

Watertight Tessellation using Forward Differencing
Henry Moreton1

NVIDIA Corporation

ABSTRACT

In this paper we describe an algorithm and hardware for the
tessellation of polynomial surfaces. While conventional forward
difference-based tessellation is subject to round off error and
cracking, our algorithm produces a bit-for-bit consistent triangle
mesh across multiple independently tessellated patches. We
present tessellation patterns that exploit the efficiency of iterative
evaluation techniques while delivering a defect free adaptive
tessellation with continuous level-of-detail. We also report the
rendering performance of the resulting physical hardware
implementation.
CR Categories and Subject Descriptors: I.3.1[Computer
Graphics]: Hardware Architecture – Graphics processors;
I.3.5[Computer Graphics]: Computational Geometry – Curve,
surface, solid, and object representations; splines
Additional Keywords: CAD, Curves & Surfaces, Geometric
Modeling, Graphics Hardware, Hardware Systems, Rendering
Hardware

1 INTRODUCTION
The desire or need to hardware-render a higher order
representation such as a Bézier patch stems from three areas of
strength: animation, level of detail, and bandwidth. A primitive
with the right characteristics permits an application to easily
animate a large amount of geometry/visual complexity.
Manipulating a small number of high-level controls (e.g., control
points) can cause broad-scale changes. During the rendering
process, on most contemporary architectures, higher-level
primitives are converted into triangles. Since there is freedom in
choosing the sampling density, the tessellation may be easily
scaled based on the current view or desired frame rate. Finally,
current high performance PC graphics accelerators are capable of
drawing roughly 40 million triangles per second, fully saturating
the standard interface (AGP4x) if specified with perfect
efficiency. A higher-order primitive can be regarded as a
compressed representation for a collection of triangles, and thus
consumes less bandwidth. In reality, realized AGP bandwidth is
often 50-75% of peak, and triangle mesh specification is rarely
close to 24 bytes per triangle. So, with higher order primitives
there is a real opportunity to deliver increased performance, and a
richer visual experience.

Surface rendering may be invoked using standard APIs, such as
OpenGL® [22] and DX8™. While OpenGL has a history of
rendering Bézier patches, only the recent DX8 version introduces
higher order primitives to D3D™. In both cases, the primitives are
converted to triangles at the top of the graphics pipeline; the
remainder of the pipeline is oblivious to the source of triangles,
the application or a surface tessellator. This has the advantage that
it is possible to insulate the rest of the design from the tessellator.
As an aside, the primary disadvantage of this placement is that a
vertex program1 cannot modify the control points of a patch. As a
result, blending and morphing must be performed by the
application.
The evaluator functionality provided by the standard OpenGL
interface and its typical implementations have several
shortcomings. In the following, we discuss four shortcomings,
contrasting them with our interface and implementation.
1. The interface only supports tensor product patches; models
exported from modern modeling packages freely mix triangular
and tensor product patches. Our implementation supports both
triangular and tensor product patches.
2. The current OpenGL interface provides two mechanisms to
generate triangles from patches. A mesh operation produces a
rectangular grid of triangles, and a point evaluation routine
permits the generation of individual triangles. This combination
supports rendering of trimmed surfaces, triangular patches, and
some limited adaptive tessellation. To avoid cracks these two
mechanisms must be numerically “equivalent”. This requirement
in turn limits opportunities for efficient evaluation. Our
programming interface uses a single primitive to invoke the
underlying algorithms and hardware. The interface permits the
application to specify flexible tessellation with an independent
tessellation factor for each of the patch’s sides. This is in contrast
to a uniform tessellation where a regular grid of triangles is
produced. The details of the interface are available in an OpenGL
extension [16].
3. When using the current OpenGL mesh primitive, the
tessellation factors are specified as integers. While integers seem
the logical choice, using a floating-point specification for these
tessellation factors permits the underlying implementation to
render a mesh varying continuously in density, which avoids
visual popping.
4. Most hardware implementations of evaluators have shared
floating-point resources in the graphics subsystem with vertex
transform, lighting, and clipping. The result is an implementation
with little additional cost beyond the program memory for the
tessellation code. However, the performance achieved by these
implementations could never approach the performance of the
same platform directly rendering triangles. Our implementation
uses a dedicated unit. By splitting the computation between the
driver running on the host and an on-chip processor we are able to
tessellate surfaces without degrading the downstream triangle
performance.

