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ABSTRACT

We describe PixelFlow, an architecture for high-speed image
generation that overcomes the transformation- and frame-buffer–
access bottlenecks of conventional hardware rendering architec-
tures. PixelFlow uses the technique of image composition: it
distributes the rendering task over an array of identical renderers,
each of which computes a fill-screen image of a fraction of the
primitives. A high-performance image-composition network
composites these images in real time to produce an image of the
entire scene.

Image-composition architectures offer performance that scales
linearly with the number of renderers; there is no fundamental
limit to the maximum performance achievable using this
approach. A single PixelFlow renderer rasterizes up to 1.4 million
triangles per second, and an n-renderer system can rasterize at up
to n times this basic rate.

PixelFlow performs antialiasing by supersampling. It supports
defemed shading with separate hardware shaders that operate on
composite images containing intermediate pixel data. PixelFlow
shaders compute complex shading algorithms and procedural and
image-based textures in real-time. The shading rate is
independent of scene complexity. A Pixel Flow system can be
coupled to a parallel supercomputer to serve as an immediate-
mode graphics server, or it can maintain a display list for retained-
mode rendering.

The PixelFlow design has been simulated extensively at high
level. Custom chip design is underway. We anticipate a working
system by late 1993.

CR Categories and Subject Descriptors: C. 1.2 [Processor
Architectures]: Multiprocessors; C.5.4 [Computer System
Implementation]: VLSI Systems; 1.3.1 [Computer Graphics]:
Hardware Architecture; 1.3,3 [Computer Graphics]: Picture/Image
Generation; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Additional Keywords and Phrases: antialiasing, compositing,
deferred shading, rendering, scalable.

1 INTRODUCTION

Graphics applications such as flight and vehicle simulation,
computer-aided design, scientific visualization, and virtual reality
demand high-quality rendering, high polygon rates, and high
fi-ame rates. Existing commercial systems render at peak rates up
to 2 million polygons per second (e.g., Silicon Graphics’
SkyWriter and Hewlett-Packard’s VRX). If antialiasing or real-
istic shading or texturing is required, however, their performance
falls by an order of magnitude.

To support demanding applications, future graphics systems must
generate high-resolution images of datasets containing hundreds
of thousands or millions of primitives, with realistic rendering
techniques such as Phong shading, antialiasing, and texturing, at
high frame rates (230 Hz) and with low latency,

Attempts to achieve high performance levels encounter two
bottlenecks: inadequate floating-point performance for geometry
processing and insufficient memory bandwidth to the frame buffer
[FOLE90]. For example, to render a scene with 100,000 polygons
updated at 30 Hz, geometry processing requires approximately
350 million floating-point operations per second, and rastenzation
requires approximately 750 million integer operations and 450

1 Parallel solutions are mandatory.million frame-buffer accesses.

Most current high-performance architectures use object-
parallelism for geometry processing; they distribute primitives
over a parallel array of floating-point processors, which perform
transformation, clipping, and perspective division [ELLS90;
MART90; SG190].

Tbe same systems use pixel-parallelism for rastenzation; frame-
buffer memory is divided into several interleaved partitions, each
with its own rasterization processor. [AKEL88; APGA88;
POTM89], This multiplies the effective frame-buffer bandwidth
by the number of partitions, but does not reduce the number of
primitives each processor must handle, since most primitives
contribute to most partitions [FUCH79]. Because of this
limitation, and the bandwidth limitations of commercial VRAMS,
this approach does not scale much beyond today’s rates of a few
million polygons per second.
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Figure 1: Rasterization methods that combine both pixel-and object-parallel rasterization (G = geometty processor,
R = rasterizer, and C = pixel compositor).

To achieve higher rendering performance, object-parallelism must
be applied throughout the rendering process—in rasterization, as
well as in geometry processing. There appear to be two ways to
achieve this: screen subdivision and image composition. The
two schemes are shown conceptually in Figure 1.

