Graphics Hardware (2002)
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

Shader Metaprogramming

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa

Computer Graphics Lab, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada

Abstract

Modern graphics accelerators have embedded programmable components in the form of vertex and fragment shad-
ing units. Current APIs permit specification of the programs for these components using an assembly-language
level interface. Compilers for high-level shading languages are available but these read in an external string
specification, which can be inconvenient.

It is possible, using standard C++, to define a high-level shading language directly in the API. Such a language
can be nearly indistinguishable from a special-purpose shading language, yet permits more direct interaction
with the specification of textures and parameters, simplifies implementation, and enables on-the-fly generation,
manipulation, and specialization of shader programs. A shading language built into the API also permits the
lifting of C++ host language type, modularity, and scoping constructs into the shading language without any
additional implementation effort.

Categories and Subject Descriptgascording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; Color, shading, shadowing, and texture

1. Introduction selves can be simple, binding them to the application pro-
gram can be a nuisance. Many of the extensions to OpenGL
required to support shaders in UNC'’s PixelFlow system, for
instance, were concerned with named parameter declaration
and managemel#t20. 26 27, Second, due to limitations on the
implementation effort that can reasonably be expended, cus-
tom shading languages usually will not be as powerful as full
programming languages. They often may be missing impor-
tant features such as modularity and typing constructs useful
for organizing complex multipart shaders. Additional useful
features, such as shader specializ&tibave to be explicitly
provided for by the language and shader compiler.

Specialized shading languages have been available for
a long time in offline renderers, most prominently in
Rendermah10, Recently, real-time graphics accelerators
have been targeted with shading language comptéts?,

new techniques have been found to implement sophis-
ticated lighting models using a relatively small number
of programmable operatiols!3 141523 and vendors have
begun to implement and expose explicitly programmable
components?! in their latest accelerators. To date, the
programming model exposed in the APIs for these pro-
grammable components has been at the level of assembly
language, at best.However, proposals for OpenGL 2@l
DX925 hoth call for a high-level shading language to be an
integral part of the API, replacing or superceding previously
hard-coded functionality.

It is possible instead to use the features of standard C++
to define a high-level shading language directly in the API,
without once having to resort to the use of string manipula-
tion. Basically, sequences of calls into an API can interpreted

Most shading languages defined so far place the shaderas a sequence of words in a “language”. Parsing of the API
program in a string or file and then implement a relatively token sequence may be necessary, however, to support the
traditional assembler or compiler to convert this specifica- expressions and structured control constucts used in modern
tion to a machine language representation. Using a sepa- high-level languages. Fortunately, with appropriate syntatic
rate language has some advantages—a “little language” cansugaring provided by operator overloading, the ordinary se-
be more tightly focusé@ 16—but using a custom language mantics of C++ can be use to automatically parse arithmetic
has problems too. First, although the shader programs them-expressions during application program compilation. Since

(© The Eurographics Association 2002.

S7

McCool, Qin, and Popa / Shader Metaprogramming

Figure 1: Some images generated by shader metaprograms. From left to right: Phong lighting model, anisotropic satin BRDF
via homomorphic factorization, marble and wood implemented using different attributes with the parameterized noise shader,
and finally the Julia set (just the texture, no lighting).

the parser in the API does not need to deal with expressions, plication of “self-modifying code”, which could have major
the remaining parsing job is simplified. Preprocessor macros performance benefits (with a suitable optimizing backend)
can also be defined so “keywords” can be used in place of for graphics and multimedia applicatiéns

API calls to specify control construct tokens. The result is

a high-level embedded shading language which is nearly in- ~ With a metaprogramming API, precompiled shader pro-
distinguishable from a custom shading language. However, 9rams could still be used in the traditional manner simply by
since this language is embedded in the application language, COmpiling and running a C++ program that defines an appro-
more direct interaction with the specification of textures, at- Priate shader and dumps a compiled binary representation of
tributes, and parameters is possible, and shader programs carit to a file. This approach could be used to invoke shaders
be symbolically manipulated to implement “advanced” fea- When using an application language other than C++, such

tures like specializatichin a natural way.

We call this approach metaprogrammind\Pl. Metapro-
gramming is the use of one program to generate or manipu-

late another. Metaprogramming approaches are in fact quite

common. Operating systems, compilers, assemblers, link-

ers, and loaders are all metaprograms. Template metapro-

gramming uses the rewriting semantics of C++ templates
as a simple functional language to generate more efficient
numerical C++ cod@ (this, however, isnot what we do).
Currying, or the partial specification of the parameters of a
function generating a new function with fewer parameters,
is a fundamental capability in many functional languages.
It is usually implemented using deferred execution but can
also be implemented using dynamic incremental compila-
tion of specialized functiod8. This leads to more efficient
execution if the curried function is used enough to amor-
tize the cost of compilation. Metaprogramming has also been
used extensively, especially in the functional and logic pro-
gramming language community, to build specialized embed-
ded languagésMetaprogramming has been used to dynam-
ically specify programs for practical programmable embed-
ded systems, in particular for programming protocol han-
dlers in network systerfis Specialized C compilers have
even been implemented that explicitly support an operator
algebra for metaprogrammiffy Our approach does not re-
quire specialized extensions to the compiler, just exploita-
tion of standard C++ features and an appropriate library, but
it could support a similar algebra for manipulating shaders.
Although we do not consider it further here, the metapro-
gramming API approach could be used to program other

embedded systems, for instance, the DSP engines on soundas “smADD(r,a,b)

as Java or Fortran. A C++ compiler and some wrapper code
would simply replace the specialized separate shader com-
piler. However, parameter naming and binding are simplified
if the application program and the shader program are com-
piled together, since objects defining named parameters and
textures can be accessed by the shader definition directly.
Compilation of shader programs can be very fast, even with
optimization, and doing it at runtime lets the program adapt
to variable hardware support (important in a plug-and-play
context). In the following, therefore, we will assume that the
application program is also written in C++ and that shader
compilation happens on the fly.

We have implemented a high-level shading language/API
of this nature on top of our “prototype graphics accelera-
tor”, SMASH?24, SMASH has an OpenGL-like low-level C-
compatible API, whose calls are indicated with the prefix
sm. Calls and types for the high-level C++ shader library
(which is intended ultimately to be independent of SMASH)
are indicated with the prefixesh andSh, respectively.

The shading unit simulator for SMASH executes a
machine language similar to that specified for DX9 or
NVIDIA's vertex shaders, but with some straightforward ex-
tensions to support noise functions and conditional branch-
ing, features we expect to see in future generations of hard-
ware. The most recent version (0.5) of SMASH's low-level
shader API, which the high-level shader API “compiles to”,
is function call-based in the style of ATI's OpenGL ver-
tex shader extensiohsin the SMASH 0.5 API, each as-
sembly language instruction is specified using a call such
" and 4-tuple registers are allocated in

cards or printer and display engines. It could also be used to turn using explicit API calls. However, in this document, we

implement host-side metaprogramming and a structured ap-

58

focus on the C++ shader library.

(© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

In Section 2 we describe how our parser generates and structs, the shading language can be extended with
manages a parse tree from the shader program describedshader library calls that embed tokens for control key-
in the API. Once this is done, code generation proceeds words in the shader statement sequerstdF(cond),
essentially as in other shading language compilers target- ShWHILE(cond), shENDIF() , etc. Complex state-
ting graphics accelerators (register allocation, optimization, ments are received by the APl as a sequence of such
etc.) so we do not go into great detail for this phase. Sec- calls/tokens. For instance, a WHILE statement would be pre-
tion 3 describes how named attributes and unnamed param-sented to the APl as a WHILE token (represented by an
eters are managed and bound to shader invocations. SecshWHILE(cond) function call; note the parameter, which
tion 4 describes in more detail our testbed, whose streaming- refers to a parse tree for the condition expression), a se-
packet architecture makes possible the simple but flexible quence of other statements, and a matching ENDWHILE to-
parameter-binding mechanism we use. Section 5 demon- ken. Use of these constructs can be wrapped in macros to
strates the expressive power of our shading language/AP| by make the syntax slightly cleaner (i.e. to hide semicolons and
working through a number of examples. Using these exam- function call parenthesis):
ples, we show how modularity, scope, and control constructs

T X i A A #define SH_IF(cond) shiF(cond);

in the application program can be “lifted” via metaprogram- #define SH_ELSEIF(cond) ShELSEIF(cond);

ming into the shading language. #define SH_ELSE ShELSE();
#define SH_ENDIF ShENDIF();
#define SH_WHILE(cond) shWHILE(cond);
#define SH_ENDWHILE ShENDWHILE();

2. Parsing #define SH_DO shDO();
#define SH_UNTIL(cond) shUNTIL(cond);

String based shading languages need a separate parsing stefjdefine SH_FOR(nit.cond,inc) - shFOR(init,cond,inc);

. #efine SH_ENDFOR ShENDFOR();
usually based on an LR grammar parser-compiler such as
YACC or Bison, to convert the syntax of the shader program We can also make the declarations of shaders themselves
to a parse tree. However, using a metaprogramming API, somewhat cleaner:
t_he Shader_p_rOgt_‘am I.S Spe(_:lfled usmg a_sequence of func-#define SH_BEGIN_SHADER(level) shBeginShader(level);
tion calls originating directly in the application program. The #define SH_END_SHADER shEndShader();
API then interprets this sequence of calls as a set of sym-
bolic tokens to be used to generate a parse tree. Once built,
a parse tree can in turn be compiled into machine language,

or calls to a lower-level API to generate machine language, c) "
ward recursive-descent parser. This parser will traverse the

by an on-the-fly compiler backend in the API driver library. !
Expressions in a shading language can be parsed and type_buffered token sequence when the shader program is com-

checked at the application program’s compile time using op- plete, generating afgll parse tree internally. Code generation
erator overloading. To do this, overloaded operator functions Can then take place in the usual way.

are defined that construct symbolic parse trees for the ex- Although true conditional execution and looping are not
pressions rather than executing computations directly. The yet available in any commercial real-time shading system,
“variables” in the shader are in fact smart reference-counting sych control constructs can theoretically be implemented ef-
pointers to nodes in directed acyclic graphs representing ex- ficiently in the context of a long texture lookup latency with

pressions symbolically. Each operator function allocates a ejther a recirculating pipeline or a multithreaded shading
new node and uses smart pointers to refer to its children. processor.

The reference-counting smart pointers implement a simple

garbage collection scheme which in this case is adequate to

avoid memory leaks (expressions cannot be given that re- 3. Parameters and Attributes

sult in parse trees containing cycles). Compiling expressions
in this way eliminates a large chunk of the grammar for the .
shading language. The API gets passed a complete parse tredd Parameters to shaders. For semi-constant parameters,
for expressions directly, and does not have to build it itself the use _Of named_ parameters yvhose val_ues can be_ chgnged
by parsing a flat sequence of tokens. Each assignment in se-dt any time and in any orc_jer Is convenient. We W'” give
qguence is recorded as a statement in the shader program an&hese parameters the special namathgFesand will re-
buffered until the entire sequence of commands has been re-S€rVe the V\{orqbarametersfor _/alues specified pe_r-vertex. A
ceived. When the shader program is complete, code gener_named attrlbu_te is created simply by constructing an object
ation and optimization is performed by the driver, resulting of an appropriate type:

internally in machine language which is prepared for down- // create named transformation attributes

loading to the specified shader unit when the shader program §E§§ﬂ33:2@?532?2&m;fﬁi',fé‘ifve

IS bound. /I create named light attributes

. . ShAttributeColor3f light_color;
Eventually, when shading units support control con- shatibutePointsf light_position;

Since expression parsing (and type checking) is done by
C++ at the compile time of the host language, all that is
needed to parse structured control constructs is a straightfor-

It is convenient to support two different techniques for pass-

(© The Eurographics Association 2002.

59

McCool, Qin, and Popa / Shader Metaprogramming

The constructor of these classes makes appropriate calls intoshort integers, and floats, the current parameter pointer is al-
the API to allocate state for these attributes, and the destruc- ways rounded up to the next alignment boundary. However,
tor makes calls to deallocate this state. Operators overloadedparameters are always unpacked into single-precision floats
on these classes are used in the shader definition to accessn the shading units. Support for variable-precision param-
these values. When a shader definition uses such an attributeeters just reduces bandwidth requirements. Declarations in-
the compiler notes this fact and arranges for the current value side every shader definition provide the necessary informa-
of each such attribute to be bound to a constant register in tion to enable the system to unpack input parameters and
the shader unit when the shader program is loaded. This is pack output parameters.

done automatically, so all the user has to do is declare the

attribute, use it in a shader, and then set the value appropri- : . .
- . . . bound that any texture objects it uses are also bound. Like
ately at runtime. The assignment operator for attributes is) . .)
attributes, a texture just has to be mentioned in a shader. No

overloaded to generate an error when used inside a shader S } .
L~ other declaration is necessary: the API will allocate texture
definition (attributes are read-only in shaders) and to modify = . .
.) . o . units and ensure the texture is loaded when needed. The C++
the attribute’s value outside a shader definition. Attributes of

. ; level of the API also uses classes to wrap low-level texture
all types can be associated with stacks for save/restore. . : . o
objects. Operator overloading f§if is used so that within

For parameters whose values change at every vertex, wea shader definition a texture lookup can be specified as if
have chosen to make the order of specification of these pa- it were an array access. In a sense, textures are just “grid-

rameters important. Parameters can be considered equiva-valued attributes” with support for interpolation and filter-
lent to unnamed arguments used in function calls in C/C++, ing.

while attributes are like external variables. Note that it is not

considered an especial hardship to remember the order of

function call parameters in ordinary C/C++ functions. Also, 4 Testbed

since we can redefine shaders at any time, we can always useQur high-level shader API is built on top of SMASH, a
metaprogramming to reorganize the order of vertex parame- testbed we have developed to experiment with possible
ters in shaders into whatever order is convenient. next-generation graphics hardware features and their im-