1 “Vertex shader” in DX8

1270 San Tomas Expressway, Santa Clara, CA 95050, moreton@nvidia.com

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
HWWS ’01 Los Angeles, CA USA
© ACM 2001 1-58113-407-X…$5.00

25

The remainder of the paper is organized as follows. We survey the
previous work on surface tessellation and rendering. We compare
polynomial evaluation methods. We describe tessellation patterns
that permit the efficient use of iterative evaluation techniques and
support continuous LOD. We present simple methods for
computing tangent and normal patches, necessary for lighting
purposes. We describe our approach to the support of triangular
patches. We present the details of algorithms necessary for the
generation of consistent, defect-free surface tessellations. And
close with preliminary performance results from working
hardware.

2 PREVIOUS WORK
Previous work on surface rendering can be divided into two
categories, those algorithms that render the surface directly and
those that generate an intermediate representation, triangles.
The first category is made up of exhaustive subdivision schemes
[3], scanline renderers [11], ray tracers [9] and the isoparametric
scanning algorithms [12][20]. Obviously, these approaches are
not able to take significant advantage of huge industry investment
in efficient triangle rendering hardware. Pulleyblank [18]
proposes hardware acceleration of exhaustive subdivision.
Beyond inadequate performance for real-time rendering, the iso-
scanning algorithms often draw the same pixel multiple times
causing problems with frame buffer blending operations, and
parity dependent schemes such as stencil-based shadow volumes
[7].
The second category is made up of tessellation algorithms. These
schemes adaptively tessellate a surface based on the
characteristics of a surface, or an application supplied
specification. The first of these are the scanline algorithms of
Lane and Carpenter [11] and subsequently Clark [4]. Referring to
Figure 1 we see a pair of adjoining patches (a), the red patch
requires further subdivision, the gray is sufficiently tessellated.
Lane and Carpenter divide the red patch while rendering the gray
using a single quad. In (b) we see the crack that results from
differing levels of tessellation; a solution to this problem is
described in [4]. The red vertex forming the crack is forced to the
green edge of the gray quad. In (c) we see the pixel dropouts that
result from the “T” junction formed. Because the location of a
vertex is represented using finite precision, the vertex does not
actually lie on this segment. Although this problem is exacerbated
by the low precision of some hardware rasterizers, it exists for any
finite precision representation, including IEEE floating point.
Note that the only way to guarantee a flawless rendering is
through precise representation of relationships; vertices that are

logically equal must be exactly equal. Our algorithms produce
crack-free tessellations completely independent of the precision of
the evaluation techniques.
In Figure 1(d) we see the introduction of an interstitial triangle
filling the crack. In Figure 1(e) we see an example of the problem
with this approach, a pair of patches concave relative to the
viewer. Both patches incident to the flat edge require refinement,
but also generate a triangle to fill the potential crack. The result is
the light gray fin sticking up. A similar alternative is to generate
an interstitial triangle to fill the “crack” caused by finite precision
in Figure 1(c). The triangle fills the gap even though it is
geometrically zero area. This is still inadequate, while we have
filled any possible pixel dropouts, double hits may occur, and
possible shading artifacts may result from the inconsistent
sampling.
Figure 1(f) illustrates the general solution to these problems,
explicit triangulation or meshing, free of degenerate triangles. In
[21], Rockwood et al. uniformly tessellate the interior of each
patch into a grid of rectangles whose density is selected to satisfy
a user specified tolerance. These rectangles are connected by
triangles to points on the patch boundary (coving). OpenGL
evaluators were used to render the parameter space triangulation.
In [10], Kumar et al. use a similar tessellation algorithm. Instead
of using evaluators they directly render triangles. By using an
incremental retessellation algorithm they are able to achieve
performance superior to Rockwood’s. Neither Rockwood et al nor
Kumar et al support continuous level of detail, and Kumar’s
scheme consumes considerable bandwidth and CPU memory.
Lastly, as noted in the introduction the current OpenGL evaluator
interface has some inherent performance limitations.
Bruijns [2] uses forward differencing to adaptively tessellate
quadratic Bézier patches. Regular interior meshes are heuristically
stitched to an independently sampled perimeter. This scheme does
not support continuous LOD, and does not take measures to avoid
problems due to round-off error resulting from forward
differencing. Bischoff et al. [1] propose a scheme for rendering
Loop subdivision surfaces [15]. Regular (polynomial) sub-patches
are evaluated using forward differencing. They make no
provisions for flexible tessellation, continuous level of detail, or
defects from round off. Pulli and Segal [19] also present a method
for Loop subdivision surface triangulation using geometry engine
processors. While efficient, their scheme has no provision for
flexible tessellation or continuous level of detail. Finally, Vlachos
et al [23] describe patches called PN triangles. These patches
derive their shape from triangles with normals specified at the
corners; they may be rendered without tessellation. When refined
they are converted to Bézier triangles and uniformly tessellated.
Their primary drawbacks are the inability to naturally express
creases, and their lack of flexible tessellation and continuous
LOD.

