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ABSTRACT 

In this paper we describe an algorithm and hardware for the 
tessellation of polynomial surfaces. While conventional forward 
difference-based tessellation is subject to round off error and 
cracking, our algorithm produces a bit-for-bit consistent triangle 
mesh across multiple independently tessellated patches. We 
present tessellation patterns that exploit the efficiency of iterative 
evaluation techniques while delivering a defect free adaptive 
tessellation with continuous level-of-detail. We also report the 
rendering performance of the resulting physical hardware 
implementation. 
CR Categories and Subject Descriptors: I.3.1[Computer 
Graphics]: Hardware Architecture – Graphics processors; 
I.3.5[Computer Graphics]: Computational Geometry – Curve, 
surface, solid, and object representations; splines 
Additional Keywords: CAD, Curves & Surfaces, Geometric 
Modeling, Graphics Hardware, Hardware Systems, Rendering 
Hardware 

1 INTRODUCTION 
The desire or need to hardware-render a higher order 
representation such as a Bézier patch stems from three areas of 
strength: animation, level of detail, and bandwidth. A primitive 
with the right characteristics permits an application to easily 
animate a large amount of geometry/visual complexity. 
Manipulating a small number of high-level controls (e.g., control 
points) can cause broad-scale changes. During the rendering 
process, on most contemporary architectures, higher-level 
primitives are converted into triangles. Since there is freedom in 
choosing the sampling density, the tessellation may be easily 
scaled based on the current view or desired frame rate. Finally, 
current high performance PC graphics accelerators are capable of 
drawing roughly 40 million triangles per second, fully saturating 
the standard interface (AGP4x) if specified with perfect 
efficiency. A higher-order primitive can be regarded as a 
compressed representation for a collection of triangles, and thus 
consumes less bandwidth. In reality, realized AGP bandwidth is 
often 50-75% of peak, and triangle mesh specification is rarely 
close to 24 bytes per triangle. So, with higher order primitives 
there is a real opportunity to deliver increased performance, and a 
richer visual experience.  

Surface rendering may be invoked using standard APIs, such as 
OpenGL® [22] and DX8™. While OpenGL has a history of 
rendering Bézier patches, only the recent DX8 version introduces 
higher order primitives to D3D™. In both cases, the primitives are 
converted to triangles at the top of the graphics pipeline; the 
remainder of the pipeline is oblivious to the source of triangles, 
the application or a surface tessellator. This has the advantage that 
it is possible to insulate the rest of the design from the tessellator. 
As an aside, the primary disadvantage of this placement is that a 
vertex program1 cannot modify the control points of a patch. As a 
result, blending and morphing must be performed by the 
application. 
The evaluator functionality provided by the standard OpenGL 
interface and its typical implementations have several 
shortcomings. In the following, we discuss four shortcomings, 
contrasting them with our interface and implementation.  
1. The interface only supports tensor product patches; models 
exported from modern modeling packages freely mix triangular 
and tensor product patches. Our implementation supports both 
triangular and tensor product patches. 
2. The current OpenGL interface provides two mechanisms to 
generate triangles from patches. A mesh operation produces a 
rectangular grid of triangles, and a point evaluation routine 
permits the generation of individual triangles. This combination 
supports rendering of trimmed surfaces, triangular patches, and 
some limited adaptive tessellation. To avoid cracks these two 
mechanisms must be numerically “equivalent”. This requirement 
in turn limits opportunities for efficient evaluation. Our 
programming interface uses a single primitive to invoke the 
underlying algorithms and hardware. The interface permits the 
application to specify flexible tessellation with an independent 
tessellation factor for each of the patch’s sides. This is in contrast 
to a uniform tessellation where a regular grid of triangles is 
produced. The details of the interface are available in an OpenGL 
extension [16]. 
3. When using the current OpenGL mesh primitive, the 
tessellation factors are specified as integers. While integers seem 
the logical choice, using a floating-point specification for these 
tessellation factors permits the underlying implementation to 
render a mesh varying continuously in density, which avoids 
visual popping. 
4. Most hardware implementations of evaluators have shared 
floating-point resources in the graphics subsystem with vertex 
transform, lighting, and clipping. The result is an implementation 
with little additional cost beyond the program memory for the 
tessellation code. However, the performance achieved by these 
implementations could never approach the performance of the 
same platform directly rendering triangles. Our implementation 
uses a dedicated unit. By splitting the computation between the 
driver running on the host and an on-chip processor we are able to 
tessellate surfaces without degrading the downstream triangle 
performance. 
                                                                 
