
Graphics Hardware (2002)
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

Shader Metaprogramming

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa

Computer Graphics Lab, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada

Abstract
Modern graphics accelerators have embedded programmable components in the form of vertex and fragment shad-
ing units. Current APIs permit specification of the programs for these components using an assembly-language
level interface. Compilers for high-level shading languages are available but these read in an external string
specification, which can be inconvenient.
It is possible, using standard C++, to define a high-level shading language directly in the API. Such a language
can be nearly indistinguishable from a special-purpose shading language, yet permits more direct interaction
with the specification of textures and parameters, simplifies implementation, and enables on-the-fly generation,
manipulation, and specialization of shader programs. A shading language built into the API also permits the
lifting of C++ host language type, modularity, and scoping constructs into the shading language without any
additional implementation effort.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; Color, shading, shadowing, and texture

1. Introduction

Specialized shading languages have been available for
a long time in offline renderers, most prominently in
Renderman3, 10. Recently, real-time graphics accelerators
have been targeted with shading language compilers22, 28, 31,
new techniques have been found to implement sophis-
ticated lighting models using a relatively small number
of programmable operations12, 13, 14, 15, 23, and vendors have
begun to implement and expose explicitly programmable
components4, 21 in their latest accelerators. To date, the
programming model exposed in the APIs for these pro-
grammable components has been at the level of assembly
language, at best.However, proposals for OpenGL 2.01 and
DX925 both call for a high-level shading language to be an
integral part of the API, replacing or superceding previously
hard-coded functionality.

Most shading languages defined so far place the shader
program in a string or file and then implement a relatively
traditional assembler or compiler to convert this specifica-
tion to a machine language representation. Using a sepa-
rate language has some advantages—a “little language” can
be more tightly focused10, 16—but using a custom language
has problems too. First, although the shader programs them-

selves can be simple, binding them to the application pro-
gram can be a nuisance. Many of the extensions to OpenGL
required to support shaders in UNC’s PixelFlow system, for
instance, were concerned with named parameter declaration
and management18, 20, 26, 27. Second, due to limitations on the
implementation effort that can reasonably be expended, cus-
tom shading languages usually will not be as powerful as full
programming languages. They often may be missing impor-
tant features such as modularity and typing constructs useful
for organizing complex multipart shaders. Additional useful
features, such as shader specialization9, have to be explicitly
provided for by the language and shader compiler.

It is possible instead to use the features of standard C++
to define a high-level shading language directly in the API,
without once having to resort to the use of string manipula-
tion. Basically, sequences of calls into an API can interpreted
as a sequence of words in a “language”. Parsing of the API
token sequence may be necessary, however, to support the
expressions and structured control constucts used in modern
high-level languages. Fortunately, with appropriate syntatic
sugaring provided by operator overloading, the ordinary se-
mantics of C++ can be use to automatically parse arithmetic
expressions during application program compilation. Since

c© The Eurographics Association 2002.

57

McCool, Qin, and Popa / Shader Metaprogramming

Figure 1: Some images generated by shader metaprograms. From left to right: Phong lighting model, anisotropic satin BRDF
via homomorphic factorization, marble and wood implemented using different attributes with the parameterized noise shader,
and finally the Julia set (just the texture, no lighting).

the parser in the API does not need to deal with expressions,
the remaining parsing job is simplified. Preprocessor macros
can also be defined so “keywords” can be used in place of
API calls to specify control construct tokens. The result is
a high-level embedded shading language which is nearly in-
distinguishable from a custom shading language. However,
since this language is embedded in the application language,
more direct interaction with the specification of textures, at-
tributes, and parameters is possible, and shader programs can
be symbolically manipulated to implement “advanced” fea-
tures like specialization9 in a natural way.