In the screen-subdivision approach (introduced in [FUCH77] and
[PARK80]), the screen is divided into disjoint regions of
contiguous pixels, and a rasterization processor is provided for
each region (Figure 1a). The processors simultaneously rasterize
primitives that fall into different screen regions. These sub-
images are concatenated to form a full-screen image. Several
systems of this type have been described [GARD81; GHAR88]
and one built [FUCH89].

This approach is a natural advance from a simple rendering
system in which a single geometry processor feeds a single raster-
izer. Its main additional requirement is a global routing network
to transfer primitives from geometry processors to the appropriate
rasterizer. Since the mapping of primitives to rasterizers varies
with the viewing transformation, every primitive in the database
must be transferred over the network every frame. The network
bandwidth is therefore high, and increases linearly with the
rendering rate, so the approach does not scale indefinitely.

A second limitation, also due to the global routing network, is the
software complexity required to sort primitives by screen region
and to route them to rasterizers at the appropriate time. Finally,
the architecture is subject to load imbalances when primitives
clump into a few screen regions. System performance can
decrease significantly in this case.

In the image-composition approach, rasterization processors are
associated with a portion of the primitives, rather than with a
portion of the screen (Figure 1b). Each rastenzer computes a tidl-
screen image of its portion of the primitives, and these images are

composite, based on visibility, to forma final image.

In an image-composition architecture, geometry processors and
rasterizers can be paired into self-contained units, so the global
routing network for primitives disappears. Instead, an image-
composition network is required to composite output pixels from
the rasterizers to form the final image. This network can be
arranged as a binary tree or a pipeline; in either case, all traftlc is
local. with fixed bandwidth determined bv frame rate and screen
size.’ This gives the architecture its prope~ of linear scalability.2

The remainder of this paper explores the opportunities and limita-
tions of the image-composition approach. Section 2 discusses
image-composition architectures in general. Section 3 introduces
PixelFlow, an image-composition architecture that achieves
linearly scalable rendering performance and supports highquality
rendering. Sections 4 and 5 describe its major hardware and soft-
ware components. Section 6 discusses performance issues and
presents simulated performance results.

2 IMAGE COMPOSITION ARCHITECTURES

Image composition has been used in various forms for many
years, particularly in the video industry (e.g., video overlays and
chroma-key) and the computer graphics community (e.g., for off-
line compositing of rendered images).

2A third method, closely related to image composition, is to pro-
vide separate rendering pipelines for multiple image fi-arrses. This
technique, used in SGI’S SkyWriter, multiplies a system’s render-
ing rate and fmme rate by the number of rendering pipelines, but
does not improve its latency over that of a single pipeline.
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Several graphics architectures based on image composition have

been proposed. Processor-per-primitive graphics systems are a
simple type of image-composition architecture. [BUNK89] de-
scribes one such system, General Electric’s 1967 NASA 11flight
simulator, In the NASA II system, polygons (faces) in the
database were assigned to individual processors (face cards).
Each face card rendered an image of its respective face, and the
results were composite using a static priority scheme.

Later researchers proposed using z-values to determine the image
priority at individual pixels [DEME80; FUSS82], [WEIN81 ] pro-
posed an antialiasing scheme for a processor-per-primitive system.
[DEER88] and [SCHN88] proposed deferred shading as a way to
support high-quality shading in a processor-per-primitive system.
[ELL19 I ] describes a processor-per-primitive system specialized
for CSG rendering. which was built at Duke University and UNC.

A few image-composition architectures with multi-primitive
renderers have been proposed: [SHAW88] described a simplified
version of Duff’s compositing algorithm [DUFF85] cast in VLSI
to create a multi-renderer system that performs antialiasing.
[MOLN88] proposed a simple z-buffer image-composition
scheme to achieve linearly scalable rendering performance; this
idea was expanded into a dissertation on image-composition
architectures [MOLN9 Ib], which also describes an early version
of the Pixel Flow architecture.