In immediate mode, a sequence of generic multidimen- plementation. This system is modular, and is built around
sional parameter calls simply adds parameters to a packet, modules communicating over point-to-point channels us-
which is sent off as a vertex packet when the vertex call is ing sequences of self-identifying variable-length packets.
made (after adding the last few parameters given in the ver- Pipelines can be built with any number of shading proces-
tex call itself). This is actually supported directly in the low- SOrs or other types of modules (such as rasterizers or dis-
level API. For instance, suppose we want to pass a tangemplacement units) chained together in sequence or in parallel.
vector, a normal, and a texture coordinate to a vertex shader The API has to deal with the fact that any given SMASH sys-
at the vertices of a single triangle. In immediate mode we tem might have a variable number of shading units, and that

Finally, the driver must also ensure that when a shader is

would use calls of the form different shading units might have slightly different capa-

smBegin(SM_TRIANGLES); bilities (for instance, vertex shaders might not have texture
smVector3fv(tangent[0]); units, and fragment shaders may have a limited number of
smNormal3fv(normal0]); registers and operations). These restrictions are noted when
smTexCoord2fv(texcoord[0]); . . .
smVertex3v(position[O]); a system is built and the shader compiler adapts to them.
smVector3fv(tangent[1]); The API currently identifies shaders by pipeline depth. In
smNormal3fv(normal[]); the usual case of a vertex shader and a fragment shader, the

smTexCoord2fv(texcoord[1]);

smVertexafv(positionfi]) vertex shader has depth 0 and the fragment shader has depth

1. When a shader program is downloaded, the packet car-

smvector3fv(tangent[2]); rying the program information has a counter. If this counter

smNormal3fv(normal[2]); . . .

smTexCoord2fu(texcoord[2]); is non-zero, it is decrement_ed and the _packet is forward_ed

smVertex3fv(position[2]); to the next unit in the pipeline. Otherwise, the program is
smEnd();

loaded and the packet absorbed. Modules in the pipeline
The types given above are optional, and are checked at run-that do not understand a certain packet type are also sup-
time only in a special “debugging mode”. High-performance posed to forward such packets without change. A flag in
runtime mode, which is invoked by linking to a different ver- each packet indicates whether or not packets should be
sion of the API library, simplyassumeshe types match but broadcast over parallel streams or not; shader programs are
will give undefined results if they do not. The generic pa- typically broadcast. In this fashion shader programs can
rameter callsmParam* can be used in place gimVec- be sent to any shader unit in the pipe. Sequences of to-
tor* , smNormal* , etc. Vertex and parameter arrays are kens defining a shader program are defined using a se-
of course also supported for greater efficiency. When pa- quence of API calls inside a matched pairstiBegin-
rameters of different lengths are mixed, for instance, bytes, Shader(shaderlevel) andshEndShader() calls.

(© The Eurographics Association 2002.

60

McCool, Qin, and Popa / Shader Metaprogramming

Once defined, a shader can be loaded usingsktigind-
Shader(shaderobject) call. Normally we will wrap
these calls in macros to clean up the syntax slightly.

We will implement this using per-pixel computation of the
specular lobe and texture mappingkgfandks.

. .) 5.1.1. Vertex Shader
When a program is running on a shader unit, vertex and

fragment packets are rewritten by that unit. The system This shader computes the model-view transformation of po-
supports packets of length up to 255 words, not counting sition and normal, the projective transformation of view-

a header which gives the type and length of each packet. SPace position into device space, the halfvector, and the ir-
Each word is 32 bits in length, so shaders can have up to radiance. These values will be ratiolinearly interpolated by
255 Sing|e_precision inputs and Outputs_ Type declarations the rasterizer and the interpolated values will be assigned
in shader parameter declaration can be used to implicitly de- to the fragments it generates. The rasterizer expects the last
fine packing and unpacking of shorter parameters to con- Parameter in each packet to be a device-space 4-component

serve bandwidth when this full precision is not necessary.
Other units, such as the rasterizer and compositing module,
also need to have packets formatted in a certain way to be
meaningful; in particular, the rasterizer needs the position of
avertex in a certain place in the packet (at the end, consisent
with the order of parameter and vertex calls). These units
also operate by packet rewriting; for instance, a rasterizer

parses sequences of vertex packets according to the current

geometry mode, reconstructs triangles from them, and con-
verts them into streams of fragment packets.

5. Examples

The following sections present example shaders that, while
useful in their own right, are each meant to show some useful
aspect of the metaprogramming APl and shading language
we propose. In Section 5.1 we implement the Blinn-Phong
lighting model, then modify it to show how the modularity
and scoping constructs of the host language can be “lifted”
into the shading language. Section 5.2 shows an alternative
method for building lighting models, but also combines sev-
eral materials using material mapping. We use this exam-
ple to demonstrate the control constructs of the shading lan-
guage, and also show how the control constructs of the host
language can be lifted into the shading language if neces-
sary. Section 5.3 demonstrates the use of the noise function
to implement wood and marble shaders. Noise can be either
provided by the underlying shading system or implemented
by the compiler using precomputed textures, without change
to the high-level shader (although implementing noise using
textures will, of course, use up texture units). Section 5.4
demonstrates a complex computation using a loop: the Julia
set fractal.

5.1. Modified Phong Lighting Model
Consider the modified Blinn-Phong lighting motel
Lo = (ka+ks(f-R)%) max(©, (A-1)1,/r?

whereV is the normalized view vectof,is the normalized
light vector,h = norm(¢ + 1) is the normalized half vectof,
is the normalized surface normdl,s the light source inten-
sity, ry is the distance to light source, akgl, ks, andq are
parameters of the lighting model.

(© The Eurographics Association 2002.

61

homogeneous point.

ShShader phong0 = SH_BEGIN_SHADER(O) {
/I declare input vertex parameters
/I unpacked in order given
ShinputTexCoord2f ui;
ShinputNormal3f nm;
ShinputPoint3f pm;

/I texture coords
/I normal vector (MCS)
/I position (MCS)

/I declare outputs vertex parameters
/I packed in order given
ShOutputVector3f hv;
ShOutputTexCoord2f uo(ui);
ShOutputNormal3f nv;
ShOutputColor3f ec;
ShOutputPoint4f pd;

I
n
n
I
n

half-vector (VCS)
texture coords
normal (VCS)
irradiance
position (HDCS)

/I compute VCS position
ShRegPoint3f pv = modelview
/I compute DCS position
pd = perspective * pv;
/I compute normalized VCS normal
nv = normalize(nm * inverse(modelview));
/I compute normalized VCS light vector
ShRegVector3f v = light_position
ShRegParamilf rsq = 1.0/(lvv|lv);
Iw *= sqrt(rsq);
/I compute irradiance
ShRegParamif ct = max(0,(nv|lvwv));
ec = light_color * rsq * ct;
/I compute normalized VCS view vector
ShRegVector3f vww = -normalize(ShVector3f(pv));
/I compute normalized VCS half vector
hv = normalize(lvv + vwv);

} SH_END_SHADER;

* pm;

- pv;

We do not need to provide prefixes for the utility functions

normalize ,sqrt , etc. since they are distinguished by the

type of their arguments. In our examples we will also high-

light, using boldface, the use of externally declared attribute
and texture objects.

