous point-in-tetrahedron test given by Niizeki 
[Niizeki94]. In this test, a 3D point is in a tetrahedron if it passes 
four 4x4 determinant tests. That is (x, y, z, w) is in the 
tetrahedron defined by four points, (xi, yi, ZI, WI), when these four 
determinants all have the same sign: 

x XI x2 x3 x0 x x2 x3 &I Xl x x3 x, Xl x2 x 
Y Yl Y2 Y3 Yo Y Y2 Y3 Yo Yl Y Y3 Yo Yl Yz Y 
z ZI z2 z3 ’ ZIJ z z2 z3 ’ q z1 z z3 ’ q Zl z2 z 
wwlwZw3 wOww2 w3 WOWlWW3 woww2w 

We can derive a similar 2D point-in-triangle test using three 3x3 
determinant tests. The result of each edge function at a pixel is 
equivalent to (and with the right scaling, equal to) the result of 
one of the determinants. The edge function form is superior for 
incremental evaluation. Niizeki also gives a point-in-polygon 
test, but it is not appropriate for our purposes as it is for 3D points 
in 3D polygons. 

Blinn noted the possibility of scan converting without hither 
clipping, though he still suggested operating in non-homogeneous 
space for the actual scan conversion [Blinn96b]. 

3 HOMOGENEOUS COORDINATES 

3.1 Notation 

A point in 3-space, P = (X, Y, Z), is represented in homogeneous 
coordinates by the four element vector, p = (X, Y, Z, 1). Any 
non-zero multiple of this homogeneous vector represents the same 
point in 3-space. Similarly, there are non-homogeneous, P = (X, 
Y), and homogeneous, p = (x, y, w), representations of points in 
2-space. Notice that while 3D non-homogeneous and 2D 
homogeneous representations both have three components, they 
represent points in different spaces. Except when converting 
between representations, we will write points in non- 
homogeneous coordinates in upper case and points in 
homogeneous coordinates in lower-case. We will also use 
different fonts for 2D and 3D points. 

To convert a non-homogeneous representation to a 
homogeneous representation, append a w coordinate of 1, (X, Y, 
z) 3 (X, Y, Z, 1) or (X, Y) * (X, Y, 1). To convert a 
homogeneous representation to a non-homogeneous 
representation, divide each component by w, (x, y, z, w) * (x/w, 
Y/W, Z/W) or (x, y, w) * (x/w, y/w). This is called the projection 
of the homogeneous point. The representations and conversions 
are summarized in Table 1. 

11 non-homogeneous 1 homogeneous 

2D P =(X,Y) p = 6. y, WI 
= (x/w. y/w) =(X,Y, 1) 

3D P = K Y, z) p=(x,y.z.w) 
_ = (xlw, y/w z/w) = K Y, z 1) 

Table l:-- 2D and 3D homogeneous and non- 
homogeneous point representations, and the 
conversions between them. 

I 
3.2 Homogeneous triangles 

/ A triangle can be defined as a weighted linear combination of 
three vertices [Niizeki94]. In homogeneous coordinates: 
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Figure 1: An example of an external triangle. Both 
shaded regions are part of a single external triangle. 

(where the h’s have the same sign and at least one is non-zero). 
This definition holds whether the points are 2D or 3D. If the w 
components of all three vertices have the same sign, the result is 
the bounded triangle we normally expect. However, if the w 
components do not all have the same sign, the result is an &entaf 
triangle, that wraps through infinity to connect the vertices 
(Figure 1). 

To understand the connection between 2D homogeneous 
triangles and 3D triangles, we will look at a single 3D triangle and 
its projection onto the screen. For simplicity, WC will define the 
triangle in canonical eye space. In canonical eye space, the center 
of projection is at the origin, the direction of projection is aligned 
down the Z axis, and the field of view is 90 degrees. In this 
space, perspective projection can be achieved simply by dividing 
by Z. In other words, to project the 3D point (X, Y, Z), set x = X, 
y = Y, and w = Z to get the 2DH point (x, y, w), Figure 2 and 
Figure 3 show a triangle with two vertices in front of the eye as 
the Z coordinate of the third vertex changes. Figure 4 shows a 
triangle with one vertex in front of the eye as the Z coordinate of 
the other two change. 