2.1 Advantages and Disadvantages

Image-composition offers two potential advantages over other
architectural approaches: linear scalability and a simple program-
ming model. An arbitrary number of renderers can be added to
the system. since the image-composition network has only local
traffic with fixed bandwidth determined by screen size and frame
rate, Also. since renderers compute their sub-images indepen-
dently, they can operate with little synchronization. This makes
the parallel nature of the system largely transparent to the
programmer.

Image-composition architectures have several disadvantages,
however. First, the image-composition network must support very
high bandwidth communication between renderers. Even though
the bandwidth is fixed, the network must transfer every pixel
during every frame, and each pixel must include visibility
information and color (and possibly even more data, if deferred
shading is used), Second, pixels must be reduced to a common
format for compositing, so the visibility algorithm is more
restrictive than in some other approaches, Finally, up to a frame
of pixel storage is required per renderer, if an entire frame is
buffered before being composite; fortunately, this storage
requirement can be reduced, as we will see in Section 3.

2.2 Antialiasing

Aliasing artifacts, once ubiquitous in interactive systems, are
tolerated less and less each year. Future real-time systems must
provide ways to reduce or eliminate these astifacts. There appear
to be two ways to combat aliasing in image-composition systems:
supersampling, and A-buffer algorithms [MOLN91 b]. In the
supersampling approach, the image is generated and composite
multiple times, once for each sample in a filter kernel. The
compositors perform a simple : comparison for each subpixel;
then subpixels are blended together after composition to form a
final image. In the A-buffer approach, each pixel is represented
by a variable-length packet describing all surfaces potentially

visible at the pixel, Compositors merge packets together based on
visibility and coverage information. The output of the network
describes all of the surfaces contributing to each pixel, and this
information is used to compute the pixel’s final color.

In comparing the two approaches, the critical factors are image
quality, image-composition bandwidth, and hardware complexity,
Supersampling produces good results, provided that sufficient
samples are taken per pixel. Unfortunately, the number of
samples directly affects the bandwidth required of the image-
composition network; however, we have produced reasonable-
quality images with as few as 5 samples per pixel by choosing
sample locations and weights carefully [MOLN9 Ia],

Only the simplest A-buffer methods are feasible in current real-
time systems. These methods generally sample color and z values
at pixel centers only, while calculating pixel coverage at higher
resolution. This can lead to artifacts. To avoid these artifacts,
additional information must be added to the surface descriptors;
the result is that the two approaches require comparable
bandwidth. In terms of hardware complexity, A-buffer renderers
and compositors are fairly complex, while the z-depth compositors
for supersampling are very simple. The A-buffer approach
supports true transparency, however, which is problematic in the
supersampling approach.

2.3 Deferred Shading

Image-composition architectures can take special advantage of
deferred shading, a general method for reducing the calculations
required for complex shading models by factoring them out of the
rssterization step [DEER88; ELLS91 ]. Many shading calculations
depend only on geometric and intrinsic attributes, such as surface-
normal vectors and surface color. If these attributes are calculated
and stored during rasterization, shading can be deferred until the
entire scene has been rasterized, and applied only to the surfaces
that are visible.

To defer shading in an image-composition system, rasterizers
compute generic pixel attributes and composite these, rather than
pixel colors. A separate hardware unit performs shading a~er
pixels have been composite. In this manner, shading is
performed just once per pixel, no matter how many surfaces
contribute to it and how many rasterizers are in the system.
Deferred shading does increase image-composition bandwidth,
however, since the number of bits per pixel is generally higher.

Deferred shading also separates performance concerns between
the rendering and shading portions of the machine. Renderers can
be built to rasterize as fast as possible, and the number of
renderers can be chosen to achieve a given polygon rate. Shading
performance is independent of the rastenzing performance of the
system, but most be high enough to support the desired shading
model.