The typesShinput* and ShOutput* are classes
whose constructors call allocation functions in the API. The
order in which these constructors are called provides the nec-
essary information to the API on the order in which these
values should be unpacked from input packets and packed
into output packets. Temporary registers can also be declared
explictly as shown, although of course the compiler will de-
clare more temporary registers internally in order to imple-
ment expression evaluation, and will optimize register allo-
cation as well. These “register” declarations, therefore, are
really just smart pointers to expression parse trees.

SMASH permits allocation of named transformation ma-
trices in the same manner as other attributes. Matrices come

McCool, Qin, and Popa / Shader Metaprogramming

/I texture coordinates

/I normal (VCS)

/I irradiance

/I fragment depth (DCS)

/I fragment 2D position (DCS)

in two varieties, representing affine transformations and pro-
jective transformations. When accessing a matrix value, the
matrix can be bound either as a transpose, inverse, transpose
inverse, adjoint, or transpose adjoint. The adjoint is useful as
it is equivalent to the inverse within a scale factor. However,
we do not need to declare these bindings explicitly since sim-
ply using a object representing a nhamed attribute or matrix
stack is enough to bind it to the shader and for the API to
arrange for that parameter to be sent to the shader processor
when updated. The symbolic functiotranspose , in-

verse , adjoint , etc. cause the appropriate version of the
matrix to be bound to the shader. Note that the inverse is
not computed at the point of use of the matrix, it is com-
puted at the point of matrix specification. This is actually
just a special case of constant folding: when expressions in- Since it is not needed for bit manipulation, we use the oper-
volving only constants and attributes are used inside shaders,ator “| " to indicate the inner (dot) product between vectors
hidden attributes are automatically created representing the rather than bitwise OR. We also use the operagifor the
results. It is this result that is downloaded to the shader, cross product, which has the advantage that the triple prod-
not the original attribute. Whenever one of the attributes in- uct can be easily defined. However, parentheses should be
volved in such an expression is modified, the host updates always be used around dot and cross products when they
all such “dependent” attributes. Note that this applies only are used with other operators due to the low precendence of
to attribute expressions givémsideshader definitions. Out- these operators.

side shader definitions, expressions involving attributes are

ShinputTexCoord2f u;
ShinputNormal3f nv;
ShinputColor3f ec;
ShinputParamlf pdz;
ShinputParam2us pdxy;

/I declare output fragment parameters
/I packed in order given
ShOutputColor3f fc;

ShOutputParamif fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

/I fragment color
/I fragment depth
/I fragment 2D position

/I compute texture-mapped Blinn-Phong model
fc = phong_kd [u] + phong_ks [u]
* pow((normalize(hv)|normalize(nv)),
/I multiply lighting model by irradiance
fc *= ec;
} SH_END_SHADER;

phong_exp);

evaluated immediately and do not result in the creation of
hidden dependent attributes.

5.1.2. Fragment Shader

This shader completes the Blinn-Phong lighting model ex-
ample by computing the specular lobe and adding it to the
diffuse lobe. Both reflection modes are modulated by spec-
ular and diffuse colors that come from texture maps us-
ing the previously declared texture objeptsong_kd and

phong_ks . In general, the notatiotju], wheret is a tex-

ture object, will indicate a filtered and interpolated texture
lookup, not just a simple array access (although, if the tex-

Matrix multiplications are indicated with the" opera-
tor. In matrix-vector multiplications if a vector appears on
the right of the product it is interpreted as a column and if on
the left as a row. For the most part this eliminates the need
to explicitly specify transposes. Since we have chosen to use
“*" to generally represent matrix multiplication and not the
more abstract operation of typed transformation application,
to transform a normal you have to explicitly specify the use
of the inverse and use the normal as a row vector. Use of the
“*” operator on a pair of tuples of any type results in pair-
wise multiplication. It might be more consistent to have this
operator mean dot product when applied between vectors,
but we felt that a separate operator for the dot product was

ture object access modes are set to nearest-neighbor interpoclearer. Use of *” between a 1D scalar value and ani

lation without MIP-mapping, it can be made equivalent to a
simple array access).

tuple results in scalar multiplication.

5.1.3. Modularity

The rasterizer automatically converts 4D homogenous de-
vice space points (specifying the positions of vertices) to The Blinn-Phong model is an example of a shader program
normalized 3D device space points (specifying the posi- which would make a useful subprogram in other places. We
tion of each fragment). We have chosen to place the 32-bit would expect that many shaders in practice will be a com-

floating-point fragment depthfirst in the output packet to
automatically result in the correct packing and alignment for
x andy, making it easier for the compositor module follow-
ing the fragment shader to find these values.

bination of several standard parts. We would like to have a
subprogram capability in order to be able to reuse code con-
veniently. The other reason for having a subprogram capa-
bility would be to save code space.

The Phong exponent is specified here as a named attribute. Even without a subprogram capability in the shader unit
Ideally, we would antialias this lighting model by clamping itself, we can use the modularity constructs of the host lan-
the exponent as a function of distance and curvéfuret guage to better organize our shaders for reuse. For instance,

we have not implemented this functionality in this shader to we can define a variation on the above Blinn-Phong shader

keep the example simple. as follows:
ShShader phongl = SH_BEGIN_SHADER(1) { ShColor3f
/I declare input fragment parameters phong (
/I unpacked in order given ShVector3f hv,
ShinputVector3f hy; /I half-vector (VCS) ShVector3f nv,

(© The Eurographics Association 2002.

62

McCool, Qin, and Popa / Shader Metaprogramming

ShColor3f kd,
ShColor3f ks,
ShParamif exp
) {
ShRegParamif hn = (normalize(hv)|normalize(nv));
return kd + ks * pow(hn,exp);
}
class Phong {
private:
ShShader phong0, phongl;
public:
ShTexture2DColor3f kd;
ShAttributeColor3f ks;
Phong (
double exp
) o
ShShader phong0 = SH_BEGIN_SHADER(O) {
ShinputTexCoord2f ui;
ShinputNormal3f nm;
ShinputPoint3f pm;

ShOutputVector3f hv;
ShOutputTexCoord2f uo(ui);
ShOutputNormal3f nv;
ShOutputColor3f ec;
ShOutputPoint4f pd;

ShRegPoint3f pv = modelview * pm;

pd = perspective * pv;

nv = normalize(nm * inverse(modelview));
ShRegVector3f Ivw = light_position - pv;

ShRegParamif rsq = 1.0/(lvv|lvv);
v *= sqrt(rsq);
ShRegParamif ct = max(0,(nv|lw));
ec = light_color * rsq * ct;
ShRegVector3f vwv = -normalize(ShVector3f(pv));
hv = normalize(lvv + vwv);

} SH_END_SHADER;

phongl = SH_BEGIN_SHADER(1) {
ShinputVector3f hv;
ShinputTexCoord2f u;
ShinputNormal3f nv;
ShinputColor3f ec;
ShinputParamlf pdz;
ShinputParam2us pdxy;

ShOutputColor3f fc;
ShOutputParamif fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

fc = ec * phong(hv,nv,

} SH_END_SHADER;

}

void

bind () {
ShBindShader(phong0);
ShBindShader(phong1);

}

kd[u], ks ,exp);

h

Two kinds of modularity are used here. First, the C function
phong is used to define the basic Blinn-Phong model. This
function has arguments which are smart pointers to expres-

sions and returns a smart pointer to an expression. Note that

multistage shader in a class. Construction of a instance of
this class defines the shaders; destruction deallocates them.
We don't need explicit deallocation of the subshaders since
deallocation ofphong0 and phongl performs that task.