We call this approach ametaprogrammingAPI. Metapro-
gramming is the use of one program to generate or manipu-
late another. Metaprogramming approaches are in fact quite
common. Operating systems, compilers, assemblers, link-
ers, and loaders are all metaprograms. Template metapro-
gramming uses the rewriting semantics of C++ templates
as a simple functional language to generate more efficient
numerical C++ code32 (this, however, isnot what we do).
Currying, or the partial specification of the parameters of a
function generating a new function with fewer parameters,
is a fundamental capability in many functional languages.
It is usually implemented using deferred execution but can
also be implemented using dynamic incremental compila-
tion of specialized functions19. This leads to more efficient
execution if the curried function is used enough to amor-
tize the cost of compilation. Metaprogramming has also been
used extensively, especially in the functional and logic pro-
gramming language community, to build specialized embed-
ded languages7. Metaprogramming has been used to dynam-
ically specify programs for practical programmable embed-
ded systems, in particular for programming protocol han-
dlers in network systems8. Specialized C compilers have
even been implemented that explicitly support an operator
algebra for metaprogramming30. Our approach does not re-
quire specialized extensions to the compiler, just exploita-
tion of standard C++ features and an appropriate library, but
it could support a similar algebra for manipulating shaders.
Although we do not consider it further here, the metapro-
gramming API approach could be used to program other
embedded systems, for instance, the DSP engines on sound
cards or printer and display engines. It could also be used to
implement host-side metaprogramming and a structured ap-

plication of “self-modifying code”, which could have major
performance benefits (with a suitable optimizing backend)
for graphics and multimedia applications5.

With a metaprogramming API, precompiled shader pro-
grams could still be used in the traditional manner simply by
compiling and running a C++ program that defines an appro-
priate shader and dumps a compiled binary representation of
it to a file. This approach could be used to invoke shaders
when using an application language other than C++, such
as Java or Fortran. A C++ compiler and some wrapper code
would simply replace the specialized separate shader com-
piler. However, parameter naming and binding are simplified
if the application program and the shader program are com-
piled together, since objects defining named parameters and
textures can be accessed by the shader definition directly.
Compilation of shader programs can be very fast, even with
optimization, and doing it at runtime lets the program adapt
to variable hardware support (important in a plug-and-play
context). In the following, therefore, we will assume that the
application program is also written in C++ and that shader
compilation happens on the fly.

We have implemented a high-level shading language/API
of this nature on top of our “prototype graphics accelera-
tor”, SMASH24. SMASH has an OpenGL-like low-level C-
compatible API, whose calls are indicated with the prefix
sm. Calls and types for the high-level C++ shader library
(which is intended ultimately to be independent of SMASH)
are indicated with the prefixessh andSh, respectively.

The shading unit simulator for SMASH executes a
machine language similar to that specified for DX9 or
NVIDIA’s vertex shaders, but with some straightforward ex-
tensions to support noise functions and conditional branch-
ing, features we expect to see in future generations of hard-
ware. The most recent version (0.5) of SMASH’s low-level
shader API, which the high-level shader API “compiles to”,
is function call-based in the style of ATI’s OpenGL ver-
tex shader extensions4. In the SMASH 0.5 API, each as-
sembly language instruction is specified using a call such
as “smADD(r,a,b) ” and 4-tuple registers are allocated in
turn using explicit API calls. However, in this document, we
focus on the C++ shader library.

c© The Eurographics Association 2002.

58

McCool, Qin, and Popa / Shader Metaprogramming

In Section 2 we describe how our parser generates and
manages a parse tree from the shader program described
in the API. Once this is done, code generation proceeds
essentially as in other shading language compilers target-
ting graphics accelerators (register allocation, optimization,
etc.) so we do not go into great detail for this phase. Sec-
tion 3 describes how named attributes and unnamed param-
eters are managed and bound to shader invocations. Sec-
tion 4 describes in more detail our testbed, whose streaming-
packet architecture makes possible the simple but flexible
parameter-binding mechanism we use. Section 5 demon-
strates the expressive power of our shading language/API by
working through a number of examples. Using these exam-
ples, we show how modularity, scope, and control constructs
in the application program can be “lifted” via metaprogram-
ming into the shading language.