3 PIXELFLOW ARCHITECTURAL OVERVIEW

PixelFlow is an experimental graphics system designed to
demonstrate the advantages of image-composition architectures
and to provide a research platform for real-time 3D graphics
algorithms and applications. In this section we describe its major
architectural features and the rationale under which they were
chosen. Section 4 provides details of system components.
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Supersampling antialiasing. PixelFlow uses the supersampling
approach because it is general, the compositor hardware is simple,
and therefore fast, and it can be tuned to trade speed for image
quality. This leads to renderers based on z-buffer raaterizem and a
z-based image-composition network. Unfortunately, this requires
screen-door or multi-pass algorithms to support transparency.

Plpelined image-composition network. Generating Gouraud-
shaded, supersampled, high-resolution images at 30 Hz frame
rates requires composition-network bandwidth of at least
1280x 1024 pixels ● 5 samples/pixel ● 48 bits/sample ● 30
flames/second = 9.4 Gbita/second. Deferred shading algorithms
require 2 to 3 times this amount,

Packaging considerations favor a pipeline image-composition
network. The image-composition network can be distributed
across the system by including a compositor on each board and
daisy-chaining connections between boards.

Logic-enhanced memory rasterizer. The renderer should a
single-board design, must provide a way to scan out pixels at the
bandwidth required, and should implement the compositor
function at relatively low cost in board area, power, and dollars.
These considerations mainly affect the design of the rasterizer.

The logic-enhanced memory approach used in Pixel-Planes 5
allows a powerfid rssterizer and high-bandwidth compositor to be
built in a single, compact package. In PixelFlow, we use a similar
logic-enhanced memory approach. A rasterizer built with new
PixelFlow enhanced-memory chips (EMCS) can render in excess
of one million triangles per second and provide image-
composition bandwidth exceeding 30 Gbitsfsecond using 64
custom memory chips and one custom controller on about 50
square inches of board area.’

Region-based rendering scheme. The compactness of this
approach is obtained at the cost of introducing screen subdivision
at the level of the individual renderers. As in Pixel-Planes 5, each
rastcrizer contains only 128x128 pixel processors, and must
generate a full-screen image in multiple steps. The advantage is
that an entire screen’s worth of pixel memory is not required.
Unfortunately, this implementation incurs the load-balancing
problems of screen subdivision, but these difficulties are greatly
reduced by providing several region’s worth of buffering within
tie PixelFlow EMCS.

The required image-composition bandwidth is achieved in two
ways. First, the network operates bit-serially, but in parallel on
256 pixels, each with its own single-wire channel. Bit-serial z-
comparison simplifies the compositors and thereby allows them to
operate at high speed. Second, the network consists entirely of
point-to-point communication between identical custom chips on
neighboring boards, so low voltage swings and source termination
can be used to save power and provide the necessary speed (132
MHz) [KNIG88].

Separate shaders for deferred shading. Deferred shading
algorithms, such as Phong shading and procedural and image-
based textures, are implemented on separate hardware shaders
that reside just ahead of the flame buffer. Regions of pixels,
containing attributes such as intrinsic color, surface normals, and
texture coordinates are rasterized on the renderers, compositcd on
the image-composition network, and loaded into the shaders.
Shaders operate on entire regions in parallel, to convert raw pixel
attributes into final RGB values, blend multiple samples together
for rmtialiasing, and forward final color values to the frame buffer.

Regions are assigned to shaders in round-robin fashion. The
number of shaders required depends on the shading algorithm
only, not on the number of primitives, since deferred shading is
employed.

The SIMD rasterizer used in the renderer is an ideal processor for
deferred shading, since shading calculations can be performed for
all pixels simultaneously. Therefore, the shaders can simply be
designated renderers, with a slight enhancement of the compositor
hardware on the EMC to allow bidirectional data transfers
between the image-composition network and EMC memory.
Shaders can be augmented with additional hardware to allow them
to compute image-based textures in addition to procedural
textures.