1 “Vertex shader” in DX8 
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The remainder of the paper is organized as follows. We survey the 
previous work on surface tessellation and rendering. We compare 
polynomial evaluation methods. We describe tessellation patterns 
that permit the efficient use of iterative evaluation techniques and 
support continuous LOD. We present simple methods for 
computing tangent and normal patches, necessary for lighting 
purposes. We describe our approach to the support of triangular 
patches. We present the details of algorithms necessary for the 
generation of consistent, defect-free surface tessellations. And 
close with preliminary performance results from working 
hardware. 

2 PREVIOUS WORK 
Previous work on surface rendering can be divided into two 
categories, those algorithms that render the surface directly and 
those that generate an intermediate representation, triangles.  
The first category is made up of exhaustive subdivision schemes 
[3], scanline renderers [11], ray tracers [9] and the isoparametric 
scanning algorithms [12][20]. Obviously, these approaches are 
not able to take significant advantage of huge industry investment 
in efficient triangle rendering hardware. Pulleyblank [18] 
proposes hardware acceleration of exhaustive subdivision. 
Beyond inadequate performance for real-time rendering, the iso-
scanning algorithms often draw the same pixel multiple times 
causing problems with frame buffer blending operations, and 
parity dependent schemes such as stencil-based shadow volumes 
[7]. 
The second category is made up of tessellation algorithms. These 
schemes adaptively tessellate a surface based on the 
characteristics of a surface, or an application supplied 
specification. The first of these are the scanline algorithms of 
Lane and Carpenter [11] and subsequently Clark [4]. Referring to 
Figure 1 we see a pair of adjoining patches (a), the red patch 
requires further subdivision, the gray is sufficiently tessellated. 
Lane and Carpenter divide the red patch while rendering the gray 
using a single quad.  In (b) we see the crack that results from 
differing levels of tessellation; a solution to this problem is 
described in [4]. The red vertex forming the crack is forced to the 
green edge of the gray quad. In (c) we see the pixel dropouts that 
result from the “T” junction formed. Because the location of a 
vertex is represented using finite precision, the vertex does not 
actually lie on this segment. Although this problem is exacerbated 
by the low precision of some hardware rasterizers, it exists for any 
finite precision representation, including IEEE floating point. 
Note that the only way to guarantee a flawless rendering is 
through precise representation of relationships; vertices that are 

logically equal must be exactly equal. Our algorithms produce 
crack-free tessellations completely independent of the precision of 
the evaluation techniques. 
In Figure 1(d) we see the introduction of an interstitial triangle 
filling the crack. In Figure 1(e) we see an example of the problem 
with this approach, a pair of patches concave relative to the 
viewer. Both patches incident to the flat edge require refinement, 
but also generate a triangle to fill the potential crack. The result is 
the light gray fin sticking up. A similar alternative is to generate 
an interstitial triangle to fill the “crack” caused by finite precision 
in Figure 1(c). The triangle fills the gap even though it is 
geometrically zero area. This is still inadequate, while we have 
filled any possible pixel dropouts, double hits may occur, and 
possible shading artifacts may result from the inconsistent 
sampling. 
Figure 1(f) illustrates the general solution to these problems, 
explicit triangulation or meshing, free of degenerate triangles. In 
[21], Rockwood et al. uniformly tessellate the interior of each 
patch into a grid of rectangles whose density is selected to satisfy 
a user specified tolerance. These rectangles are connected by 
triangles to points on the patch boundary (coving). OpenGL 
evaluators were used to render the parameter space triangulation. 
In [10], Kumar et al. use a similar tessellation algorithm. Instead 
of using evaluators they directly render triangles. By using an 
incremental retessellation algorithm they are able to achieve 
performance superior to Rockwood’s. Neither Rockwood et al nor 
Kumar et al support continuous level of detail, and Kumar’s 
scheme consumes considerable bandwidth and CPU memory. 
Lastly, as noted in the introduction the current OpenGL evaluator 
interface has some inherent performance limitations. 
Bruijns [2] uses forward differencing to adaptively tessellate 
quadratic Bézier patches. Regular interior meshes are heuristically 
stitched to an independently sampled perimeter. This scheme does 
not support continuous LOD, and does not take measures to avoid 
problems due to round-off error resulting from forward 
differencing. Bischoff et al. [1] propose a scheme for rendering 
Loop subdivision surfaces [15]. Regular (polynomial) sub-patches 
are evaluated using forward differencing. They make no 
provisions for flexible tessellation, continuous level of detail, or 
defects from round off. Pulli and Segal [19] also present a method 
for Loop subdivision surface triangulation using geometry engine 
processors. While efficient, their scheme has no provision for 
flexible tessellation or continuous level of detail. Finally, Vlachos 
et al [23] describe patches called PN triangles. These patches 
derive their shape from triangles with normals specified at the 
corners; they may be rendered without tessellation. When refined 
they are converted to Bézier triangles and uniformly tessellated. 
Their primary drawbacks are the inability to naturally express 
creases, and their lack of flexible tessellation and continuous 
LOD. 

