
Triangle Scan Conversion using 2D Homogeneous Coordinates

Marc Olano’

University of North Carolina

ABSTRACT

We present a new triangle scan conversion algorithm that works
entirely in homogeneous coordinates. By using homogeneous
coordinntes, the algorithm avoids costly clipping tests which make
pipelining or hardware implementations of previous scan
conversion algorithms difticult. The algorithm handles clipping
by the addition of clip edges, without the need to actually split the
clipped triangle. Furthermore, the algorithm can render true
homogeneous triangles, including external triungles that should
pass through infinity with two visible sections. An
implementation of the algorithm on Pixel-Planes 5 runs about
33% faster than a similar implementation of the previous
algorithm.
CR Categories and Subject Descriptors: 1.3.1 (Computer
Graphics]: Hardware Architecture - Parallel Processing; 1.3.3
[Computer Graphics]: Picture/Image Generation; 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism - Visible
line/surface algorithms.
Additional Keywords: homogeneous coordinates, scan
conversion, rasterlzation, clipping

1 INTRODUCTION

Homogeneous coordinates are commonly used for transformations
in 3D graphics. They are popular because rotation, scaling.
translation and perspective are all linear in homogeneous space.
As a result, transformations can be expressed uniformly in matrix
form and can be easily combined into a single composite matrix.
While homogeneous coordinates are used for 3D transformations,
points are converted back to true 3D after hither clipping. One of
the reasons that hither clipping is required is to avoid singularities
in this conversion.

We present a method for triangle scan conversion in which all
computations occur in homogeneous space. In a comparison of
similar implementations of the new algorithm and the previous
nlgorithm on Pixel-Planes 5 [Fuchs89], the new algorithm ran
about 33% faster.

With the new method, no hither clipping is required at all for
the (rather uninteresting) case using only flat shading and no z-
buffering, Even triangles that touch or cross the camera plane are
rendered correctly.

‘olano@cs.unc.edu
*greer@chape1hi11.hp.com

Per&$,, 10 l,,nkc digitnlhnrd copies of all or part ofthis lll~~terkd for
pcnor,al or clnssrootn use is granted without fes provided ulnt Ihe copis
ore llol ll,nde or distributed for prolit or commrrcinl ndv;lnt%e. Ule copy-
ri& t,oUce, ale title ofthe publication and its date nppenr, and notice is
given tl,nt copyrid is by permission ofthe ACM, Inc. TO copy OUlehSe.
to rcptd)lisll, to post on wws or to rcdistributc lo lists requires specific
pcnnission ml/or kc

J 99 7 S’JGGJU PIJ/Ewogr~phics Ilforh’sllop
&yyrigl,\ 1997 ACI\f O-89791-961-0/97/S..$3.50

Tmy Gree?
Hewlett-Packard

A K&r ctip edge must be used when values are interpolated
across the triangle (Z, color, texture coordinates, etc.). Even so,
the algorithm never splits the triangle and does not have to
compute new shading parameter values or vertex locations at the
clipping plane. This is at the “cost” of having to use perspective-
correct interpolation for every parameter.

The new algorithm requires more total operations, due to the
perspective-correct interpolation of all parameters. However,
support for these perspective-correction operations exists in
current hardware. As our tests show, the algorithm can run faster
on actual hardware. The computation required is more regular
than previous algorithms, avoiding costly branches for clipping.
The algorithm allows heavy pipelining of the transformation and
setup processing, and is more amenable to hardware
implementation. As most highly parallel graphics hardware
systems have more processing power at the pixel level than at the
transformation level, and must already handle perspective
correction of texture coordinates, we expect scan conversion with
2D homogeneous coordinates to be a faster alternative on a range
of hardware graphics systems.

2 PRIOR WORK
Traditional triangle scan conversion algorithms walk along

polygon edges and fill across scan lines. Pineda observed that
these algorithms do not extend well to parallel implementations
[PinedaSS].