3 POLYNOMIAL EVALUATION
We compare two common polynomial evaluation schemes,
forward differencing and De Casteljau [5]. De Casteljau uses
nested linear interpolation to evaluate a univariate polynomial in
O n2c h operations, where n is the degree of the polynomial. In
Figure 2 we provide a geometric interpretation of De Casteljau for
evaluating a cubic curve, and a bi-quadratic patch. This technique
is very stable, precise, and supports evaluation at arbitrary
parameter values.

(a) (b) (c)

(d) (e) (f)

"flat"

Figure 1: Adaptive tessellation solutions & problems.

26

In contrast, forward differencing uses additions to evaluate a
polynomial, and is O nb g . In Figure 3 we illustrate the evaluation
of a cubic polynomial at a fixed parametric interval of 1 5 . Once
the first four values are computed, each further value may be
computed using three additions.
This technique is very efficient, however it is subject to round-off
error and is limited to sampling a polynomial at a fixed parametric
interval:

 t t t

a
b
c
d

3 2 1m r ⋅ ⋅

R
S
||

T
||

U
V
||

W
||

B

where t jt j= ∈
step

, Ζ , B is a basis matrix, and { , , , }a b c d T are
polynomial coefficients relative to B. We can compute the
forward difference coefficients of Figure 3 using the following
formula, where ∆r is the iterated forward difference operator [5]:

p

p

p

p

t

t

t

a

b

c

d

∆

∆

∆

1

2

3

3

2

0 0 0 1

1 1 1 0

6 2 0 0

6 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 1

R
S
||

T
||

U
V
||

W
||

R
S
||

T
||

U
V
||

W
||

R
S
||

T
||

U
V
||

W
||

R
S
||

T
||

U
V
||

W
||

= ⋅ ⋅ ⋅

step

step

step

B

or

p

p

p

p

a

b

c

d

∆

∆

∆

2

3

3

R
S
||

T
||

U
V
||

W
||

R
S
||

T
||

U
V
||

W
||

= ⋅ ⋅ ⋅M P B

For general degree M
M

m 0i

i

i

+

+

=
RST

UVW1

1

0
T

, m
3

1 6 6= { }T ,

m
4

1 14 36 24= { } , and m
5

1 30 150 240 120= { } .

When operating on a tensor product surface there is a natural
division of labor between the host CPU and the GPU (Figure 4).
When forward differencing is applied in tensor product form, the
CPU steps a matrix along, producing a series of evenly spaced
curves. The bottom row of the matrix is extracted and handed off
to the GPU, which in turn iterates it producing a series of evenly
spaced points. Because our tessellation algorithms are impervious
to round-off error, patches need not be broken into subpatches to
avoid errors when heavily tessellated (see section 8).