2. Parsing

String based shading languages need a separate parsing step,
usually based on an LR grammar parser-compiler such as
YACC or Bison, to convert the syntax of the shader program
to a parse tree. However, using a metaprogramming API,
the shader program is specified using a sequence of func-
tion calls originating directly in the application program. The
API then interprets this sequence of calls as a set of sym-
bolic tokens to be used to generate a parse tree. Once built,
a parse tree can in turn be compiled into machine language,
or calls to a lower-level API to generate machine language,
by an on-the-fly compiler backend in the API driver library.
Expressions in a shading language can be parsed and type-
checked at the application program’s compile time using op-
erator overloading. To do this, overloaded operator functions
are defined that construct symbolic parse trees for the ex-
pressions rather than executing computations directly. The
“variables” in the shader are in fact smart reference-counting
pointers to nodes in directed acyclic graphs representing ex-
pressions symbolically. Each operator function allocates a
new node and uses smart pointers to refer to its children.
The reference-counting smart pointers implement a simple
garbage collection scheme which in this case is adequate to
avoid memory leaks (expressions cannot be given that re-
sult in parse trees containing cycles). Compiling expressions
in this way eliminates a large chunk of the grammar for the
shading language. The API gets passed a complete parse tree
for expressions directly, and does not have to build it itself
by parsing a flat sequence of tokens. Each assignment in se-
quence is recorded as a statement in the shader program and
buffered until the entire sequence of commands has been re-
ceived. When the shader program is complete, code gener-
ation and optimization is performed by the driver, resulting
internally in machine language which is prepared for down-
loading to the specified shader unit when the shader program
is bound.

Eventually, when shading units support control con-

structs, the shading language can be extended with
shader library calls that embed tokens for control key-
words in the shader statement sequence:shIF(cond) ,
shWHILE(cond) , shENDIF() , etc. Complex state-
ments are received by the API as a sequence of such
calls/tokens. For instance, a WHILE statement would be pre-
sented to the API as a WHILE token (represented by an
shWHILE(cond) function call; note the parameter, which
refers to a parse tree for the condition expression), a se-
quence of other statements, and a matching ENDWHILE to-
ken. Use of these constructs can be wrapped in macros to
make the syntax slightly cleaner (i.e. to hide semicolons and
function call parenthesis):

#define SH_IF(cond) shIF(cond);

#define SH_ELSEIF(cond) shELSEIF(cond);

#define SH_ELSE shELSE();

#define SH_ENDIF shENDIF();

#define SH_WHILE(cond) shWHILE(cond);

#define SH_ENDWHILE shENDWHILE();

#define SH_DO shDO();

#define SH_UNTIL(cond) shUNTIL(cond);

#define SH_FOR(init,cond,inc) shFOR(init,cond,inc);

#define SH_ENDFOR shENDFOR();

We can also make the declarations of shaders themselves
somewhat cleaner:

#define SH_BEGIN_SHADER(level) shBeginShader(level);

#define SH_END_SHADER shEndShader();

Since expression parsing (and type checking) is done by
C++ at the compile time of the host language, all that is
needed to parse structured control constructs is a straightfor-
ward recursive-descent parser. This parser will traverse the
buffered token sequence when the shader program is com-
plete, generating a full parse tree internally. Code generation
can then take place in the usual way.

Although true conditional execution and looping are not
yet available in any commercial real-time shading system,
such control constructs can theoretically be implemented ef-
ficiently in the context of a long texture lookup latency with
either a recirculating pipeline or a multithreaded shading
processor.

3. Parameters and Attributes

It is convenient to support two different techniques for pass-
ing parameters to shaders. For semi-constant parameters,
the use of named parameters whose values can be changed
at any time and in any order is convenient. We will give
these parameters the special name ofattributesand will re-
serve the wordparametersfor values specified per-vertex. A
named attribute is created simply by constructing an object
of an appropriate type:

// create named transformation attributes

ShAttributeAffXform3x4f modelview;

ShAttributeProjXform4x4f perspective;

// create named light attributes

ShAttributeColor3f light_color;

ShAttributePoint3f light_position;

c© The Eurographics Association 2002.