4 PIXELFLOW HARDWARE

A PixelFlow system is composed of one or more card cages, each
containing up to 20 circuit boards. The backplane contains wiring
for the image-composition network and clock and power
distribution. The system is modular and can be configured with
any number of card cages. Each board has a high-speed link
connecting it to a host computer. Figure 2 shows a block diagram
of a PixelFlow system.
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Figure 2: Block diagram of a PixelFlow system.

Renderers operate by sequentially processing 128x128-pixel
regions of the screen. They scan out the region’s rasterized pixels
over the image-composition network in synchrony with the other
renderers. Shaders load pixels from the image-composition
network, perform texturing and shading, blend subpixel samples,
and forward pixel values to the tie buffer,

The system is designed to be used in one of two basic modes

1)

2)

Immediate Mode. PixelFlow is hosted by a parallel
computer, with each link connected to a separate compute
node in the host. The host (e.g., an Intel Touchstone) runs
an application and generates immediate-mode primitives,
which are transmitted to renderers over the links.

Retained Mode. PixelFlow is hosted by a workstation; the
high-speed links are bussed together and connected to the
host via a single interface. The host distributes a display
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Figure 3: Block diagrams of (a) renderer, (b) shader, and (c) frame-buffer boards.

list over the renderers and loads a shading model into the
shaders. On each frame, the host broadcasts editing
commands and viewing parameters to the renderers, each
of which then computes an image of its fraction of the
dataset.

Each of the primary board types (renderers, shaders, and frame
buffers) includes a core consisting of a geometry processor mid a
rasterizer built from the new EMC chips. These core elements
have different fiction on the three board types, and shaders and
tlame buffers contain additional components (Figure 3).

4.1 Image-Composition Network

The image-composition network is a wide (256-bit), high-speed
(132 MHz) speciai-purpose communication network for rapidly
moving pixei data between boards. It is distributed across the
EMCS on each board, with each EMC implementing a 4-bit-wide
slice (4 input pins and 4 output pins). Compositors on the EMCS
synchronously transmit data unidirectionally to the compositors
on the downstream board.

Compositor modes. The basic unit of operation is the transfer of
one 128x 128-pixel region of pixel data; the amount of data trans-
ferred per pixel is preset according to the specific algorithm. The
compositors operate in one of four modes, as shown in Figure 4.

4.2 Renderer

The renderer block diagram is shown in Figure 3a. Its major
components are:

Geometry processor. The geometry processor is a fast floating-
point processor that retains a portion of a distributed dispiay list
(retained mode) or receives a fraction of the primitives from the
host on each frame (immediate mode). it transforms its portion of
the primitives into screen coordinates, sorts them by screen
region, and passes them to the rssterizer. It contains 8 MBytes of
VRAM memory, serving both as main memory and as a iarge
FIFO queue for buffering commands to the rasterizer. A DMA
engine controls the flow of commands from the VRAMS’ serial
port to the rasterizer, maintaining separate queues of commands
for rasterization and for transfers over the image-composition
network.

Rssterizer. The rasterizer is a 128x128 SIMD processor array
implemented with 64 PixeiFlow EMCS driven by instructions and
data broadcast from an Image Generation Controller (IGC) ASIC.

The PixelFlow EMC (Figure 5) is similar to our previous designs
[EYLE88; POUL85]. A linear expression evaluator computes
values of the bilinear expression ,4x+@-t-C at every pixel
processor in parailel (XY is the pixel processor’s screen iocation
and A, B, and C are user-specified). Each pixel has a small local
ALU that performs arithmetic and logicai operations on locai
memory and on the iocai value of the bilinear expression.
Operation of the pixel processors is SIMD (singie-instruction-
multiple-data), and all processors operate on data items at the
same address. Each pixel processor includes an enable register
which qualifies writes to memory, so that a subset of the
processors can be disabled for certain operations (e.g. painting a
scan-converted polygon).
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Figure 4: Compositor operating modes.