The Pixel-Planes [Fuchs851 and Pineda [PinedaSS] scan
conversion algorithms do parallelize well. In both of these
algorithms, each triangle edge is represented by a linear edge
function. The edge function is positive inside the edge and
negative outside. Within a triangle, all of the edge functions are
positive; outside the triangle, at least one edge function is
negative. Both the Pixel-Planes and Pineda algorithms take
advantage of the linearity of the edge functions. In the Pixel-
Planes family of graphics systems, a hardware multiplier tree
computes the value of each linear edge function at a large number
of pixels simultaneously. In the Pineda algorithm, the value of an
edge function at a pixel is computed incrementally, with a single
addition, from the value at the previous pixel. Both methods
compute the coefficients of the edge function from the 2D screen
coordinates in the same way. For the edge between (XL,, Y&t) and
(Xi. YJ, the edge function Bj is computed as

dXt = Xi- Xi.1
dYt = Yt - Yt.1

e(X,Y)=(X-Xi)dXi - (Y-Yi)dYt

Similar equations are used to compute the coefficients for linear
functions to interpolate parameters across the triangle (color,
texture coordinates, etc.). Hidden in these equations are the
divisions required to project each of the three vertices onto the
screen and another division required to normalize the parameter
interpolation equations. The new algorithm computes equivalent
edge functions and parameter interpolation functions using 2D
homogeneous screen coordinates without computing the actual
screen coordinates.

89

The new algorithm can be derived from the 2D equivalent to
the 3D homogeneous point-in-tetrahedron test given by Niizeki
[Niizeki94]. In this test, a 3D point is in a tetrahedron if it passes
four 4x4 determinant tests. That is (x, y, z, w) is in the
tetrahedron defined by four points, (xi, yi, ZI, WI), when these four
determinants all have the same sign:

x XI x2 x3 x0 x x2 x3 &I Xl x x3 x, Xl x2 x
Y Yl Y2 Y3 Yo Y Y2 Y3 Yo Yl Y Y3 Yo Yl Yz Y
z ZI z2 z3 ’ ZIJ z z2 z3 ’ q z1 z z3 ’ q Zl z2 z
wwlwZw3 wOww2 w3 WOWlWW3 woww2w

We can derive a similar 2D point-in-triangle test using three 3x3
determinant tests. The result of each edge function at a pixel is
equivalent to (and with the right scaling, equal to) the result of
one of the determinants. The edge function form is superior for
incremental evaluation. Niizeki also gives a point-in-polygon
test, but it is not appropriate for our purposes as it is for 3D points
in 3D polygons.

Blinn noted the possibility of scan converting without hither
clipping, though he still suggested operating in non-homogeneous
space for the actual scan conversion [Blinn96b].

3 HOMOGENEOUS COORDINATES

3.1 Notation

A point in 3-space, P = (X, Y, Z), is represented in homogeneous
coordinates by the four element vector, p = (X, Y, Z, 1). Any
non-zero multiple of this homogeneous vector represents the same
point in 3-space. Similarly, there are non-homogeneous, P = (X,
Y), and homogeneous, p = (x, y, w), representations of points in
2-space. Notice that while 3D non-homogeneous and 2D
homogeneous representations both have three components, they
represent points in different spaces. Except when converting
between representations, we will write points in non-
homogeneous coordinates in upper case and points in
homogeneous coordinates in lower-case. We will also use
different fonts for 2D and 3D points.

To convert a non-homogeneous representation to a
homogeneous representation, append a w coordinate of 1, (X, Y,
z) 3 (X, Y, Z, 1) or (X, Y) * (X, Y, 1). To convert a
homogeneous representation to a non-homogeneous
representation, divide each component by w, (x, y, z, w) * (x/w,
Y/W, Z/W) or (x, y, w) * (x/w, y/w). This is called the projection
of the homogeneous point. The representations and conversions
are summarized in Table 1.

11 non-homogeneous 1 homogeneous

2D P =(X,Y) p = 6. y, WI
= (x/w. y/w) =(X,Y, 1)

3D P = K Y, z) p=(x,y.z.w)
_ = (xlw, y/w z/w) = K Y, z 1)

Table l:-- 2D and 3D homogeneous and non-
homogeneous point representations, and the
conversions between them.

I
3.2 Homogeneous triangles

/ A triangle can be defined as a weighted linear combination of
three vertices [Niizeki94]. In homogeneous coordinates:

90

\

WC0

45

w>o

0 w>o

// ‘/

Figure 1: An example of an external triangle. Both
shaded regions are part of a single external triangle.