4 HARDWARE
By dividing the work of tessellation between the host CPU and
the graphics card, the amount of chip area consumed by surface
tessellation may be kept quite small, making it feasible to have a
dedicated tessellation engine running in parallel with other
geometry operations, such as transform and lighting. In Figure 5
we provide a block diagram of the engine. It is made up of four
banks of memory 32x128 bits each. Each memory can supply one
operand to the 4x32-bit floating-point adder. The adder stores its
results back into one of the two source operand memory banks.
During normal operation one pair of banks is used for the
calculation of a series of points on a curve while at the same time
the other is loaded with the coefficients for the next curve.
In Figure 6 we illustrate how a mesh of triangles is calculated and
drawn. First a row of vertices (0-4) is computed and stored in
RAM. Then the second row of vertices (5-9) is calculated and
stored in the same RAM overwriting the previous row, while
generating two triangles per vertex calculated, in the interior of
the mesh. For increased performance the surface tessellator relies
on the ability to calculate a vertex, use it to draw a triangle, and
then reuse the vertex without recalculation in a subsequent
triangle. These vertices are stored in this memory after being
transformed and lit. Euler’s Formula for Polyhedra, [8]
V E F− + = 2 , tells us that, in a closed mesh of triangles, there
are two triangles per vertex. However we cannot store an

Figure 2: De Casteljau polynomial evaluation.

== =

== = =

== = = =

+ ++

+ + ++

p''(1/5)-
p''(0/5)

p''(2/5)-
p''(1/5)

p''(3/5)-
p''(2/5)

p'(1/5)-
p'(0/5)

p'(2/5)-
p'(1/5)

p'(3/5)-
p'(2/5)

p'(4/5)-
p'(3/5)

+ + + ++

p (0/5) p(1/5) p(2/5) p(3/5) p(4/5) p(5/5)

p(1/5)-
p(0/5)

p(2/5)-
p(1/5)

p(3/5)-
p(2/5)

p(4/5)-
p(3/5)

p(5/5)-
p(4/5)∆p

∆
2p

∆
3p

p

Figure 3: Forward difference evaluation.

p03

p02

p01

p00

p13

p12

p11

p10

p23

p22

p21

p20

p33

p32

p31

p30

+

+

+

+

+

+

+

+

+

+

+

+

p00

p10

p20

p30

+

+

+

CPU GPU

Figure 4: Tensor product forward differencing.

Bank Lodd

32
 1

28
 b

it
w

or
ds

Bank Leven

32
 1

28
 b

it
w

or
ds

Bank R even

32
 1

28
 b

it
w

or
ds

Bank R odd

32
 1

28
 b

it
w

or
ds

+

+

+

+

128

Figure 5: Diagram of forward differencing hardware.

27

unbounded number of vertices. We have chosen a memory size
that represents a good cost/performance tradeoff, and are able to
render approximately 1.8 triangles per vertex produced. A
complication of this finite memory is that we must break heavily
tessellated patches up into swaths of triangles that are sufficiently
narrow that a row of vertices fit in this memory.

5 TESSELLATION PATTERNS
Given an engine that can very efficiently tessellate a regular grid,
and generate a series of points on a curve, how do we get the
engine to support the independent tessellation factors, and
continuous LOD described in the introduction? Our engine
supports two patterns of tessellation, integer and fractional. The
integer pattern produces an optimal triangulation, generating a
constrained Delaunay triangulation [17] of the irregular portions
of the mesh. The fractional style supports continuous level of
detail.

5.1 Integer Tessellation
In the integer case a regular mesh is generated covering the
majority of the patch. The number of rows in the mesh is one less

than the greater of the two row tessellation factors; the number of
columns is set similarly. In Figure 7 the resulting regular mesh has
7 rows and 15 columns.
Transitions are drawn to fill in the remaining row and column. A
state machine in the hardware curve unit controls the stitching of
each transition region. Similar to Bresenham’s algorithm for
drawing lines, a state variable Q is initialized to the difference of
the tessellation factors (6 in the vertical transition of Figure 7.)
Then depending on the sign of Q the engine generates a triangle
by advancing along either of the two sides of the transition. The
transition is filled with a set of triangles of optimal shape in the
parameter space of the patch.