Several features distinguish the PixelFlow EMC
previous designs:

from our

.

.

●

✎

✎

Higher clock s~eed. The new EMC, fabricated on a 0.8Lr
CMOS process: operates at 66 MHz for image-generation
operations; its image-composition port transmits data at
132 MHz.

8-bit processors. The pixel processors, linear expression
evaluator, and memory bus for each pixel are eight bits
wide, rather than bit-serial. This increases the
performance for many operations by nearly a factor of
eight.

Fast multiply hardware. Pixel processors include
hardware support for multiplies, allowing 16-bit multiplies
to be performed in less than a microsecond—a total of 19
billion multiplies per second for a 128x128-pixel array.
This feature accelerates multiply-intensive shading
calculations.

2048+ bits per pixel. The memory design uses a I-
transistor dynamic memory cell [SPEC91 ], rather than the
6-transistor static memory cell used previously. Memory
per pixel can be increased to 2048 bits, plus two 256-bit
communication buffers.

Compositor and local-access ports. The PixelFlow
EMC- contains two communication ports, one for the
image-composition network, and one for communicating
with texture memory or a frame buffer. Each port
contains a 256-bit buffer of pixel memory that can be read
or written by the pixel ALU or decoupled from it during
port operation. The local-port connects to external texture
memory (on a shader board) or a VRAM fi-ame store (on a
frame-buffer board) through a custom datapath ASIC.

The IGC is a single custom ASIC which controls the rasterizer
array. It converts floating-point A, B, and C coefficients into byte-
serial, fixed-point form; it sequences EMC operations by
broadcasting data, control, and address information to the EMC
array; and it controls the compositor ports on the EMCS.

ALU Pixel
A,13,C Mlcro- Memory

Dakinput instruction Address

t

I EEIGZsli.

I c1Pixel /
PixelFlow EMC Compositor i

. .

4-M slice of Image
ComDosifionNetwork

Figure 5: Block diagram of PixelFlow Enhanced

Memory Chip.

Dafs

The lGC contains a subpixel offset register that allows the
multiple samples of the supersampling filter kernel to be
computed from the same set of rasterization commands, by
repeatedly reading these commands from VRAM memory. This
improves system performance when supersampling, since
additional samples are rasterized without increasing the load on
the geometry processor. As a result, a single i860XP geometry
processor can keep up with the rasterizer when supersampling
with 6 or more samples per pixel,

4.3 Shader

The shader (Figure 3b), like the renderer, contains a geometry
processor, rasterizer, and compositor. The shader’s geometry
processor is merely a control processor which passes shading
commands to the rastenzer. The rasterizer is used as a SIMD
shading processor, computing lighting and shading models for all
pixels in a region in parallel. The compositors are used to load
composite regions and unload fully-shaded pixels.

The local communication port of the EMCS is connected to
external memory that contains image-based textures (such as Mip-
maps). Multiple banks of texture memory, each holding an
identical copy of the texture data, are required to match the
performance of the shader to that of the image-composition
network. The shader supports general table-lookup operations, so
it can perform related functions such as bump mapping,
environment mapping, and image warping. The shader can be
loaded with an image, from which it computes a Mip-map that can
then be loaded into texture memory. These algorithms will be
described in a titure publication.

4,4 Frame Buffer

The frame buffer (Figure 3c) closely resembles the shader, but in
place of texture storage, it contains a separate double-buffered
VRAM frame buffer, The ffame buffer board is itself a complete,
fairly powerful, self-contained graphics system, since it also
contains the core elements (geometry processor and rastenzer).
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Figure 6: Composition network operations for a 4-
renderer, 2-shader system computing an image with 2-
sample-per-pixel antialiasing.

5 SOFTWARE

PixelFlow software consists of two parts: rendering software.
which transforms primitives and produces rasterizationlshading
commands for the rasterizer. and control software, which
sequences region-by-region operations. Both sets of software run
on the geometry processor of each system board.