(where the h’s have the same sign and at least one is non-zero).
This definition holds whether the points are 2D or 3D. If the w
components of all three vertices have the same sign, the result is
the bounded triangle we normally expect. However, if the w
components do not all have the same sign, the result is an &entaf
triangle, that wraps through infinity to connect the vertices
(Figure 1).

To understand the connection between 2D homogeneous
triangles and 3D triangles, we will look at a single 3D triangle and
its projection onto the screen. For simplicity, WC will define the
triangle in canonical eye space. In canonical eye space, the center
of projection is at the origin, the direction of projection is aligned
down the Z axis, and the field of view is 90 degrees. In this
space, perspective projection can be achieved simply by dividing
by Z. In other words, to project the 3D point (X, Y, Z), set x = X,
y = Y, and w = Z to get the 2DH point (x, y, w), Figure 2 and
Figure 3 show a triangle with two vertices in front of the eye as
the Z coordinate of the third vertex changes. Figure 4 shows a
triangle with one vertex in front of the eye as the Z coordinate of
the other two change.

4 PERSPECTIVE-CORRECT
INTERPOLATION

Before attacking the full scan conversion problem, consider the
equations for perspective-correct interpolation across a triangle.
This is called hyperbolic interpolation by Blinn [Blinn96b] and
rational linear interpolation by Heckbert [Heckbert89],

4.1 Interpolation function

If some parameter (say the u texture coordinate) is to vary linearly
across the triangle in 3D (i.e. across the object itself), it must obey
this equation:

u=aX+bY+cZ (1)

The 3D position (X, Y, Z) projects to 2D, using the 2D
homogeneous representation (x, y, w) where x = X, y = Y, w = Z.
This allows us to rewrite equation 1 to hold in 2D homogeneous
space:

u=ax+by+cw (2)

Division by w produces the familiar 2D perspective-correct
interpolation equation [Blinn96b, Heckbert891:

dw=ax/w+by/w+c=aX+bY+c (3)

This says that u/w is a linear function in the screen space (X, Y).
The coefficients a, b, and c are the same equations 1, 2 and 3.

’ ’ w=o
/f -

f/

f
/

+

:
/

/
I

Figure 2: Views of what happens to a triangle as one of
the vertices moves in Z. For each case, a side view and
a view of the resulting image are shown. The heavy
dashed line shows the path followed by the moving
vertex. a) The top vertex is infinitely far away. It
projects to the center of projection. b) The vertex is at a
“normal” distance in front of the eye. c) The vertex is
still in front of the eye but out of the viewing frustum.
d) The vertex is even with the eye, which maps it to a
point “at infinity” in the image plane.

Given a value for u at each vertex (e.g. the parameter vector [UC,
ur ua]), we can solve for [a b c] using equation 2: x0 Xl x2

[a b cl = [u,, uI UZI [1 -’ YO YI YZ = [uO ul ~21 h4-l (4)
‘-Jo WI w2

.I
w=-ca

P

*

/;

H/ /

Figure 3: More views of what happens to a triangle as
one of the vertices moves in Z. a) The vertex has
moved behind the eye. The displayed projection is one
part of an “external” triangle. b) The plane of the
triangle passes through the eye, so nothing is visible. c)
The triangle has passed completely through the eye,
now we see the back. d) The vertex is infinitely far
behind the eye. The projection of the vertex is again at
the vanishing point, but we see part of an external
triangle now.

Consider the implications of this result. We can invert one 3x3
matrix, which depends only on the vertex locations before
perspective projection. Then computation of the coefficients for
perspective-correct interpolation requires just one 3x3 vector-
matrix multiply per parameter to interpolate.

91

a) 4 P w=l
,

<xl
d
Z=l P I0
fcr all
vertices

+
p %=I / w=

1’

Figure 4: Views of what happens to a triangle if two
vertices pass behind the eye while the other remains in
front. Once again, a side view and the resulting
projection are shown. The lines indicating the path of
the vertices are left out of the side view for clarity, but
still appear in the projected view. a) All vertices are in
front of the eye. This is the same as Figure 2b. b) both
vertices are in the plane of the eye. They project to
intlnity in different directions. c) The plane of the
triangle passes through the eye so nothing is visible. d)
Both vertices are behind the eye. What is visible is part
of an external triangle, but the “other half” from what
was visible in Figure 3a, c, and d.