5.2 Fractional Tessellation
The so-called integer tessellation pattern breaks the mesh of
triangles into a combination of a regular mesh and transition
regions. The fractional tessellation scheme also uses a mixture of
regular meshes and transition regions. The patterns we use are
constrained by rules necessary to guarantee a continuous level of
detail. Vertices must be introduced at the position of existing
vertices. Edges may only be created or destroyed when one of
their endpoints is introduced or removed. Vertices must move
continuously. These rules result in unavoidable sliver triangles,
which can make integer tessellation more desirable in some
circumstances.
When performing integer tessellation the application specifies an
integer number of segments n and the driver computes
differencing coefficients with a step size 1 n . Note that the nth
vertex evaluated corresponds to the end point of the Bézier curve.
When doing fractional tessellation we proceed in exactly the same
fashion, except that the number of segments m is real. We step

m times and use the Bézier end point as the final vertex, see
Figure 9. This approach preserves the efficiency of forward
differencing while using the Bézier end point to avoid calculating
a vertex at an odd step size.
One problem with this approach is that adjoining patches may not
define their shared edges with the same parametric traversal.
Consider a Möbius strip, such consistent traversal is impossible,
and in general not something with which to burden the
application. In Figure 10(a) two such patches share a conflicting
boundary. By switching to the symmetric pattern shown in (b) of
the figure, we avoid any cracking problems while preserving
continuous level of detail and the efficiency of forward

0

1 2

3 4

5

6 7

8 9

A

B C

D E

tim
e

0 1 2 3 4

A

1 2 3 45
2 3 45

3 45
45

5 6 7 8 9
6 7 8
6 7
6

6 7 8 9

Figure 6: Mesh generation and vertex reuse.

16

8

4

2

 Figure 7: Integer Tessellation Pattern (2,4,8 &16 segments).

if (Q>=0)

if (Q >= 0)

if
(Q

 <
 0

)

Q=m-n

Q
=

Q+
2m

Q

QQ = Q-2n

m segments

n segments

Q = Q-2n

if (Q < 0) Q = Q+2m

Figure 8: Integer transition stitching state machine.

3 4111
Bezier end point

Figure 9: Evaluating a curve with tessellation factor 3.75.

A B(a)

(b)
Figure 10: A symmetric tessellation pattern.

28

differencing.
Extending this pattern of tessellation from a curve to a tensor
product patch we arrive at the pattern shown in Figure 11. The
original patch is subdivided into four subpatches that are rendered
individually performing evaluation from the original patch
corners to the midpoints of the sides. With this arrangement, as
LOD varies, vertices are introduced in pairs at the midpoints of
the patch boundaries. Pairs of rows (or columns) of triangles are
introduced forming a cross through the middle of the patch.

6 DERIVATIVES AND NORMALS
The calculation of tangent frames and normals is an integral part
of surface tessellation. Many shading algorithms depend on a
coordinate frame defined at the vertices of a triangle. To calculate
these values the tessellation system simply evaluates additional
polynomials representing the two partial derivatives and/or the
normal. By subtracting adjacent control points as shown in Figure
13, a patch representing a scaled version of the derivative is
created. Since most rendering algorithms are primarily concerned
with the directions of the tangent frame axes, this is sufficient.
The Bézier control points of a patch representing the normal
direction may be computed by taking the cross product of the
scaled derivative patches [6]. The CPU, either the application or
driver, performs the calculation of derivatives and normals.

7 TRIANGULAR PATCHES
The algorithm for integer tessellation has an obvious analogous
pattern in a triangular domain (Figure 14). However, we chose to
handle triangular patches using an approach that had no hardware
impact. Through a linear reparameterization a triangular patch of
degree k can be converted to a tensor product patch of degree k .
This is because triangular patches have total degree k while

tensor product patches have total degree 2k . While there is an
increase in total degree, the isoparametric curves remain degree
k ; they are no more costly to evaluate.
We use two different reparameterizations, one for integer
tessellation, and one for fractional, shown in Figure 12. In the
integer case the triangular patch is rendered as a degenerate tensor
product patch; further details of the reparameterization may be
found in [13]. Note that the tangent patches (derivatives) must be
computed before reparameterization in order to avoid lighting
problems due to the singularity. In the fractional case the
triangular patch is divided into three tensor product patches, and
each is tessellated using one quadrant of the fractional tessellation
pattern for tensor product patches. In this case the
reparameterization can be accomplished using Bézier composition
techniques [14].