3 POLYNOMIAL EVALUATION 
We compare two common polynomial evaluation schemes, 
forward differencing and De Casteljau [5]. De Casteljau uses 
nested linear interpolation to evaluate a univariate polynomial in 
O n2c h  operations, where n is the degree of the polynomial. In 
Figure 2 we provide a geometric interpretation of De Casteljau for 
evaluating a cubic curve, and a bi-quadratic patch. This technique 
is very stable, precise, and supports evaluation at arbitrary 
parameter values. 

(a) (b) (c)

(d) (e) (f)

"flat"

Figure 1: Adaptive tessellation solutions & problems. 
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In contrast, forward differencing uses additions to evaluate a 
polynomial, and is O nb g . In Figure 3 we illustrate the evaluation 
of a cubic polynomial at a fixed parametric interval of 1 5 . Once 
the first four values are computed, each further value may be 
computed using three additions. 
This technique is very efficient, however it is subject to round-off 
error and is limited to sampling a polynomial at a fixed parametric 
interval: 
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When operating on a tensor product surface there is a natural 
division of labor between the host CPU and the GPU (Figure 4). 
When forward differencing is applied in tensor product form, the 
CPU steps a matrix along, producing a series of evenly spaced 
curves. The bottom row of the matrix is extracted and handed off 
to the GPU, which in turn iterates it producing a series of evenly 
spaced points. Because our tessellation algorithms are impervious 
to round-off error, patches need not be broken into subpatches to 
avoid errors when heavily tessellated (see section 8). 

4 HARDWARE 
By dividing the work of tessellation between the host CPU and 
the graphics card, the amount of chip area consumed by surface 
tessellation may be kept quite small, making it feasible to have a 
dedicated tessellation engine running in parallel with other 
geometry operations, such as transform and lighting. In Figure 5 
we provide a block diagram of the engine. It is made up of four 
banks of memory 32x128 bits each. Each memory can supply one 
operand to the 4x32-bit floating-point adder. The adder stores its 
results back into one of the two source operand memory banks. 
During normal operation one pair of banks is used for the 
calculation of a series of points on a curve while at the same time 
the other is loaded with the coefficients for the next curve. 
In Figure 6 we illustrate how a mesh of triangles is calculated and 
drawn. First a row of vertices (0-4) is computed and stored in 
RAM. Then the second row of vertices (5-9) is calculated and 
stored in the same RAM overwriting the previous row, while 
generating two triangles per vertex calculated, in the interior of 
the mesh. For increased performance the surface tessellator relies 
on the ability to calculate a vertex, use it to draw a triangle, and 
then reuse the vertex without recalculation in a subsequent 
triangle. These vertices are stored in this memory after being 
transformed and lit. Euler’s Formula for Polyhedra, [8]  
V E F− + = 2 , tells us that, in a closed mesh of triangles, there 
are two triangles per vertex. However we cannot store an 

Figure 2: De Casteljau polynomial evaluation. 
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Figure 3: Forward difference evaluation. 
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unbounded number of vertices. We have chosen a memory size 
that represents a good cost/performance tradeoff, and are able to 
render approximately 1.8 triangles per vertex produced. A 
complication of this finite memory is that we must break heavily 
tessellated patches up into swaths of triangles that are sufficiently 
narrow that a row of vertices fit in this memory. 