4 PERSPECTIVE-CORRECT 
INTERPOLATION 

Before attacking the full scan conversion problem, consider the 
equations for perspective-correct interpolation across a triangle. 
This is called hyperbolic interpolation by Blinn [Blinn96b] and 
rational linear interpolation by Heckbert [Heckbert89], 

4.1 Interpolation function 

If some parameter (say the u texture coordinate) is to vary linearly 
across the triangle in 3D (i.e. across the object itself), it must obey 
this equation: 

u=aX+bY+cZ (1) 

The 3D position (X, Y, Z) projects to 2D, using the 2D 
homogeneous representation (x, y, w) where x = X, y = Y, w = Z. 
This allows us to rewrite equation 1 to hold in 2D homogeneous 
space: 

u=ax+by+cw (2) 

Division by w produces the familiar 2D perspective-correct 
interpolation equation [Blinn96b, Heckbert891: 

dw=ax/w+by/w+c=aX+bY+c (3) 

This says that u/w is a linear function in the screen space (X, Y). 
The coefficients a, b, and c are the same equations 1, 2 and 3. 
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Figure 2: Views of what happens to a triangle as one of 
the vertices moves in Z. For each case, a side view and 
a view of the resulting image are shown. The heavy 
dashed line shows the path followed by the moving 
vertex. a) The top vertex is infinitely far away. It 
projects to the center of projection. b) The vertex is at a 
“normal” distance in front of the eye. c) The vertex is 
still in front of the eye but out of the viewing frustum. 
d) The vertex is even with the eye, which maps it to a 
point “at infinity” in the image plane. 

Given a value for u at each vertex (e.g. the parameter vector [UC, 
ur ua]), we can solve for [a b c] using equation 2: x0 Xl x2 

[a b cl = [u,, uI UZI [ 1 -’ YO YI YZ = [uO ul ~21 h4-l (4) 
‘-Jo WI w2 
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Figure 3: More views of what happens to a triangle as 
one of the vertices moves in Z. a) The vertex has 
moved behind the eye. The displayed projection is one 
part of an “external” triangle. b) The plane of the 
triangle passes through the eye, so nothing is visible. c) 
The triangle has passed completely through the eye, 
now we see the back. d) The vertex is infinitely far 
behind the eye. The projection of the vertex is again at 
the vanishing point, but we see part of an external 
triangle now. 

Consider the implications of this result. We can invert one 3x3 
matrix, which depends only on the vertex locations before 
perspective projection. Then computation of the coefficients for 
perspective-correct interpolation requires just one 3x3 vector- 
matrix multiply per parameter to interpolate. 
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Figure 4: Views of what happens to a triangle if two 
vertices pass behind the eye while the other remains in 
front. Once again, a side view and the resulting 
projection are shown. The lines indicating the path of 
the vertices are left out of the side view for clarity, but 
still appear in the projected view. a) All vertices are in 
front of the eye. This is the same as Figure 2b. b) both 
vertices are in the plane of the eye. They project to 
intlnity in different directions. c) The plane of the 
triangle passes through the eye so nothing is visible. d) 
Both vertices are behind the eye. What is visible is part 
of an external triangle, but the “other half” from what 
was visible in Figure 3a, c, and d. 

The coefficients are derived directly from the homogeneous 
coordinates of the vertices. Since they are based on the 2DH 
coordinates and not the 3D coordinates, they are independent of 
the 3D point representation. In particular, the parameter 
interpolation will still work even if the original vertices were 3D 
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homogeneous coordinates with arbitrary w components (as might 
result from rational splines). 

4.2 Perspective correction 

Since we never divide by w for any of the vertices, we avoid the 
usual troubles when w is zero or negative which nccessitatc costly 
clipping operations. The coefficient computations are 
independent of any clipping required for scan conversion, and do 
not require computation of the values of each parameter at the clip 
points, even if the triangle crosses behind the eye, These 
coefficients can be used for parameter interpolation with any scan 
conversion technique, either by direct evaluation of the linear 
expression (as is done on the Pixel-Planes hardware) or 
incrementally. 

As this is a perspective-correct interpolation, the result at each 
pixel is u/w. To recover the true parameter value, it is ncccssary 
to also interpolate l/w. Once per pixel, we take the reciprocal, 
then per parameter perform a multiplication of the form (u/w) * w. 
Coefficients for l/w can be computed using the parameter vector 
[l 1 l] (giving the sum of the columns of M“). 

There are several reasons that we do not mind this extra pcr- 
pixel computation. First, perspective correction is already 
required for texture coordinates, including interpolation of l/w 
and its reciprocal. Second, all clipping and projection nre 
deferred from computations at the vertices, where they arc 
difficult, to computations at the visible pixels, where they are 
easy. This makes both the pixel-level and transformation and 
setup-level processing simpler. Third, graphics hardware 
typically has many fewer processors devoted to transformntlons, 
clipping, and setup than pixel computations, making the efficiency 
of the former much more critical. Finally, our particular hardware 
implementation avoids most of the per-pixel costs by using 
deferred shading. 