8 CONSISTENT MESH GENERATION
In this section we discuss how to guarantee consistent mesh
generation while independently rendering multiple patches. We
assume that all patches are represented using the Bézier
representation, and that any patches sharing a boundary have
equivalent control points defining that boundary. The order of the
curves sharing the boundary must match, and the positions of the
control points defining boundary curve must be exactly equal. A
consistent mesh is one where all relationships are expressed
exactly, if two triangles in the mesh share an edge then the end
points of the edge are equal bit-for-bit. This must hold even if the
two triangles originate from different patches. Finally, we must
obviously assume that the application has specified consistent
tessellation factors.
There are several reasons that consistent mesh generation is not
simple. Forward differencing, our evaluation technique, suffers
from round-off error when evaluating a long sequence of vertices.
Because the implementation divides the work between host and

4

3

2

1

3

2

1

4

Figure 11: Fractional tensor product tessellation.

Integer Reparameterization Fractional Reparameterization

u v s ts s ts, ,b g = − −
F
HG

I
KJ2 6 2 6

u v s t t, (),b g b g= −1

Figure 12: Triangle to tensor product reparameterizations.

Figure 13: Calculation of tangent patches.

11

4
3

Figure 14: Integer tessellation of a triangular domain.

29

graphics card, we are using two different floating-point engines,
one in the CPU and one in the GPU. Even if the implementations
were identical, the same inputs with differing rounding modes
yield unequal results. Also, because patches are drawn
independently it is not possible to clean up small discrepancies
after all tessellation is completed. Finally, it is important to realize
that in order to have a guarantee of perfect rendering there can be
no errors or inconsistencies, not even a single bit. Calculations are
always performed the same way and on the same floating-point
unit to ensure consistency.

8.1 Guard Curves
Consider abutting patches A and B in Figure 15(a), the rows of
patch A run perpendicular to the rows of patch B. There is no way
for the patch tessellator to know that this has occurred, and the
vertices circled will have inconsistent values, those computed for
patch B by the GPU will have accumulated round off, and those
computed for patch A are from the CPU. Our solution is to
introduce guard curves, evaluated by the GPU and shown in bold
in Figure 15(b). In our implementation these curves contain only
position and normal attributes, other vertex attributes are
permitted to have slight mismatches along the shared border.
When the GPU is drawing a mesh, it maintains a pair of guard
curves whose values it computes and uses for the beginning and
ending of the strip curves. Because all vertices are computed
using the same coefficients and the same processor, this
mechanism guarantees that the first strip curve of patch B will
match the starting points of each of the strip curves of patch A.

8.2 Reversed Transitions
Because forward differencing has an inherent direction of
evaluation, the curves on the perimeter of every patch must be
traversed in a consistent direction. The direction of traversal is
chosen by the driver and is determined by sorting the control
points defining the boundary. Because the decision is localized to
boundary information the decision will be made consistently
every time the curve is encountered. This can result in conflicts
see Figure 16(a). The driver has determined the directions of
traversal for the curves on the perimeter of the patch, and the top
and bottoms curves conflict. Even if the top and bottom
tessellation factors agree, a transition is created to resolve the
differing directions, a reversed transition. The driver must pass
the coefficients for traversing the curves in the correct direction.
The GPU’s tessellator evaluates the inner curve saving results in
reverse order, the correct order relative to the outer curve. When

the outer curve is evaluated, the transition is stitched up as usual.
Reversed transitions may also resolve differences in tessellation
factor, their usual function. Note multiple reversed transitions may
be required, Figure 16(c).

8.3 Special Vertices
The mixture of regular meshes and transition regions creates a
subtle problem. Because the vertices shown in Figure 17 result
from a long chain of calculations during the tessellation of the
regular mesh portion of the patch, they are saved by the hardware
state machine for subsequent use in the transitions. At most three
such vertices must be saved.

8.4 Swatches
As mentioned in section 4, highly tessellated patches must be
broken into swaths sufficiently narrow that a row of vertices fits in
on chip memory for reuse. Recall the situation illustrated in
Figure 15 where guard curves were added to ensure that patches A
and B matched on their shared boundary. Because the rows of
patch B may be broken into multiple swaths, the guard curves of
patch A must be segmented to match. The result is that patches are
rendered in swatches that have rows and columns sized to match
the on-chip memory, see Figure 18.

9 TESTING
The algorithms described in this paper result in relatively complex
state machines, for managing vertex reuse, transition stitching,
and consistency. To test the implementation for correctness we
analyzed the triangle meshes produced by a bit accurate
simulation of the tessellation engine. The meshes were tested for
consistency by verifying that their triangles had consistent
chirality and that the meshes contained the correct number of
unique triangles and vertices.