5 TESSELLATION PATTERNS 
Given an engine that can very efficiently tessellate a regular grid, 
and generate a series of points on a curve, how do we get the 
engine to support the independent tessellation factors, and 
continuous LOD described in the introduction? Our engine 
supports two patterns of tessellation, integer and fractional. The 
integer pattern produces an optimal triangulation, generating a 
constrained Delaunay triangulation [17] of the irregular portions 
of the mesh. The fractional style supports continuous level of 
detail. 

5.1 Integer Tessellation 
In the integer case a regular mesh is generated covering the 
majority of the patch. The number of rows in the mesh is one less 

than the greater of the two row tessellation factors; the number of 
columns is set similarly. In Figure 7 the resulting regular mesh has 
7 rows and 15 columns.  
Transitions are drawn to fill in the remaining row and column. A 
state machine in the hardware curve unit controls the stitching of 
each transition region. Similar to Bresenham’s algorithm for 
drawing lines, a state variable Q is initialized to the difference of 
the tessellation factors (6 in the vertical transition of Figure 7.) 
Then depending on the sign of Q the engine generates a triangle 
by advancing along either of the two sides of the transition. The 
transition is filled with a set of triangles of optimal shape in the 
parameter space of the patch. 

5.2  Fractional Tessellation 
The so-called integer tessellation pattern breaks the mesh of 
triangles into a combination of a regular mesh and transition 
regions. The fractional tessellation scheme also uses a mixture of 
regular meshes and transition regions. The patterns we use are 
constrained by rules necessary to guarantee a continuous level of 
detail. Vertices must be introduced at the position of existing 
vertices. Edges may only be created or destroyed when one of 
their endpoints is introduced or removed. Vertices must move 
continuously. These rules result in unavoidable sliver triangles, 
which can make integer tessellation more desirable in some 
circumstances. 
When performing integer tessellation the application specifies an 
integer number of segments n and the driver computes 
differencing coefficients with a step size 1 n . Note that the nth 
vertex evaluated corresponds to the end point of the Bézier curve. 
When doing fractional tessellation we proceed in exactly the same 
fashion, except that the number of segments m  is real. We step 

m times and use the Bézier end point as the final vertex, see 
Figure 9. This approach preserves the efficiency of forward 
differencing while using the Bézier end point to avoid calculating 
a vertex at an odd step size. 
One problem with this approach is that adjoining patches may not 
define their shared edges with the same parametric traversal. 
Consider a Möbius strip, such consistent traversal is impossible, 
and in general not something with which to burden the 
application. In Figure 10(a) two such patches share a conflicting 
boundary. By switching to the symmetric pattern shown in (b) of 
the figure, we avoid any cracking problems while preserving 
continuous level of detail and the efficiency of forward 
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 Figure 7: Integer Tessellation Pattern (2,4,8 &16 segments). 
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differencing. 
Extending this pattern of tessellation from a curve to a tensor 
product patch we arrive at the pattern shown in Figure 11. The 
original patch is subdivided into four subpatches that are rendered 
individually performing evaluation from the original patch 
corners to the midpoints of the sides. With this arrangement, as 
LOD varies, vertices are introduced in pairs at the midpoints of 
the patch boundaries. Pairs of rows (or columns) of triangles are 
introduced forming a cross through the middle of the patch. 

6 DERIVATIVES AND NORMALS 
The calculation of tangent frames and normals is an integral part 
of surface tessellation. Many shading algorithms depend on a 
coordinate frame defined at the vertices of a triangle. To calculate 
these values the tessellation system simply evaluates additional 
polynomials representing the two partial derivatives and/or the 
normal. By subtracting adjacent control points as shown in Figure 
13, a patch representing a scaled version of the derivative is 
created. Since most rendering algorithms are primarily concerned 
with the directions of the tangent frame axes, this is sufficient. 
The Bézier control points of a patch representing the normal 
direction may be computed by taking the cross product of the 
scaled derivative patches [6]. The CPU, either the application or 
driver, performs the calculation of derivatives and normals. 