5 SCAN CONVERSION 

5.1 Edge function 

The coefficient computations for parameter interpolation cnn be 
extended to complete triangle scan conversion. Following the 
Pixel-Planes and Pineda algorithms [FuchsSS, Pincda881, we 
compute a linear function for each edge of the triangle. This 
function is positive on inside of the edge and negative on the 
outside. Since both the edge function and parameter interpolation 
functions are linear, the edge function is just a parameter 
interpolation function for some pseudo-parameter. For each 
edge, we define a pseudo-parameter that is zero at the two vertices 
on the edge and one at the opposite vertex. From equation 4, it is 
apparent that the edge parameter vectors [ 1 0 01, [0 1 01, and [0 0 
l] simply pick rows out of the inverse matrix. 

Examining the edge functions just defined and the determinant 
tests of [Niizeki94], we can show that they are dlffcrcnt 
formulations for the same test. For the pixels in the part of the 
triangle we usually want to render, all of the edge functions arc 
positive*. We can use this fact to create an efficient scan 
converter that renders triangles without every doing any clipping. 
All visible portions of the triangles have positive results on all of 
their edge functions. Whole or partial triangles behind the eye 
have negative results on their edge functions. 

* If we have an external triangle and want to render both parts, we 
include the region where all of the edge functions arc negative. 
For pixels completely outside both portions of the triangle, the 
edge functions will have different signs. 



5.2 Zero-area and back facing triangles 

Computation of the 3x3 matrix inverse requires division by the 
3x3 determinant of M. This might cause some concern, as 
sometimes the matrix inverse will not exist. In 3D, a matrix 
determinant gives twice the signed volume of a tetrahedron. In 
eye space, this is the tetrahedron with the eye at the apex and the 
triangle to be rendered as the base. If all of the 2D w coordinates 
are 1, the determinant is also exactly twice the signed screen- 
space aren of the triangle. If the determinant is zero, either the 
triangle is degenerate or the view is edge-on (Figure 2b and 
Figure 4c). 

So, if the M” does not exist, the triangle should not be rendered 
anyway, Furthermore, for vertices defined by the right-hand rule, 
the determinant is positive if the triangle is front-facing and 
negative if the triangle is back-facing. 

For numerical accuracy, we actually throw away triangles with 
sufficiently small determinants as well as the ones with zero 
determinants. To avoid loosing large meshes of very small 
triangles, we snap the 2D homogeneous coordinates of the 
vertices to a fine grid (you can think of this as a 3D grid in 
canonical eye space). This retains the mesh connectivity, but 
forces the small triangles to either snap to zero area or to a size 
large enough to render. 

5.3 Arbltrary clip planes 

To add arbitrary clip planes, we compute new clip edgefunctions. 
We only need the new edge functions, we do not actually find the 
clip vertices, The pseudo-parameter vector for a clip edge 
function is just the dot product test normally used for determining 
which vertices are inside or outside the clip plane [Cyrus78]. It is 
linear, positive for unclipped points, negative for clipped points, 
and zero along the clipping plane itself. The parameter vector [cg 
ct cz] for a clip plane with normal N = [N, N, NJ and containing 
the point Pf is 

x0 Xl x2 

h CI c21= IN, N, N, N*P,I [ 1 ; ;: ; 
wo WI iy? 

Usually, this dot product is simplified to take advantage of the 
known simple values of N and PC. We use this method to create a 
lritlter edge function. 

Scan conversion of the triangle edges works without clipping. 
We have implemented a scan converter on Pixel-Planes 5 
[Fuchs891 that renders flat shaded non-z-buffered triangles with 
no clipping at all. Computation of coefticients for parameter 
interpolation also works without clipping. However, for triangles 
thnt pass near the eye, the parameter interpolation can overflow. 
This is true even if the parameter itself is well defined. For 
example, even if u doesn’t overflow, u/w and l/w may. The 
hither edge masks out regions where parameters might overtlow. 

With the use of a hither edge, our implementation is able to use 
fixed point to store interpolated values like l/w. With the hither 
plane we can safely use the full fixed-point range, with l/w 
reaching the maximum representable value exactly on the hither 
plnne. 