The coefficients are derived directly from the homogeneous
coordinates of the vertices. Since they are based on the 2DH
coordinates and not the 3D coordinates, they are independent of
the 3D point representation. In particular, the parameter
interpolation will still work even if the original vertices were 3D

I 92

homogeneous coordinates with arbitrary w components (as might
result from rational splines).

4.2 Perspective correction

Since we never divide by w for any of the vertices, we avoid the
usual troubles when w is zero or negative which nccessitatc costly
clipping operations. The coefficient computations are
independent of any clipping required for scan conversion, and do
not require computation of the values of each parameter at the clip
points, even if the triangle crosses behind the eye, These
coefficients can be used for parameter interpolation with any scan
conversion technique, either by direct evaluation of the linear
expression (as is done on the Pixel-Planes hardware) or
incrementally.

As this is a perspective-correct interpolation, the result at each
pixel is u/w. To recover the true parameter value, it is ncccssary
to also interpolate l/w. Once per pixel, we take the reciprocal,
then per parameter perform a multiplication of the form (u/w) * w.
Coefficients for l/w can be computed using the parameter vector
[l 1 l] (giving the sum of the columns of M“).

There are several reasons that we do not mind this extra pcr-
pixel computation. First, perspective correction is already
required for texture coordinates, including interpolation of l/w
and its reciprocal. Second, all clipping and projection nre
deferred from computations at the vertices, where they arc
difficult, to computations at the visible pixels, where they are
easy. This makes both the pixel-level and transformation and
setup-level processing simpler. Third, graphics hardware
typically has many fewer processors devoted to transformntlons,
clipping, and setup than pixel computations, making the efficiency
of the former much more critical. Finally, our particular hardware
implementation avoids most of the per-pixel costs by using
deferred shading.

5 SCAN CONVERSION

5.1 Edge function

The coefficient computations for parameter interpolation cnn be
extended to complete triangle scan conversion. Following the
Pixel-Planes and Pineda algorithms [FuchsSS, Pincda881, we
compute a linear function for each edge of the triangle. This
function is positive on inside of the edge and negative on the
outside. Since both the edge function and parameter interpolation
functions are linear, the edge function is just a parameter
interpolation function for some pseudo-parameter. For each
edge, we define a pseudo-parameter that is zero at the two vertices
on the edge and one at the opposite vertex. From equation 4, it is
apparent that the edge parameter vectors [1 0 01, [0 1 01, and [0 0
l] simply pick rows out of the inverse matrix.

Examining the edge functions just defined and the determinant
tests of [Niizeki94], we can show that they are dlffcrcnt
formulations for the same test. For the pixels in the part of the
triangle we usually want to render, all of the edge functions arc
positive*. We can use this fact to create an efficient scan
converter that renders triangles without every doing any clipping.
All visible portions of the triangles have positive results on all of
their edge functions. Whole or partial triangles behind the eye
have negative results on their edge functions.

* If we have an external triangle and want to render both parts, we
include the region where all of the edge functions arc negative.
For pixels completely outside both portions of the triangle, the
edge functions will have different signs.

5.2 Zero-area and back facing triangles

Computation of the 3x3 matrix inverse requires division by the
3x3 determinant of M. This might cause some concern, as
sometimes the matrix inverse will not exist. In 3D, a matrix
determinant gives twice the signed volume of a tetrahedron. In
eye space, this is the tetrahedron with the eye at the apex and the
triangle to be rendered as the base. If all of the 2D w coordinates
are 1, the determinant is also exactly twice the signed screen-
space aren of the triangle. If the determinant is zero, either the
triangle is degenerate or the view is edge-on (Figure 2b and
Figure 4c).

So, if the M” does not exist, the triangle should not be rendered
anyway, Furthermore, for vertices defined by the right-hand rule,
the determinant is positive if the triangle is front-facing and
negative if the triangle is back-facing.

For numerical accuracy, we actually throw away triangles with
sufficiently small determinants as well as the ones with zero
determinants. To avoid loosing large meshes of very small
triangles, we snap the 2D homogeneous coordinates of the
vertices to a fine grid (you can think of this as a 3D grid in
canonical eye space). This retains the mesh connectivity, but
forces the small triangles to either snap to zero area or to a size
large enough to render.