A B A B

(a) (b)
Figure 15: Guard curves for consistency.

(a) (b) (c)
Figure 16: Reversed transitions.

mesh

transition

transition

Figure 17: Special Vertices.

sw
atch

strip

sw
ath

Figure 18: Breakup of a patch into swaths and swatches.

30

Figure 19: A single patch, fractional and integer tessellation.

Figure 20: Multipatch adaptive tessellation.

10 EXAMPLES
In Figures 19 thru 22 we provide examples of the meshes
generated by our system. In Figure 19 we provide an example of
the fractional and integer tessellation styles applied to the same
input patch and tessellation factors. In Figure 20 we illustrate the
character of the tessellations resulting from LOD based on screen
space edge length. Twenty-five patches are rendered with varying
detail, the result of perspective foreshortening.
Figures 21 and 22 illustrate the meshes generated for three levels
of detail based on screen space edge length. Figure 21 illustrates
the integer tessellation scheme where the lowest level of detail
consists of 72 triangles. The lowest level of detail in Figure 22
consists of 288 triangles.

11 PERFORMANCE
In this section we present preliminary performance results run on
a 933mHz PIII with a 200mHz GeForce3 graphics card that
implements the algorithms described in this paper. These statistics
are based on rendering a version of the Utah teapot from
Microsoft, containing 36 patches. The teapot is rendered once per
frame, using a simple lighting model requiring a 24-byte vertex.
The performance numbers include per frame overhead such as
screen/Z clear. These results also do not include the overhead of
host computations, a significant factor. Thus the results only
reflect the efficiency of the graphics card as fed data across the
AGP bus.
In Figure 23 we plot the triangle rate versus tessellation factor. As
expected, the setup cost is amortized improving performance as
the level of tessellation is increased. The trend continues until the
tessellation factor requires multiple swatches, at which point we
see a dip and return to the trend. We have measured a peak rate of
30 million triangles per second. In Figure 24 we measure
bandwidth savings as the tessellation factor increases. Here we see
the bytes per triangle dropping to roughly half of what could be
achieved with perfect vertex reuse and triangle strips for the same
tessellation; a rate of 12 bytes per triangle when two triangles are
generated per vertex transferred.

Figure 21: Integer levels of detail.

Figure 22: Fractional levels of detail.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 5 10 15 20 25 30 35 40

Tessellation

Tr
ia

ng
le

s/
Se

c
(M

ill
io

ns
)

Figure 23: Triangles/sec vs. tessellation factor.

31

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 10 20 30 40

Tessellation

B
yt

es
 /

Tr
ia

ng
le

Figure 24: Bytes/triangle vs. tessellation factor.

The driver for our current implementation is still under
development. The APIs are designed to permit caching of
calculations when the tessellation is unchanging. However, it is
apparent that the tessellation system is host limited when the
application dynamically varies the input geometry and level of
detail.

12 CONCLUSIONS
In this paper we have described a system for the defect free
tessellation of multiple independent polynomial patches. The
implementation splits the tessellation task between the host CPU
and the graphics card achieving high performance with little
incremental chip cost. The surface tessellator has been
implemented in the NVIDIA GeForce3. The implementation
performs as designed, achieving high triangle rate, continuous
LOD, and defect free tessellation and rasterization of polynomial
patches. Future work will explore quantifying driver overhead and
moving more of the tessellation calculations to the GPU to better
balance the system.

13 ACKNOWLEDGEMENTS
We would like to thank Doug Rogers, Al Zimmerman, Daniel
Rohrer, Fred Fisher, Matt Craighead, Mark Kilgard, and David
Kirk for their engineering contributions and support.

REFERENCES
[1] Stephan Bischoff, Leif P. Kobbelt and Hans-Peter

Seidel. Towards Hardware Implementation Of Loop
Subdivision, 2000 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pages 41-50 (August 2000). ACM
SIGGRAPH / Eurographics / ACM Press

[2] J. Bruijns; Quadratic Bezier triangles as drawing primitives;
Proceedings of the 1998 EUROGRAPHICS/SIGGRAPH
workshop on Graphics hardware, 1998, Page 15

[3] Edwin E. Catmull. Computer Display of Curved
Surfaces. Proceedings of the IEEE Conference on Computer
Graphics, Pattern Recognition, and Data Structure, pages 11-
17 (May 1975).