We have also defined a single methdihd , to load the
shader into all shader units, and have also used the class to
organize the attributes and textures for this shader. We have
also modified the shader somewhat, using a texture only for
kd, an attribute forks, and a definition-time constant for
exp. The use ofexp is especially interesting: basically,
each instance of thBhong class is a specialized shader,
with a different exponent compiled in for each instance (note
that automatic conversion is involved here). But we could
just as easily definedxp as an attributeks as a texture,

and so forth, without changing the definitionmtiong . In
short, by embedding the shader definition language in the
host language we have made all the modularity constructs
of the host language available for organizing and structuring
shaders.

Later on, we plan to support operator overloading(®f™
on shader objects to support true subroutines (using an ad-
ditional SH_RETURNoken to define the return value, but
the same syntax as other shaders for defining input and out-
put parameters). The interesting thing about this is that the
shaders that use these subprograms do not have to know if
the subshader they are “calling” is a application-language
“macro”, as above, or a true subprogram on the shading unit:
the syntax would be exactly the same.

5.2. Separable BRDFs and Material Mapping

A bidirectional reflection distribution functiof is in gen-
eral a 4D function that relates the differential incoming irra-
diance to the differential outgoing radiance.

Lo(X; V)

_ / f(x;0 — 1) max(0,A - N L (x:1) .

Q
Relative to a point source, which would appear as an impulse
function in the above integral, the BRDF can be used as a
lighting model:

Lo(x; V)

f (0 —T;x) max0,A-N)1,/r2.

In general, it is impractical to tabulate a general BRDF. A
4D texture lookup would be required. Fortunately, it is pos-
sible to approximate BRDFs by factorization. In particular,
a numerical technique called homomorphic factorizéfon
can be used to find a separable approximation to any shift-
invariant BRDF:

the classes used to declare parameter and return types in this

function are the common superclasses of both the “attribute”

and “register” classes, and these classes also support auto

matic conversion from doubles and integers. This function
can now be used in many different shaders. In fact, this is
preciselyhow many “built-in” functions, such asormal-

ize ,sqgrt , and even the expression operators, are defined.

Secondly, we have wrapped the definition of a complete

(© The Eurographics Association 2002.

63

fn(¥ 1) = pm(¥)am(h) pm()

In this factorization, we have chosen to factor the BRDF into
terms dependent directly on incoming light directioout-
going view direction?, and half vector directiof, all ex-
pressed relative to the local surface frame. Other parameter-
izations are possible but this one seems to work well in many
circumstances and is easy to compute.

McCool, Qin, and Popa / Shader Metaprogramming

To model the dependence of the reflectance on surface po-to implement this. In fact, the API does not even see the
sition, we can sum over several BRDFs, using a texture map loop, only the calls it generates. We also use a shader spe-
to modulate each BRDF. We call thisaterial mapping cialization conditional that selects between cube maps and
parabolic maps using introspection. If the platform supports
them, we would want to use cube maps for the factors; how-
ever, parabolic maps will work on anything that supports 2D
texture mapping. The shader compiler and the shading sys-
tem do not have to support conditionals or a special mech-
anism for shader specialization, and in fact never even sees

f(uv 1) = Ztm u] fm(¥ 1)

] P[] dm[h] prfi].

= Ztm

When storing them in a fixed-point data format, we also
rescale the texture maps to maximize precision:

f(u;0 1) Z trt[u] Prn[¥] cim[A] P -

5.2.1. Vertex Shader

Here is a vertex shader to set up material mapping using a

separable BRDF decomposition for each material.

ShShader hf0 = SH_BEGIN_SHADER(0) {
/I declare input vertex parameters
/I unpacked in order given

ShinputTexCoord2f ui; /I texture coords
ShinputVector3f t1; /I primary tangent
ShinputVector3f t2; /I secondary tangent
ShinputPoint3f pm; /I position (MCS)

/I declare output vertex parameters
/I packed in order given

ShOutputVector3f vvs; /I view-vector (SCS)
ShOutputVector3f hvs; /I half-vector (SCS)
ShOutputVector3f Ivs; /I light-vector (SCS)
ShOutputTexCoord2f uo(ui); /I texture coords
ShOutputColor3f ec; /I irradiance
ShOutputPoint4f pd; /I position (HDCS)

/I compute VCS position
ShRegPoint3f pv = modelview
/I compute DCS position
pd = perspective * pv;
/I transform and normalize tangents
t1 = normalize(modelview * t1);
t2 = normalize(modelview * t2);
/I compute normal via a cross product
ShRegNormal3f nv = normalize(tl & t2);
/I compute normalized VCS light vector
ShRegVector3f Ivw = light_position - pv;
ShRegParamif rsq = 1.0/(lvv|lvv);
v *= sqrt(rsq);
/I compute irradiance
ShRegParamif ct = max(0,(nv|lvv));
ec = light_color *rsq * ct;
/I compute normalized VCS view vector
ShRegVector3f vwv = -normalize(ShVector3f(pv));
/I compute normalized VCS half vector
ShRegVector3f hv = norm(lvwv + vw);
/I project BRDF parameters onto SCS
ws = ShRegVector3f((vvv|tl),(vwv|t2),(vvv|nv));
hvs = ShRegVector3f((hwv|t1),(hvv|t2),(hvv|nv));
lvs = ShRegVector3f((lvv|t1),(lvv|t2),(Ivv|nv));

} SH_END_SHADER;

* pm;

5.2.2. Fragment Shader

The fragment shader completes the material mapping shaderHere the texture array objeckd_mat
by using an application program loop (running on the host,
not the shader unit) to generate an unrolled shader program.ization factor attribute arraigf_alpha

these conditionals, only the resulting API calls. Of course,
such conditionals can only depend on information that is
known at shader definition time.