Geometric transformations are performed using standard
algorithms. and rasterization and shading are performed using the
algorithms developed for Pixel-Planes 4 and 5 [FUCH85;
FUCH89],

The basic control algorithm to compute an image contains four

steps:

1)

2)

3)

4)

The geometry processor on each renderer transforms its
portion of the primitives and sorts them by 128x128-pixel
regions on the screen.

The rastcrizer computes pixel values for all primitives in a
region and for one sample of the antialiasing kernel.

When all renderers have finished step (2), the region is
composite over the image-composition network and
deposited into one of the shaders.

Steps (2) and (3) are repeated for each sample and for each
rcg~on on the screen. These steps can be pipelined (i.e.
one rcgionlsample is rasterized while the previous one is
composite).

Transfers over the image-composition network are the only
operations that require tight synchronization between boards. A
hardware token chain determines when all of the boards are ready
to begin efich transfer. Figure 6 shows the sequence of

composition network operations in a 4-renderer, 2-shader system
, ,amplc-pcr.pixelantialiasing.computing an image with .-s

Tbe large amount of pixel memory on the EMCS allows several
regions of pixels to be buffered before they are composite. This
is important for load balancing, since different numbers of
primitives may fall into a given region on different renderers (see
Section 6). To take full advantage of this buffering, regions are
processed in a scattered pattern, since neighboring regions tend to
have similar over- or underloads; successive samples of a given
region are never handled sequentially.

6 PERFORMANCE

The performance of a Pixel Flow system is governed by four basic
parameters:

.

●

✎

✎

Image-Composition Network bandwidtb. Gross
bandwidth = 256 bits ● 132 MHz = 33.8 GBits/sec. Net
bandwidth (assuming 10°0 synchronization ovdrhead) = 30
GBits/see,

Geometry processor performance. A single i860XP
microprocessor can process approximately I 50,000
triangles per second, independent of the number of
samples per pixel.

Rasterizer performance. A 64-EMC rasterizer can
process approximately 1.4 million Gouraud-shaded
triangles per second and 0.8 million Phong-shaded,
textured triangles per second, but this rate must be divided
by the number of samples per pixel.

Shader Performance. A single shader can Phong-shade
and compute procedural textur~s for approximately-l 0,000
128x 128-pixel regions per second. It can compute Mip-
map textures for approximately 3,700 regions per second.

The following expression can be used to estimate system
performance given the performance above:

‘v ~,,g,,,,,,

T.
[

= ~ t?lax ‘rOld ,’ ‘cmnP ‘ ‘shade 1 ‘V,Yha&r.y
~rame / );=I

where

T/.e,ldi =

TCOrrTl) =

Tvhu(je =

max( TgC>~,nli.Tra,Yri)(the rendering time for
R(giotll )

compositing time for a region ( 1282 pixels ● bits
per pixel 30 GBitslsec)

time to shade a region (approx. 270 ysec for
Phong shading and texturing)

If antialiasing is done, the summation is over all regions and over
all antialiasing samples.

This equation says that the frame time is given by the sum of the
times required to compute each region. and that each region time
is given by the maximum of the geometry proeessin~rasterization
time, image composition time, and shading time for the region.
Both Tc.c)n!pand ~$hadc, are constants, for a given rendering algo-
rithm. Tre17~ivaries depending on the number of renderers, the
number of prlmltlvcs. and their distribution over the renderers and
over the screen.
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Tcomp provides an UPPer bound on frame rate> as shown in Fi~re
7 for several rendering algorithms and system configurations.

Bits per pixel Samples Screen Frame/see

64 (Gouraud) 16 1280x I024 22

96 (Phong) 1 1280x 1024 >100

96 (Phong) 5 1280x I024 48

192 (Phong, textured) 5 128OX1O24 24

192 (Phong, textured) 16 640X5 12 29

Figure 7: Peak performance dictated by composition-
network bandwidth under varying conditions.