5.3 Arbltrary clip planes

To add arbitrary clip planes, we compute new clip edgefunctions.
We only need the new edge functions, we do not actually find the
clip vertices, The pseudo-parameter vector for a clip edge
function is just the dot product test normally used for determining
which vertices are inside or outside the clip plane [Cyrus78]. It is
linear, positive for unclipped points, negative for clipped points,
and zero along the clipping plane itself. The parameter vector [cg
ct cz] for a clip plane with normal N = [N, N, NJ and containing
the point Pf is

x0 Xl x2

h CI c21= IN, N, N, N*P,I [1 ; ;: ;
wo WI iy?

Usually, this dot product is simplified to take advantage of the
known simple values of N and PC. We use this method to create a
lritlter edge function.

Scan conversion of the triangle edges works without clipping.
We have implemented a scan converter on Pixel-Planes 5
[Fuchs891 that renders flat shaded non-z-buffered triangles with
no clipping at all. Computation of coefticients for parameter
interpolation also works without clipping. However, for triangles
thnt pass near the eye, the parameter interpolation can overflow.
This is true even if the parameter itself is well defined. For
example, even if u doesn’t overflow, u/w and l/w may. The
hither edge masks out regions where parameters might overtlow.

With the use of a hither edge, our implementation is able to use
fixed point to store interpolated values like l/w. With the hither
plane we can safely use the full fixed-point range, with l/w
reaching the maximum representable value exactly on the hither
plnne.

6 UNCORRECTED INTERPOLATION

So far, we have only discussed perspective-correct interpolation.
In fact we use only perspective-correct interpolation. In
traditional scan conversion, it has been common to interpolate
parameters linearly in screen space. This produces some

I I

Figure 5: Pixel-Planes 5 block diagram [Fuchs89].
Graphics Processors are Intel i860 microprocessors,
Renders are 128x128 custom SIMD arrays.

distortions which prevent uncorrected interpolation from working
for texture coordinates, but avoids the per-pixel divide required by
the correction process. We can derive coefficients for uncorrected
interpolation:

u=aX+bY+c=axlw+bylw+c
uw=ax+by+cw (5)

Equation 5 is now in same form as equation 4. Therefore, a
parameter vector [uawu urwr uaw2] can be used to compute the
coefficients for uncorrected interpolation. Alternately, a new
matrix can be created and used for all uncorrected interpolation:

Unlike perspective-correct interpolation, uncorrected interpolation
does not work without explicit clipping. In any external triangle
(including any triangle crosses behind the eye), we also get an
extemaf interpolation. For example, to interpolate between 0 and
1, the parameter value starts at 0, goes negative, and wraps
through infinity to get to 1. To avoid this, it is necessary to do
full clipping on all triangles to avoid ever rendering external
tliangIes.

As a result, uncorrected interpolation requires more setup and
complicates the setup processing. For this reason, we only use
perspective-correct interpolation.

7 IMPLEMENTATION

7.1 Pixel-Planes 5

As mentioned earlier, we have implemented the 2D homogeneous
scan conversion algorithm on the Pixel-Planes 5 graphics system
(Figure 5). Pixel-Planes 5 has a number of graphics processors,
responsible for geometric transformations and rendering Setup
computation, and a number of renderers, responsible for scan
conversion and shading. Each graphics processor uses a general
purpose Intel i860 processor for geometric transformations and
rendering setup computations. Each renderer has a 128x128
SIMD array with a linear expression tree capable of
simultaneously evaluating the results of a linear expression across
the entire 128x128 array.

Pixel-Planes 5 is a good machine to take advantage of the 2D
homogeneous scan conversion algorithm. The processors it uses
for transformation and setup use pipelined floating point, but are

93

Figure 6: A hard triangle to bin correctly. An axis-
aligned bounding box binner would attempt to scan
convert the triangle in every region on the screen when
it really only lands in the shaded regions.

not very efficient for code with lots of branching. In fact, the
algorithm would work well on a machine with an even deeper
floating point pipeline. The processors it uses for rasterization
include a linear expression tree, which makes evaluation of edges
and interpolation functions particularly easy. They also have
enough memory per-pixel (208 bits) to store all the parameters
needed for shading, allowing us to use deferred shading. This
means that we rasterize all of the parameters used for shading, but
don’t do the shading computations until all primitives have been
rasterized. As a result, the reciprocal and multiplications
necessary to recover the true parameter values (as well as the rest
of the shading computations) are only done for the visible pixels
instead of for every pixel of every primitive. Deferred shading
also gives 100% utilization of the SlMD processor arrays during
the perspective correction and shading computations.