ShTexCoord3f

parabolic (

ShVector3f v

) {
ShTexCoord3f u;

u(0) = (7.0/8.0)*v(0) + v(2) + 1;
u(l) = (7.0/8.0)*v(1) + v(2) + 1;
u(2) = 2.0%(v(2) + 1);

return u;

}

ShShader hfl = SH_BEGIN_SHADER(1) {
/I declare input fragment parameters
/I unpacked in order given

ShinputVector3f wv; /I view-vector (SCS)
ShinputVector3f hv; /I half-vector (SCS)
ShinputVector3f Iv; /I light-vector (SCS)
ShinputTexCoord2f u; /I texture coordinates
ShinputColor3f ec; /I irradiance
ShinputParam1f pdz; /I fragment depth (DCS)
ShinputParam2us pdxy; /I fragment position (DCS)

/I declare output fragment parameters
/I packed in order given
ShOutputColor3f fc;

ShOutputParam1f fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

/I fragment color
/I fragment depth
/I fragment position

/I intialize total reflectance
fc = ShColor3f(0.0,0.0,0.0);
/I sum up contribution from each material
for int m = 0; m < M; m++) {
ShRegColor3f fm;
if (hf_p [m].isa(SH_TEXTURE_2D)) {
/I is a parabolic map
fm = hf_p [m][parabolic(vv)]
* hf_p [m][parabolic(lv)];
} else {
/I is a cube map
fm = hf_p [m][w]
* hi_p [m][Iv];
}
if (hf_q [m].isa(SH_TEXTURE_2D)) {
/I is a parabolic map
fm *= hf_q [m][parabloic(hv)];
} else {
/I is a cube map
fm *= hf_qg [m][hv];
}

/I sum up weighted reflectance

fc += hf_mat [m][u] * hf_alpha [m] * fm;
}
/I multiply by irradiance
fc *= ec;

} SH_END_SHADER;

, hf_p , andhf_q
should have been previously defined, along with the normal-
. The introspection

A looping construct is not required in the shader program methodisa checks if the texture objectd_p andhf_q

(© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

are 2D texture maps. In this case, the shader assumes the

factors are stored as parabolic maps. We define the param-
eters as homogenous coordinates (when we make a lookup
in a 2D texture using a 3D coordinate the last coordinate

is automatically interpreted as a homogeneous coordinate).

} else {
fm *= hf_q [m][hv];
fc += hf_mat [m][u] *

} SH_ENDIF

hf_alpha [m] * fm;

}
/I multiply by irradiance

Otherwise, we assume that the texture maps are cube maps t * ec:

so unnormalized direction vectors can be used directly as
texture parameters.

Note also the use of th¢ operator on register tuple val-
ues to represent swizzling, component selection, and write
masking. This is implemented by defining a function that
adds a swizzle/mask object to the top of the expression
parse tree; this object is interpreted differently depending on
whether it appears on the left or right side of an expression.
It can have one to four integer arguments to represent swiz-
zling.

5.2.3. Run-Time Conditional Execution

If the underlying shader unit supports it, we can also use
run-time shader conditionals to avoid unneeded execution of
parts of shaders. On a system that does not directly support
conditionals, a mux-select, multiplication by zero, or tex-kill
(on a multipass implementation) would be used, as appropri-
ate, but of course some of these options would be less effi-
cient than true conditional execution. However, the real ben-
efit of true conditional execution in this example would be
that we can avoid filling up the texture cache and using mem-
ory bandwidth for textures that will not be used. A SIMD
execution scheme that inhibited instructions from having an
effect but still used clock cycles for them would be sufficient
to gain this specific benefit.
ShShader hfl = SH_BEGIN_SHADER(1) {
/I declare input fragment parameters
/I unpacked in order given
ShinputVector3f vv;
ShinputVector3f hv;
ShinputVector3f Iv;
ShinputTexCoord2f u;
ShinputColor3f ec;

ShinputParam1f pdz;
ShinputParam2us pdxy;

I
n
n
n
I
n
1

view-vector (SCS)
half-vector (SCS)
light-vector (SCS)
texture coordinates
irradiance

fragment depth (DCS)
fragment position (DCS)

/I declare output fragment parameters
/I packed in order given
ShOutputColor3f fc;

ShOutputParamlf fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

/I fragment color
/I fragment depth
/I fragment position

/I intialize total reflectance
fc = ShColor3f(0.0,0.0,0.0);
/I sum up contribution from each material
for (int m = 0; m < M; m++) {
SH_IF(hg_mat [m][u](3) > 0.0) {
ShRegColor3f fm;
if (hf_p [m]isa(SH_TEXTURE_2D)) {
fm = hf_p [m][parabolic(vv)]
* hf_p [m][parabolic(lv)];
} else {
fm = hf_p [m][w]
* hf_p [m]IV];
}
if (hf_g [m].isa(SH_TEXTURE_2D)) {
fm *= hf_qg [m][parabolic(hv)];

(© The Eurographics Association 2002.

65

} SH_END_SHADER;

The braces shown around the body of the
SH_IF/SH_ENDIF are optional, but give a host-language
name scope that corresponds to the shading language name
scope for values declared inside the body of 8té IF
statement.

5.3. Parameterized Noise

To implement marble, wood, and similar materials, we have
used the simple parameterized model for such materials pro-
posed by John C. Hart et 8. This model is given by

N—1 .
t(x) = ; ai|n(2'x)|,
u = xTAx+t(x),
ka(X) = cqlu],
ks(X) = cs[u].

where n is a bandlimited noise function such as Perlin
noisé’, t is the “turbulence” noise function synthesized from

it, A is a 4x 4 symmetric matrix giving the coefficients of the
quadric functiorx” Ax, Cq andcs are a 1D MIP-mapped tex-
ture maps functioning as filtered color lookup tables, and

is the model-space (normalized homogeneous) position of a
surface point. The outputs need to be combined with a light-
ing model, so we will combine them with the Phong lighting
model (we could just as easily have used separable BRDFs
and material maps, with one color lookup table for each).

Generally speaking we would use fractal turbulence and
would havea; = 2'; however, for the purposes of this ex-
ample we will permit thex; values to vary to permit further
per-material noise shaping and will bind them to named at-
tributes. Likewise, various simplifications would be possible
if we fixed A (marble requires only a linear term, wood only
a cylinder) but we have chosen to give an implementation of
the more general model and will birfdto a named attribute.

The low-level SMASH API happens to have support for
Perlin noise, generalized fractal noise, and generalized tur-
bulence built in, so we do not have to do anything special to
evaluate these noise functions. If we had to compile to a sys-
tem without noise hardware, we would store a periodic noise
function in a texture map and then could synthesize aperi-
odic fractal noise by including appropriate rotations among
octaves in the noise summation.

5.3.1. Vertex Shader

The vertex shader sets up the Phong lighting model, but also
computes half of the quadric as a linear transformation of

McCool, Qin, and Popa / Shader Metaprogramming

the model space position. This can be correctly ratiolinearly } sH_END_SHADER;

interpolated.