59

McCool, Qin, and Popa / Shader Metaprogramming

The constructor of these classes makes appropriate calls into
the API to allocate state for these attributes, and the destruc-
tor makes calls to deallocate this state. Operators overloaded
on these classes are used in the shader definition to access
these values. When a shader definition uses such an attribute
the compiler notes this fact and arranges for the current value
of each such attribute to be bound to a constant register in
the shader unit when the shader program is loaded. This is
done automatically, so all the user has to do is declare the
attribute, use it in a shader, and then set the value appropri-
ately at runtime. The assignment operator for attributes is
overloaded to generate an error when used inside a shader
definition (attributes are read-only in shaders) and to modify
the attribute’s value outside a shader definition. Attributes of
all types can be associated with stacks for save/restore.

For parameters whose values change at every vertex, we
have chosen to make the order of specification of these pa-
rameters important. Parameters can be considered equiva-
lent to unnamed arguments used in function calls in C/C++,
while attributes are like external variables. Note that it is not
considered an especial hardship to remember the order of
function call parameters in ordinary C/C++ functions. Also,
since we can redefine shaders at any time, we can always use
metaprogramming to reorganize the order of vertex parame-
ters in shaders into whatever order is convenient.

In immediate mode, a sequence of generic multidimen-
sional parameter calls simply adds parameters to a packet,
which is sent off as a vertex packet when the vertex call is
made (after adding the last few parameters given in the ver-
tex call itself). This is actually supported directly in the low-
level API. For instance, suppose we want to pass a tangent
vector, a normal, and a texture coordinate to a vertex shader
at the vertices of a single triangle. In immediate mode we
would use calls of the form
smBegin(SM_TRIANGLES);

smVector3fv(tangent[0]);

smNormal3fv(normal[0]);

smTexCoord2fv(texcoord[0]);

smVertex3fv(position[0]);

smVector3fv(tangent[1]);

smNormal3fv(normal[1]);

smTexCoord2fv(texcoord[1]);

smVertex3fv(position[1]);

smVector3fv(tangent[2]);

smNormal3fv(normal[2]);

smTexCoord2fv(texcoord[2]);

smVertex3fv(position[2]);

smEnd();

The types given above are optional, and are checked at run-
time only in a special “debugging mode”. High-performance
runtime mode, which is invoked by linking to a different ver-
sion of the API library, simplyassumesthe types match but
will give undefined results if they do not. The generic pa-
rameter callsmParam* can be used in place ofsmVec-
tor* , smNormal* , etc. Vertex and parameter arrays are
of course also supported for greater efficiency. When pa-
rameters of different lengths are mixed, for instance, bytes,

short integers, and floats, the current parameter pointer is al-
ways rounded up to the next alignment boundary. However,
parameters are always unpacked into single-precision floats
in the shading units. Support for variable-precision param-
eters just reduces bandwidth requirements. Declarations in-
side every shader definition provide the necessary informa-
tion to enable the system to unpack input parameters and
pack output parameters.

Finally, the driver must also ensure that when a shader is
bound that any texture objects it uses are also bound. Like
attributes, a texture just has to be mentioned in a shader. No
other declaration is necessary: the API will allocate texture
units and ensure the texture is loaded when needed. The C++
level of the API also uses classes to wrap low-level texture
objects. Operator overloading of[] is used so that within
a shader definition a texture lookup can be specified as if
it were an array access. In a sense, textures are just “grid-
valued attributes” with support for interpolation and filter-
ing.