7 TRIANGULAR PATCHES 
The algorithm for integer tessellation has an obvious analogous 
pattern in a triangular domain (Figure 14). However, we chose to 
handle triangular patches using an approach that had no hardware 
impact. Through a linear reparameterization a triangular patch of 
degree k can be converted to a tensor product patch of degree k . 
This is because triangular patches have total degree k while 

tensor product patches have total degree 2k . While there is an 
increase in total degree, the isoparametric curves remain degree 
k ; they are no more costly to evaluate. 
We use two different reparameterizations, one for integer 
tessellation, and one for fractional, shown in Figure 12. In the 
integer case the triangular patch is rendered as a degenerate tensor 
product patch; further details of the reparameterization may be 
found in [13].  Note that the tangent patches (derivatives) must be 
computed before reparameterization in order to avoid lighting 
problems due to the singularity. In the fractional case the 
triangular patch is divided into three tensor product patches, and 
each is tessellated using one quadrant of the fractional tessellation 
pattern for tensor product patches. In this case the 
reparameterization can be accomplished using Bézier composition 
techniques [14]. 

8 CONSISTENT MESH GENERATION 
In this section we discuss how to guarantee consistent mesh 
generation while independently rendering multiple patches. We 
assume that all patches are represented using the Bézier 
representation, and that any patches sharing a boundary have 
equivalent control points defining that boundary. The order of the 
curves sharing the boundary must match, and the positions of the 
control points defining boundary curve must be exactly equal. A 
consistent mesh is one where all relationships are expressed 
exactly, if two triangles in the mesh share an edge then the end 
points of the edge are equal bit-for-bit. This must hold even if the 
two triangles originate from different patches. Finally, we must 
obviously assume that the application has specified consistent 
tessellation factors. 
There are several reasons that consistent mesh generation is not 
simple. Forward differencing, our evaluation technique, suffers 
from round-off error when evaluating a long sequence of vertices. 
Because the implementation divides the work between host and 
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Figure 14: Integer tessellation of a triangular domain. 
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graphics card, we are using two different floating-point engines, 
one in the CPU and one in the GPU. Even if the implementations 
were identical, the same inputs with differing rounding modes 
yield unequal results. Also, because patches are drawn 
independently it is not possible to clean up small discrepancies 
after all tessellation is completed. Finally, it is important to realize 
that in order to have a guarantee of perfect rendering there can be 
no errors or inconsistencies, not even a single bit. Calculations are 
always performed the same way and on the same floating-point 
unit to ensure consistency.  

8.1 Guard Curves 
Consider abutting patches A and B in Figure 15(a), the rows of 
patch A run perpendicular to the rows of patch B. There is no way 
for the patch tessellator to know that this has occurred, and the 
vertices circled will have inconsistent values, those computed for 
patch B by the GPU will have accumulated round off, and those 
computed for patch A are from the CPU. Our solution is to 
introduce guard curves, evaluated by the GPU and shown in bold 
in Figure 15(b). In our implementation these curves contain only 
position and normal attributes, other vertex attributes are 
permitted to have slight mismatches along the shared border. 
When the GPU is drawing a mesh, it maintains a pair of guard 
curves whose values it computes and uses for the beginning and 
ending of the strip curves. Because all vertices are computed 
using the same coefficients and the same processor, this 
mechanism guarantees that the first strip curve of patch B will 
match the starting points of each of the strip curves of patch A. 

8.2 Reversed Transitions 
Because forward differencing has an inherent direction of 
evaluation, the curves on the perimeter of every patch must be 
traversed in a consistent direction. The direction of traversal is 
chosen by the driver and is determined by sorting the control 
points defining the boundary. Because the decision is localized to 
boundary information the decision will be made consistently 
every time the curve is encountered. This can result in conflicts 
see Figure 16(a). The driver has determined the directions of 
traversal for the curves on the perimeter of the patch, and the top 
and bottoms curves conflict. Even if the top and bottom 
tessellation factors agree, a transition is created to resolve the 
differing directions, a reversed transition. The driver must pass 
the coefficients for traversing the curves in the correct direction. 
The GPU’s tessellator evaluates the inner curve saving results in 
reverse order, the correct order relative to the outer curve. When 

the outer curve is evaluated, the transition is stitched up as usual. 
Reversed transitions may also resolve differences in tessellation 
factor, their usual function. Note multiple reversed transitions may 
be required, Figure 16(c). 

8.3 Special Vertices 
The mixture of regular meshes and transition regions creates a 
subtle problem. Because the vertices shown in Figure 17 result 
from a long chain of calculations during the tessellation of the 
regular mesh portion of the patch, they are saved by the hardware 
state machine for subsequent use in the transitions. At most three 
such vertices must be saved. 