ShShader pnm0 = SH_BEGIN_SHADER(0) {
/I declare input vertex parameters
/I unpacked in order given
ShinputNormal3f nm; /I normal vector (MCS)
ShinputPoint3f pm; /I position (MCS)

/I declare output vertex parameters
/I packed in order given

ShOutputPoint4f ax; /I coeffs x MCS position
ShOutputPoint4f x; /I position (MCS)
ShOutputVector3f hv; /I half-vector (VCS)
ShOutputNormal3f nv; /I normal (VCS)
ShOutputColor3f ec; /I irradiance
ShOutputPoint4f pd; /I position (HDCS)

/I transform position

ShRegPoint3f pv = modelview * pm;
pd = perspective * pv;

/I transform normal

nv = normalize(nm * inverse(modelview));
/I compute normalized VCS light vector
ShRegVector3f v = light_position - pv;

ShRegParamif rsq = 1.0/(lvv|lvv);
Iw *= sqrt(rsq);
/I compute irradiance
ShRegParamilf ct = max(0,(nv|lvv));
ec = light_color *rsq * ct;
/I compute normalized VCS view vector
ShRegVector3f vwv = -normalize(ShVector3f(pv));
/I compute normalized VCS half vector
hv = norm(lwv + vwv);
/I projectively normalize position
X = projnorm(pm);
/I compute half of quadric
ax = quadric_coefficients * X
} SH_END_SHADER;

5.3.2. Fragment Shader

Two things are worth pointing out here. First, we have not
given the dimensionality ginm_alpha . In the underlying
system, it must be at most 4, so it can fit in a single register.
However, the high-level language compiler can easily syn-
thesize noise functions with more octaves given the ability
to do one with four:

3

toa(u) = _%ai|n<2‘u>|,

7

to7(u) = _;ann(ziun

3

: 3)
ailn2u)|+ Y ajan(22lu)|
2 2,

to:a(U) +ta7(2%u).

The functionturbulence given above is in fact a tem-
plate function that does this based on the dimensionality of
its first argument. It also calls a noise function of the ap-
propriate dimensionality based on the dimensionality of its
second argument.

The second thing to point out is that on hardware accel-
erators without built in noise functions, noise can be either
stored in textures or generated from a small subprogram. All
that is really needed is the ability to hash a point in space to
a determinisitic but random-seeming value. This can be sup-
ported using a 1D nearest-neighbour texture lookup (Perlin’s
original implementation of his noise function in fact uses
such an approach for implementing a hash funétiépor

The fragment shader completes the computation of the jgeally a special “hash” instruction. The rest of the arith-
quadric and the turbulence function and passes their sum metic can be done using arithmetic operations already sup-

through the color lookup table. Two different lookup tables ported by the shading unit. The main point really of this
are used to modulate the specular and diffuse parts of the example is this: we can't tell ifurbulence s a built-

lighting model, which will permit, for example, dense dark
wood to be shinier than light wood (with the appropriate en- sypports backward compatibility as new features are added

tries in the lookup tables).

ShShader pnml = SH_BEGIN_SHADER(1) {
/I declare input fragment parameters
/I unpacked in order given

ShinputPoint4f ax; /I coeffs x MCS position
ShinputPoint4f x; /I position (MCS)
ShinputVector3f hy; /I half-vector (VCS)
ShinputVector3f nv; /I normal (VCS)
ShinputColor3f ec; /I irradiance
ShinputParamlf pdz; /I fragment depth (DCS)

ShinputParam2us pdxy; /I fragment 2D position (DCS)

/I declare output fragment parameters
/I packed in order given
ShOutputColor3f fc;

ShOutputParamif fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

/I compute texture coordinates
ShRegTexCoord1f u = (x|ax) + turbulence(
/I compute Blinn-Phong lighting model

fc = pnm_cd[u] + pnm_cs[u]

* pow((normalize(hv)|normalize(nv)), phong_exp);

/I multiply by irradiance
fc *= ec;

/I fragment color
/I fragment depth
/I fragment 2D position

pnm_alpha ,x);

66

in function or something supported by the compiler, which

to graphics accelerators. In fact, the implementation of the
turbulence function could use introspection to see if the
target accelerator the program in running on at the moment
the shader is defined supports noise functions directly or if
one needs to be synthesized.

5.4. Julia Set

This example demonstrates the use of a conditional loop.
This is not really a practical example, it is just meant to show
the syntax for the definition of loops.

We assume that a 1D texture mapia_map and a
scale factor attribut@ulia_scale have been previously
defined to map from the iteration count to the color of the fi-
nal output and also that an attribyidia_max_iter has
been defined to specify the maximum number of iterations
permitted. The 2D attributpilia_c can be manipulated
to give different Julia sets.

(© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

5.4.1. Vertex Shader

Just convert from MCS to DCS and pass along a texture
coordinate. The product of theerspective and mod-
elview matrix attributes should be precomputed on the
host as part of attribute synchronization, not at runtime in
the shading unit.

ShShader julia0 = SH_BEGIN_SHADER(0) {
/I declare input vertex parameters
/I unpacked in order given
ShinputTexCoord2f ui;
ShinputPoint3f pm;

/I texture coords
/I position (MCS)

/I declare outputs vertex parameters
/I packed in order given
ShOutputTexCoord2f uo(ui);
ShOutputPoint4f pd;

/I texture coords
/I position (HDCS)

/I compute DCS position
pd = (perspective * modelview) * pm;
} SH_END_SHADER;

5.4.2. Fragment Shader

ShShader julial = SH_BEGIN_SHADER(1) {
/I declare input fragment parameters
/I unpacked in order given
ShinputTexCoord2f u;
ShinputParam1f pdz;
ShinputParam2us pdxy;

/I texture coordinates
/I fragment depth (DCS)
/I fragment 2D position (DCS)

/I declare output fragment parameters
/I packed in order given
ShOutputColor3f fc;

ShOutputParamif fpdz(pdz);
ShOutputParam2us fpdxy(pdxy);

/I fragment color
/I fragment depth
/I fragment 2D position

ShRegParamif i = 0.0;

SH_WHILE((ulu) < 2.0 && i < julia_max_iter) {
u(0) = u(0)*u(0) - u(l)*u(1) + julia_c (0);
u(l) = 2*u(0)*u(1) + julia_c (1),
i +=1;

} SH_ENDWHILE;
/I send increment through lookup table
fc = julia_map [julia_scale i,

} SH_END_SHADER;

We do not have complex numbers built in (although it would

be feasible to define appropriate types and overloaded oper-

ators) so we write out the Julia set iteration explicitly and

use two-vectors to store complex numbers. The shape of the

Julia set can be manipulated by changingjthia_c at-
tribute, and the resolution can be increased by increasing
julia_max_iter , although at the cost of increased com-
putation. Eventually we also run out of precision, so if any-
thing this shader would be a good visual indicator of the pre-
cision available in a fragment shader implementation. The
texture magulia_map andjulia_scale can be used

to colour the result in various interesting ways. In theory,
we could use an integer for the iteration couritebut we
assume at present that shader evaluation is baskdon
floating-point numbers.

6. Conclusions

We have presented techniques for embedding a high-level
shading language directly in a C++ graphics API. This re-

(© The Eurographics Association 2002.

67

quires run-time compilation of shaders, but in return pro-

vides a great deal of flexibility in the specification of shaders.

The control and modularity constructs of C++ can be used
in various ways to provide similar capabilities in the shad-

ing language. In particular, the scope rules of C++ can be
used to control which attributes get bound to which shaders,
and functions in C++ can be used to implement macros for
the shading language, all without any additional work by the
shader compiler.

A string-based shading language and a C++ shading lan-
guage might coexist in practice. However, the “string” based
shading language could be implemented by invoking the
C++ compiler with a stub mainline program that compiles
the shader and outputs a compiled version in binary form
for later reloading, or an object file that could be used for
dynamic linking.