7.2 Edge function normalization

Because the Pixel-Planes 5 linear expression tree evaluates
expressions for all pixels in a 128x128 region, our implementation
uses an extra edge normalization that would not be required in an
incremental algorithm. For incremental scan conversion
[Pineda88], we would only evaluate the edge functions inside or
near the triangle, so the addition of a hither plane can prevent
their overflow. For Pixel-Planes style scan conversion, the edge
functions are evaluated at many pixels simultaneously, some of
which may be far outside the triangle. This is only a concern for
the edge functions, not the parameter interpolation. Parameter
values outside the triangle are not used, so it doesn’t matter if they
overflow there.

I
Since only the sign of each edge function matters, we can scale

each edge to avoid ovefflow within the screen boundaries. Any
scaling factor will do, as long as it can be guaranteed to bound the
range of the edge function within one screen regions. In the
Pixel-Planes 5 implementation, we used the simple but somewhat
expensive l/(lal + Ibl). An optimized version would probably
prefer to use a power of two scaling factor, which would require
only exponent addition for floating point or shifts for fixed point
representations of the edge function coefficients.

Certain anti-aliasing algorithms (not used in our
implementation) require the distance of pixels from the edge. For
these, the distance can be commuted exactly, using an edge
function normalized by l/&a’ + b”) .

7.3 Binning

Pixel-Planes 5 uses screen-space subdivision to allocate screen
area to the SIMD rendering blocks. While the algorithm bchnvcs
correctly if a renderer attempts to scan convert a triangle that does
not land in its screen region, it does waste time that could be used
rendering other triangles. To get maximum processor utilization,
we need to make good estimates of the region coverage of cnch
triangle. Binning is the job of finding the regions that contain pnrt
of the triangle.

For the implementation we used for performance testing, we
simply used an axis-aligned bounding box around the triangle for
binning. Computing bounding boxes from pre-projection
homogeneous coordinates is covered by Blinn in [Blinn96n].
However, particularly for triangles with high aspect ratios, the
axis aligned bounding box can seriously overestimate the number
of regions covered (Figure 6). This problem is becoming more
serious, as region sizes shrink to increase processor utilization.

We can compute the exact binning, while still using only
homogeneous coordinates. The exact binning algorithm relies on
homogeneous point-inside-edge tests and edge-edge intersection
tests. The point-inside-edge test is just the edge function
evaluated at the point. The edge-edge intersection test is made up
of four point-inside-edge tests. The two end-points of the first
edge must be on opposite sides of the second edge, while the two
end-points of the second edge must be on opposite sides of the
first.

A triangle intersects a region if
a) A triangle vertex is inside the region.
b) A region comer is inside the triangle.
c) A region edge intersects a triangle edge.

Since the region edges and comers are spaced evenly, all of the
tests involved can be evaluated incrementally. For fur&!;
savings, we can use a recursive quad-tree approach.
subdivision of a quad-tree cell requires only seven adds per
triangle vertex.

7.4 Performance results

We tested the performance of a C implementation of the new
algorithm against the C code version of the Pixel-Planes trlnnglc
scan conversion algorithm. We ran our test on a scene consisting
of a spinning teapot (Figure 7, Table 2).

Table 2: Performance results

The production version of the Pixel-Planes triangle rasterizcr is

written in i860 assembler. That version has undergone extensive
profIling and optimization, resulting in significant spcedup over
the original C code (performing about 18,000 triangles per second
on the machine configuration used for these tests). Thus far, WC
have only produced a C code version of the new algorithm, SO WC
made our timing comparisons against the C code version of the
previous algorithm. We are confidant that an optimized version
of the new algorithm would be faster than the optimized version
of the old algorithm since the new algorithm is simpler, with
fewer special cases, and consists primarily of easy-to-pipeline
vector-matrix multiplies.

-- I _ --_. _ _

Figure 7: Image from the spinning teapot
performance test.