8.4 Swatches 
As mentioned in section 4, highly tessellated patches must be 
broken into swaths sufficiently narrow that a row of vertices fits in 
on chip memory for reuse. Recall the situation illustrated in 
Figure 15 where guard curves were added to ensure that patches A 
and B matched on their shared boundary. Because the rows of 
patch B may be broken into multiple swaths, the guard curves of 
patch A must be segmented to match. The result is that patches are 
rendered in swatches that have rows and columns sized to match 
the on-chip memory, see Figure 18. 

9 TESTING 
The algorithms described in this paper result in relatively complex 
state machines, for managing vertex reuse, transition stitching, 
and consistency. To test the implementation for correctness we 
analyzed the triangle meshes produced by a bit accurate 
simulation of the tessellation engine. The meshes were tested for 
consistency by verifying that their triangles had consistent 
chirality and that the meshes contained the correct number of 
unique triangles and vertices. 

A B A B

(a) (b)  
Figure 15: Guard curves for consistency. 

(a) (b) (c)  
Figure 16: Reversed transitions. 
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Figure 17: Special Vertices. 
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Figure 18: Breakup of a patch into swaths and swatches. 
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Figure 19: A single patch, fractional and integer tessellation. 

Figure 20: Multipatch adaptive tessellation. 

10 EXAMPLES 
In Figures 19 thru 22 we provide examples of the meshes 
generated by our system. In Figure 19 we provide an example of 
the fractional and integer tessellation styles applied to the same 
input patch and tessellation factors. In Figure 20 we illustrate the 
character of the tessellations resulting from LOD based on screen 
space edge length. Twenty-five patches are rendered with varying 
detail, the result of perspective foreshortening. 
Figures 21 and 22 illustrate the meshes generated for three levels 
of detail based on screen space edge length. Figure 21 illustrates 
the integer tessellation scheme where the lowest level of detail 
consists of 72 triangles. The lowest level of detail in Figure 22 
consists of 288 triangles.  

11 PERFORMANCE 
In this section we present preliminary performance results run on 
a 933mHz PIII with a 200mHz GeForce3 graphics card that 
implements the algorithms described in this paper. These statistics 
are based on rendering a version of the Utah teapot from 
Microsoft, containing 36 patches. The teapot is rendered once per 
frame, using a simple lighting model requiring a 24-byte vertex. 
The performance numbers include per frame overhead such as 
screen/Z clear. These results also do not include the overhead of 
host computations, a significant factor. Thus the results only 
reflect the efficiency of the graphics card as fed data across the 
AGP bus. 
In Figure 23 we plot the triangle rate versus tessellation factor. As 
expected, the setup cost is amortized improving performance as 
the level of tessellation is increased. The trend continues until the 
tessellation factor requires multiple swatches, at which point we 
see a dip and return to the trend. We have measured a peak rate of 
30 million triangles per second. In Figure 24 we measure 
bandwidth savings as the tessellation factor increases. Here we see 
the bytes per triangle dropping to roughly half of what could be 
achieved with perfect vertex reuse and triangle strips for the same 
tessellation; a rate of 12 bytes per triangle when two triangles are 
generated per vertex transferred. 

Figure 21: Integer levels of detail. 

Figure 22: Fractional levels of detail. 
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Figure 23: Triangles/sec vs. tessellation factor. 
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Figure 24: Bytes/triangle vs. tessellation factor. 

The driver for our current implementation is still under 
development. The APIs are designed to permit caching of 
calculations when the tessellation is unchanging. However, it is 
apparent that the tessellation system is host limited when the 
application dynamically varies the input geometry and level of 
detail. 

12 CONCLUSIONS 
In this paper we have described a system for the defect free 
tessellation of multiple independent polynomial patches. The 
implementation splits the tessellation task between the host CPU 
and the graphics card achieving high performance with little 
incremental chip cost. The surface tessellator has been 
implemented in the NVIDIA GeForce3. The implementation 
performs as designed, achieving high triangle rate, continuous 
LOD, and defect free tessellation and rasterization of polynomial 
patches. Future work will explore quantifying driver overhead and 
moving more of the tessellation calculations to the GPU to better 
balance the system. 
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