6 UNCORRECTED INTERPOLATION 

So far, we have only discussed perspective-correct interpolation. 
In fact we use only perspective-correct interpolation. In 
traditional scan conversion, it has been common to interpolate 
parameters linearly in screen space. This produces some 
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Figure 5: Pixel-Planes 5 block diagram [Fuchs89]. 
Graphics Processors are Intel i860 microprocessors, 
Renders are 128x128 custom SIMD arrays. 

distortions which prevent uncorrected interpolation from working 
for texture coordinates, but avoids the per-pixel divide required by 
the correction process. We can derive coefficients for uncorrected 
interpolation: 

u=aX+bY+c=axlw+bylw+c 
uw=ax+by+cw (5) 

Equation 5 is now in same form as equation 4. Therefore, a 
parameter vector [uawu urwr uaw2] can be used to compute the 
coefficients for uncorrected interpolation. Alternately, a new 
matrix can be created and used for all uncorrected interpolation: 

Unlike perspective-correct interpolation, uncorrected interpolation 
does not work without explicit clipping. In any external triangle 
(including any triangle crosses behind the eye), we also get an 
extemaf interpolation. For example, to interpolate between 0 and 
1, the parameter value starts at 0, goes negative, and wraps 
through infinity to get to 1. To avoid this, it is necessary to do 
full clipping on all triangles to avoid ever rendering external 
tliangIes. 

As a result, uncorrected interpolation requires more setup and 
complicates the setup processing. For this reason, we only use 
perspective-correct interpolation. 

7 IMPLEMENTATION 

7.1 Pixel-Planes 5 

As mentioned earlier, we have implemented the 2D homogeneous 
scan conversion algorithm on the Pixel-Planes 5 graphics system 
(Figure 5). Pixel-Planes 5 has a number of graphics processors, 
responsible for geometric transformations and rendering Setup 
computation, and a number of renderers, responsible for scan 
conversion and shading. Each graphics processor uses a general 
purpose Intel i860 processor for geometric transformations and 
rendering setup computations. Each renderer has a 128x128 
SIMD array with a linear expression tree capable of 
simultaneously evaluating the results of a linear expression across 
the entire 128x128 array. 

Pixel-Planes 5 is a good machine to take advantage of the 2D 
homogeneous scan conversion algorithm. The processors it uses 
for transformation and setup use pipelined floating point, but are 
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Figure 6: A hard triangle to bin correctly. An axis- 
aligned bounding box binner would attempt to scan 
convert the triangle in every region on the screen when 
it really only lands in the shaded regions. 

not very efficient for code with lots of branching. In fact, the 
algorithm would work well on a machine with an even deeper 
floating point pipeline. The processors it uses for rasterization 
include a linear expression tree, which makes evaluation of edges 
and interpolation functions particularly easy. They also have 
enough memory per-pixel (208 bits) to store all the parameters 
needed for shading, allowing us to use deferred shading. This 
means that we rasterize all of the parameters used for shading, but 
don’t do the shading computations until all primitives have been 
rasterized. As a result, the reciprocal and multiplications 
necessary to recover the true parameter values (as well as the rest 
of the shading computations) are only done for the visible pixels 
instead of for every pixel of every primitive. Deferred shading 
also gives 100% utilization of the SlMD processor arrays during 
the perspective correction and shading computations. 

7.2 Edge function normalization 

Because the Pixel-Planes 5 linear expression tree evaluates 
expressions for all pixels in a 128x128 region, our implementation 
uses an extra edge normalization that would not be required in an 
incremental algorithm. For incremental scan conversion 
[Pineda88], we would only evaluate the edge functions inside or 
near the triangle, so the addition of a hither plane can prevent 
their overflow. For Pixel-Planes style scan conversion, the edge 
functions are evaluated at many pixels simultaneously, some of 
which may be far outside the triangle. This is only a concern for 
the edge functions, not the parameter interpolation. Parameter 
values outside the triangle are not used, so it doesn’t matter if they 
overflow there. 

I 
Since only the sign of each edge function matters, we can scale 

each edge to avoid ovefflow within the screen boundaries. Any 
scaling factor will do, as long as it can be guaranteed to bound the 
range of the edge function within one screen regions. In the 
Pixel-Planes 5 implementation, we used the simple but somewhat 
expensive l/(lal + Ibl). An optimized version would probably 
prefer to use a power of two scaling factor, which would require 
only exponent addition for floating point or shifts for fixed point 
representations of the edge function coefficients. 

Certain anti-aliasing algorithms (not used in our 
implementation) require the distance of pixels from the edge. For 
these, the distance can be commuted exactly, using an edge 
function normalized by l/&a’ + b”) . 