Actual system performance can be lower than predicted by this
equation because of several factors: First, primitives may cross
region boundaries and require processing in multiple regions.
This increases the rasterization load by approximately 20’%. for
100-pixel polygons. Second, primitives may clump in different
screen regions on different renderers. This increases the
rasterization time on certain renderers relative to others. The extra
buffering on the EMCS reduces this effect, but does not eliminate
it entirely. For severely clumped images, system performance can
be reduced from 20-60%. Finally, rasterization and compositing
are pipelined, so that one region is rasterized while the previous
one is composite. This requires a few idle region times at the
start and end of a frame (app~oximately 5– 10% o~erhead).

L

Polio ( 7s)

pities ( 1s

Poho (P$).-

~
/.. -

.#- Spa_c@(69)_,; 9/------- ------
... . -

/ /-
*,: .0 ... ... .

12 4 8 16 32 64 128

Number of Renderera

Figure 8: Simulated performance for various system
configurations.

Because these factors are scene dependent, they cannot be
modelled analytically. We have written a timing simulator for
PixelFlow that models these effects and have used it to compute
performance for a variety of images and rendering algorithms.
Figure 8 shows simulated performance for the four sample

databases shown in Figure 9. Simulations were run with 1 to 128
renderers and 4 shaders. Two curves are shown for each dataset:
one for a supersampled image with 6 samples per pixel (6s), and
one for a “fully-aliases” image with one sample per pixel (1s).
For the 6s case, we assumed the geometry processor is a 66-MHz
i860XP; for the is case, we assumed that a sufficiently powerful
geometry processor is availabie so that renderer performance is
rasterizer-iimited.

These simuiated results show the behavior predicted by the
equation above. System performance scales linearly with the
number of renderers until a knee is reached, where compositing
time dominates rasterization time (shading time is not a limiting
factor for any of these datasets). The space station dataset, in
particular, is very smali (3,784 primitives), so this knee is reached
at only 4 renderers. Only the polio dataset is large enough to
show iinear scalability to 128 renderers.

7 CONCLUSIONS

We have introduced PixelFlow, a new architecture for high-speed
image generation, and one of the first to use reai-time image
composition with multi-primitive renderers. Its combination of
million-triangle-per-second renderers and high-performance
compositing network give it linearly scalable performance to tens
of millions of polygons per second— far above the performance
of current systems.

All of the components of PixelFlow are programmable: its
geometry processors are conventional microprocessors; its
rasterizers are programmable SIMD processors; its image-
composition network is a general pixel datapath. In addition to
standard rendering algorithms, such as Gouraud- and Phong-
shading of polygonal primitives, PixeiFlow can render primitives
such as spheres, quadrics, and voiume data with high-quality
shading methods, such as local light sources, procedural and
image-based texturing, and environment mapping.

A PixelFiow system can be configured in a variety of ways.
Hosted by a single workstation, it can render PHIGS-type
retained-mode datasets. Coupled to a parallel supercomputer, it
can serve as a visualization subsystem for immediate-mode
rendering. Using PixeiFlow silicon, a million-triangie-per-second
rasterizer could be built on a small circuit board.

At the time this paper was written, logic design for the custom
chips was nearly complete. We anticipate completing circuit
design for the system by mid-1993 and competing a prototype
system by late 1993.
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(a) Space  station and space  shuttle,  Phong- (b) Radiosity-shaded room interior with
shaded,  6,549  triangles  (Don Eyles, Charles procedural  textures,  53,514 triangles (F.P.
Stark  Draper Labs). Brooks,  A. Varshney, UNC).

(c) Procedurally generated  pipes model,
Phong-shaded, 137,747  triangles (Lee
Westover,  Sun Microsystems).

(d) Poliovirus molecule,  Phong-shaded,
389,819 triangles (J. Hogle, M. Chow,  D.
Filman,  Scripps  Institute).

Figure  9: Four sample datasets used  for timing simulation.
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