8 CONCLUSIONS

We have shown a new algorithm for triangle scan conversion for
parallel graphics hardware. The algorithm only needs one
reciprocal operation during the setup computations, and that one
is only undetined when the triangle should not be drawn anyway.
In contrast, the previous algorithms required four reciprocals
during setup, One is the reciprocal of the screen space area of the
triangle, and well-defined for all rendered triangles; but the other
three rue for perspective projection of the three vertices, and can
be undefined even for visible triangles. It is these reciprocals that
force the previous algorithms to do hither clipping. Our algorithm
avoids triangle clipping and the pipeline inefficiencies it causes.

The remainder of the setup computations for our algorithm are
simple matrix arithmetic and easily pipelined. Linear
interpolation functions are used for all scan conversion and
parameter interpolation. These functions are well suited to
pamllel hardware evaluation or cheap incremental scan line
evaluation. For perspective correction, we require one reciprocal
per visible pixel in the triangle (which is well-defined in the
triangle’s domain) and one multiply per parameter per pixel.

The setup computation consists primarily of independent
vector-mntrlx multiplies, with one reciprocal required. The pixel
computntion consists primarily of linear interpolation and
multiplication, with one reciprocal required. Both parts are well
suited for use with deep floating point or arithmetic pipelines or
for hardwore implementation or acceleration.

To summa&e the algorithm:
setup:

three edge functions = M’ = inverse of 2D homogeneous
vertex matrix

for each clip edge
clip edge function = dot product test * M’

interpolation function for l/w = sum of rows of M’
for each parameter

interpolation function = parameter vector * M’
pixel processing:

interpolate linear edge and parameter functions
where all edge functions are positive

w = I/(l/w)
for each parameter

perspective-correct parameter = parameter * w

We have implemented a preliminary version of the algorithm in C
code, running on the Pixel-Planes 5. The results from this test are
positive, showing a definite improvement over comparable code
for the previous algorithm. Based on these results, we plan to use
this algorithm in future hardware systems.

9 ACKNOWLEDGMENTS

We would like to thank the generous support of the Hewlett-
Packard Corporation, the DARPA Order Number A410, and NSF
grant number MIP-9306208.

REFERENCES
[Blinn96a] James Blip, “Jim Blinn’s Comer: Calculating

Screen Coverage”, IEEE Computer Graphics &
Applications, v16n3 (May 1996), IEEE Computer Society,
Los Alamitos, CA, 1996.

[Blinn96b] James Blinn, Jim Blinds Comer: A Trip Down the
Graphics Pipeline, Morgan Kaufmann, 1996.

[Cyrus78] M. Cyrus and J. Beck, “Generalized Two- and
Three-Dimensional Clipping’, Computers and Graphics, v3,
1978.

[Fuchs851 Hem-y Fuchs, Jack Goldfeather, Jeff Hultquist,
Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles
and John Poulton, “Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes”,
Proceedings of SIGGRAPH ‘85 (San Francisco, CA, July
22-26,1985). In Computer Graphics, vl9n3 (July 1985),
ACM SIGGRAPH, New York, NY, 1985.

[Fuchs891 Henry Fuchs, John Poulton, John Eyles, Trey
Greer, Jack Goldfeather, David Ellsworth, Steve Molnar.
Greg Turk, Brice Tebbs and Laura Israel, “Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories”, Proceedings of SIGGRAPH
‘89 (Boston, MA, July 31-August 4,1989). In Computer
Graphics, v23n3 (July 1989), ACM SIGGRAPH, New York,
NY, 1989.

[Heckbert Paul Heckbert, “Fundamentals of Texture Mapping
and Image Warping”, Master’s Thesis, Department of
Electrical Engineering and Computer Science, University of
California, Berkeley, CA, 1989

[Niizeki94] Masatoshi Niizeki and Fuji0 Yamaguchi,
“Projectively Invariant Intersection Detections for Solid
Modeling”, ACM Transactions on Graphics, v13n3 (July
1994), ACM SIGGRAPH, New York, NY, 1994.

[Pineda Juan Pineda, ‘A Parallel Algorithm for Polygon
Rasterization”, Proceedings of SIGGRAPH ‘88 (Atlanta,
GA, August l-5,1988). In Computer Graphics, v22n4
(August 1988). ACM SIGGRAPH, New York, NY, 1988.

95