7.3 Binning 

Pixel-Planes 5 uses screen-space subdivision to allocate screen 
area to the SIMD rendering blocks. While the algorithm bchnvcs 
correctly if a renderer attempts to scan convert a triangle that does 
not land in its screen region, it does waste time that could be used 
rendering other triangles. To get maximum processor utilization, 
we need to make good estimates of the region coverage of cnch 
triangle. Binning is the job of finding the regions that contain pnrt 
of the triangle. 

For the implementation we used for performance testing, we 
simply used an axis-aligned bounding box around the triangle for 
binning. Computing bounding boxes from pre-projection 
homogeneous coordinates is covered by Blinn in [Blinn96n]. 
However, particularly for triangles with high aspect ratios, the 
axis aligned bounding box can seriously overestimate the number 
of regions covered (Figure 6). This problem is becoming more 
serious, as region sizes shrink to increase processor utilization. 

We can compute the exact binning, while still using only 
homogeneous coordinates. The exact binning algorithm relies on 
homogeneous point-inside-edge tests and edge-edge intersection 
tests. The point-inside-edge test is just the edge function 
evaluated at the point. The edge-edge intersection test is made up 
of four point-inside-edge tests. The two end-points of the first 
edge must be on opposite sides of the second edge, while the two 
end-points of the second edge must be on opposite sides of the 
first. 

A triangle intersects a region if 
a) A triangle vertex is inside the region. 
b) A region comer is inside the triangle. 
c) A region edge intersects a triangle edge. 

Since the region edges and comers are spaced evenly, all of the 
tests involved can be evaluated incrementally. For fur&!; 
savings, we can use a recursive quad-tree approach. 
subdivision of a quad-tree cell requires only seven adds per 
triangle vertex. 

7.4 Performance results 

We tested the performance of a C implementation of the new 
algorithm against the C code version of the Pixel-Planes trlnnglc 
scan conversion algorithm. We ran our test on a scene consisting 
of a spinning teapot (Figure 7, Table 2). 

Table 2: Performance results 

The production version of the Pixel-Planes triangle rasterizcr is 

written in i860 assembler. That version has undergone extensive 
profIling and optimization, resulting in significant spcedup over 
the original C code (performing about 18,000 triangles per second 
on the machine configuration used for these tests). Thus far, WC 
have only produced a C code version of the new algorithm, SO WC 
made our timing comparisons against the C code version of the 
previous algorithm. We are confidant that an optimized version 
of the new algorithm would be faster than the optimized version 
of the old algorithm since the new algorithm is simpler, with 
fewer special cases, and consists primarily of easy-to-pipeline 
vector-matrix multiplies. 
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Figure 7: Image from the spinning teapot 
performance test. 

8 CONCLUSIONS 

We have shown a new algorithm for triangle scan conversion for 
parallel graphics hardware. The algorithm only needs one 
reciprocal operation during the setup computations, and that one 
is only undetined when the triangle should not be drawn anyway. 
In contrast, the previous algorithms required four reciprocals 
during setup, One is the reciprocal of the screen space area of the 
triangle, and well-defined for all rendered triangles; but the other 
three rue for perspective projection of the three vertices, and can 
be undefined even for visible triangles. It is these reciprocals that 
force the previous algorithms to do hither clipping. Our algorithm 
avoids triangle clipping and the pipeline inefficiencies it causes. 

The remainder of the setup computations for our algorithm are 
simple matrix arithmetic and easily pipelined. Linear 
interpolation functions are used for all scan conversion and 
parameter interpolation. These functions are well suited to 
pamllel hardware evaluation or cheap incremental scan line 
evaluation. For perspective correction, we require one reciprocal 
per visible pixel in the triangle (which is well-defined in the 
triangle’s domain) and one multiply per parameter per pixel. 

The setup computation consists primarily of independent 
vector-mntrlx multiplies, with one reciprocal required. The pixel 
computntion consists primarily of linear interpolation and 
multiplication, with one reciprocal required. Both parts are well 
suited for use with deep floating point or arithmetic pipelines or 
for hardwore implementation or acceleration. 

To summa&e the algorithm: 
setup: 

three edge functions = M’ = inverse of 2D homogeneous 
vertex matrix 

for each clip edge 
clip edge function = dot product test * M’ 

interpolation function for l/w = sum of rows of M’ 
for each parameter 

interpolation function = parameter vector * M’ 
pixel processing: 

interpolate linear edge and parameter functions 
where all edge functions are positive 

w = I/( l/w) 
for each parameter 

perspective-correct parameter = parameter * w 

We have implemented a preliminary version of the algorithm in C 
code, running on the Pixel-Planes 5. The results from this test are 
positive, showing a definite improvement over comparable code 
for the previous algorithm. Based on these results, we plan to use 
this algorithm in future hardware systems. 
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