Although we have built our system on top of an exper-
imental graphics system (SMASH) we feel that a similar
shading language could easily be built for OpenGL2.0 and
DX9. This would not require modification to these APIs —
in fact, the restriction to C++ is problematic for Java and
FORTRAN embeddings of APIs, so lower-level APIs would
be required at any rate — but could be implemented as a li-
brary. As soon as sufficiently powerful graphics hardware is
available, we plan to target these platforms. For maximum
efficiency, ideally the backend API should provide the abil-
ity to directly specify shader programs in an intermediate
assembly-level language via a function call interface to avoid
the need for string manipulation.

Acknowledgements

This research was funded by grants from the National
Science and Engineering Research Council of Canada
(NSERC), the Centre for Information Technology of Ontario
(CITO), the Canadian Foundation for Innovation (CFl), the
Ontario Innovation Trust (OIT), and finally the Bell Univer-
sity Labs initiative.

References

1. 3DLabs.OpenGL 2.0 Shading Language White Paper
1.1 edition, December 2001.

John Amanatides. Algorithms for the detection and
elimination of specular aliasing. IRAroc. Graphics In-
terface pages 86-93, May 1992.

3. Anthony A. Apodaca and Larry GritzAdvanced Ren-
derMan: Creating CGI for motion pictures Morgan
Kaufmann, 2000.

4. ATI. Pixel Shader Extensig2000. Specification doc-
ument, available from http://www.ati.com/online/sdk.

5. Scott Draves. Compiler Generation for Interactive

Graphics Using Intermediate Code. Dagstuhl Semi-
nar on Partial Evaluationpages 95-114, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

McCool, Qin, and Popa / Shader Metaprogramming

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, 19. Peter Lee and Mark Leone. Optimizing ML with Run-

Ken Perlin, and Steven Worleylexturing and Model-
ing: A Procedural ApproachAcademic Press, second
edition, 1998.

Conal Elliott, Sigbjgrn Finne, and Oege de Moor. Com-
piling Embedded Languages. 8AIG/PL| pages 9-27,
2000.

Dawson R. Engler. VCODE: A retargetable, extensible,
very fast dynamic code generation system. Pimoc.
ACM SIGPLANpages 160-170, 1996.

B. Guenter, T. Knoblock, and E. Ruf. Specializing
shaders. IrProc. ACM SIGGRAPHpages 343-350,
August 1995.

Pat Hanrahan and Jim Lawson. A language for shad-
ing and lighting calculations. 1i€omputer Graphics
(SIGGRAPH 90 Proceedingg)ages 289-298, August
1990.

John C. Hart, Nate Carr, Masaki Kameya, Stephen A.
Tibbitts, and Terrance J. Coleman. Antialiased pa-
rameterized solid texturing simplified for consumer-
level hardware implementation. 999 SIGGRAPH/-
Eurographics Workshop on Graphics Hardwapages
45-53. ACM Press, August 1999.

Wolfgang Heidrich and Hans-Peter Seidel. View-
independent environment maps. IBurograph-
ics/SIGGRAPH Workshop on Graphics Hardware
pages 39-45, 1998.

Wolfgang Heidrich and Hans-Peter Seidel. Realistic,
hardware-accelerated shading and lighting. Clom-
puter Graphics (SIGGRAPH '99 Proceedingalgust
1999.

Jan Kautz and Michael D. McCool. Approximation of
glossy reflection with prefiltered environment maps. In
Proc. Graphics Interfacepages 119-126, May 2000.

Jan Kautz, Pere-Pau Vazquez, Wolfgang Heidrich, and
Hans-Peter Seidel. Unified approach to prefiltered en-
vironment maps. IrRendering Techniques (Proc. Eu-
rographics Workshop on Renderin@000.

B. W. Kernighan. Pic — a language for typesetting
graphics.Software — Pract. and Exper. (GB)2:1-21,
January 1982.

E. Lafortune and Y. Willems. Using the modified Phong
reflectance model for physically based rendering. Tech-
nical Report CW197, Dept. Comp. Sci., K.U. Leuven,
1994,

Anselmo Lastra, Steven Molnar, Marc Olano, and Yu-
lan Wang. Real-time programmable shading.1995
Symposium on Interactive 3D Graphjigmges 59-66.
ACM SIGGRAPH, April 1995.

68

20.

21.

22.

24,

25.

26.

27.

28.

31.

32.

. Ken Perlin.

Time Code Generation. I8IGPLAN Conference on
Programming Language Design and Implementation
pages 137-148, 1996.

Jon Leech. OpenGL extensions and restrictions for Pix-
elFlow. Technical Report TR98-019, Department of
Computer Science, University of North Carolina, 1998.

Erik Lindholm, Mark J. Kilgard, and Henry Moreton.
A user-programmable vertex engine. Rioc. SIG-
GRAPH pages 149-158, August 2001.

William R. Mark and Kekoa Proudfoot. Compiling to a
VLIW fragment pipeline. InGraphics Hardware 2001
SIGGRAPH/Eurographics, April 2001.

. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic

factorization of brdfs for high-performance rendering.
In Proc. SIGGRAPHpages 171-178, August 2001.

Michael D. McCool. SMASH: A Next-Generation
API for Programmable Graphics Accelerators. Techni-
cal Report CS-2000-14, University of Waterloo, April
2001. API Version 0.2. Presented at SIGGRAPH 2001
Course #25Real-Time Shading.

Microsoft. DX9, 2001. Microsoft Meltdown 2001 pre-
sentation, available from http://www.microsoft.com/-
mscorp/corpevents/meltdown2001/ppt/DXG9.ppt.

M. Olano and A. Lastra. A shading language on graph-
ics hardware: The PixelFlow shading system Phoc.
SIGGRAPH pages 159-168, July 1998.

Marc Olano. A Programmable Pipeline for Graphics
Hardware PhD thesis, University of North Carolina at
Chapel Hill, 1999.

Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey
Ungar. Interactive multi-pass programmable shading.
In Proc. SIGGRAPHpages 425-432, July 2000.

An image synthesizer. IRAroc. SIG-

GRAPH pages 287-296, July 1985.

. Massimiliano Poletto, Wilson C. Hsieh, Dawson R. En-

gler, and M. Frans Kaashoek. 'C and tcc: a Language
and Compiler for Dynamic Code GeneratiotACM
Transactions on Programming Languages and Systems
21(2):324-369, 1999.

K. Proudfoot, W. R. Mark, P. Hanrahan, and
S. Tzvetkov. A real-time procedural shading system
for programmable graphics hardware. Pmoc. SIG-
GRAPH August 2001.

Todd L. Veldhuizen. C++ Templates as Partial Evalu-
ation. InACM SIGPLAN Workshop on Partial Eval-

uation and Semantics-Based Program Manipulation
1999.

(© The Eurographics Association 2002.

	Introduction
	Parsing
	Parameters and Attributes
	Testbed
	Examples
	Modified Phong Lighting Model
	Separable BRDFs and Material Mapping
	Parameterized Noise
	Julia Set

	Conclusions
	References