[4] J. H. Clark. A Fast Scan-Line Algorithm for Rendering
Parametric Surfaces, Computer Graphics, 13(), pages 7-
11 (August 1979).

[5] Gerald Farin. Curves and Surfaces for Computer Aided
Geometric Design, pages 464 (1990). Academic Press. 2nd
edition, ISBN: 0-12-249051

[6] R. T. Farouki and V. T. Rajan. Algorithms for Polynomials
in Berstein Form, Computer Aided Geometric Design 5,
pages 1-26, 1988.

[7] Tim Heidmann. Real Shadows, Real Time, Iris Universe, No.
18, pp 23-31, Silicon Graphics Inc., November 1991.

[8] D. Hilbert and S. Cohn-Vossen. Geometry and the
Imagination. Chelsea Publishing Company, New York, 1952.

[9] James T. Kajiya. Ray Tracing Parametric Patches, Computer
Graphics (Proceedings of SIGGRAPH 82), 16(3), pages 245-
254 (July 1982, Boston, Massachusetts).

[10] Subodh Kumar, Dinesh Manocha and Anselmo
Lastra. Interactive Display of Large-Scale NURBS
Models, 1995 Symposium on Interactive 3D Graphics, pages
51-58 (April 1995). ACM SIGGRAPH. Edited by Pat
Hanrahan and Jim Winget. ISBN 0-89791-736-7.

[11] J. Lane, L. Carpenter and T. Whitted and J. Blinn. Scan line
methods for displaying parametrically defined
surfaces, Communications of the ACM, 23 (1), pages 23-
34 (1980).

[12] Sheue-Ling Lien, Michael Shantz and Vaughan
Pratt. Adaptive Forward Differencing for Rendering Curves
and Surfaces, Computer Graphics (Proceedings of
SIGGRAPH 87), 21 (4), pages 111-118 (July 1987,
Anaheim, California). Edited by Maureen C. Stone.

[13] Dani Lischinski. Converting Bézier Triangles Into
Rectangular Patches, Graphics Gems III, pages 256-261,
536-537 (1992, Boston). Academic Press. Edited by David
Kirk. ISBN 0-12-409673-5.

[14] Wayne Liu and Stephen Mann. An Optimal Algorithm for
Expanding the Composition of Polynomials, ACM
Transactions on Graphics, 16(2), pages 155-178 (April
1997). ISSN 0730-0301.

[15] Charles T. Loop. Smooth Subdivision Surfaces Based on
Triangles. Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[16] NVIDIA OpenGL Extension Specifications, NVIDIA
Corporation, March 1, 2001. http://www.nvidia.com/
marketing/developer/devrel.nsf/oglFrame?OpenPage

[17] Franco P. Perparata and Michael Ina Shamos. Computational
Geometry, an Introduction. Springer-Verlag. New York
1985.

[18] Ron Pulleyblank and John Kapenga. The Feasibility of a
VLSI Chip for Ray Tracing Bicubic Patches, IEEE Computer
Graphics & Applications, 7 (3), pages 33-44 (March 1987).

[19] Kari Pulli and Mark Segal. Fast Rendering of Subdivision
Surfaces. 7th Eurographics Rendering Workshop, Porto,
Portugal, pages 61-70 and 282, June 1996.

[20] Alyn P. Rockwood. A generalized scanning technique for
display of parametrically defined surfaces, IEEE Computer
Graphics & Applications, 7 (8), pages 15-26 (August 1987).

[21] Alyn Rockwood, Kurt Heaton and Tom Davis. Real-time
rendering of trimmed surfaces; Conference proceedings on
Computer graphics, 1989, pages 107 - 116

[22] Mark Segal and Kurt Akeley. The OpenGL Graphics System:
A Specification (Version 1.2.1). www.opengl.org.

[23] Alex Vlachos, Jörg Peters, Chas Boyd and Jason L. Mitchell.
Curved PN Triangles. 2001 Symposium on Interactive 3D
Graphics, March 19-21, 2001.

32