4. Testbed

Our high-level shader API is built on top of SMASH, a
testbed we have developed to experiment with possible
next-generation graphics hardware features and their im-
plementation. This system is modular, and is built around
modules communicating over point-to-point channels us-
ing sequences of self-identifying variable-length packets.
Pipelines can be built with any number of shading proces-
sors or other types of modules (such as rasterizers or dis-
placement units) chained together in sequence or in parallel.
The API has to deal with the fact that any given SMASH sys-
tem might have a variable number of shading units, and that
different shading units might have slightly different capa-
bilities (for instance, vertex shaders might not have texture
units, and fragment shaders may have a limited number of
registers and operations). These restrictions are noted when
a system is built and the shader compiler adapts to them.

The API currently identifies shaders by pipeline depth. In
the usual case of a vertex shader and a fragment shader, the
vertex shader has depth 0 and the fragment shader has depth
1. When a shader program is downloaded, the packet car-
rying the program information has a counter. If this counter
is non-zero, it is decremented and the packet is forwarded
to the next unit in the pipeline. Otherwise, the program is
loaded and the packet absorbed. Modules in the pipeline
that do not understand a certain packet type are also sup-
posed to forward such packets without change. A flag in
each packet indicates whether or not packets should be
broadcast over parallel streams or not; shader programs are
typically broadcast. In this fashion shader programs can
be sent to any shader unit in the pipe. Sequences of to-
kens defining a shader program are defined using a se-
quence of API calls inside a matched pair ofshBegin-
Shader(shaderlevel) and shEndShader() calls.

c© The Eurographics Association 2002.

60

McCool, Qin, and Popa / Shader Metaprogramming

Once defined, a shader can be loaded using theshBind-
Shader(shaderobject) call. Normally we will wrap
these calls in macros to clean up the syntax slightly.

When a program is running on a shader unit, vertex and
fragment packets are rewritten by that unit. The system
supports packets of length up to 255 words, not counting
a header which gives the type and length of each packet.
Each word is 32 bits in length, so shaders can have up to
255 single-precision inputs and outputs. Type declarations
in shader parameter declaration can be used to implicitly de-
fine packing and unpacking of shorter parameters to con-
serve bandwidth when this full precision is not necessary.
Other units, such as the rasterizer and compositing module,
also need to have packets formatted in a certain way to be
meaningful; in particular, the rasterizer needs the position of
a vertex in a certain place in the packet (at the end, consisent
with the order of parameter and vertex calls). These units
also operate by packet rewriting; for instance, a rasterizer
parses sequences of vertex packets according to the current
geometry mode, reconstructs triangles from them, and con-
verts them into streams of fragment packets.

5. Examples

The following sections present example shaders that, while
useful in their own right, are each meant to show some useful
aspect of the metaprogramming API and shading language
we propose. In Section 5.1 we implement the Blinn-Phong
lighting model, then modify it to show how the modularity
and scoping constructs of the host language can be “lifted”
into the shading language. Section 5.2 shows an alternative
method for building lighting models, but also combines sev-
eral materials using material mapping. We use this exam-
ple to demonstrate the control constructs of the shading lan-
guage, and also show how the control constructs of the host
language can be lifted into the shading language if neces-
sary. Section 5.3 demonstrates the use of the noise function
to implement wood and marble shaders. Noise can be either
provided by the underlying shading system or implemented
by the compiler using precomputed textures, without change
to the high-level shader (although implementing noise using
textures will, of course, use up texture units). Section 5.4
demonstrates a complex computation using a loop: the Julia
set fractal.

5.1. Modified Phong Lighting Model

Consider the modified Blinn-Phong lighting model17:

Lo =
(
kd +ks(n̂ · ĥ)q)max(0,(n̂ · l̂))I`/r2

`

wherev̂ is the normalized view vector,l̂ is the normalized
light vector,ĥ = norm(v̂+ l̂) is the normalized half vector,n̂
is the normalized surface normal,I` is the light source inten-
sity, r` is the distance to light source, andkd, ks, andq are
parameters of the lighting model.

We will implement this using per-pixel computation of the
specular lobe and texture mapping ofkd andks.

5.1.1. Vertex Shader

This shader computes the model-view transformation of po-
sition and normal, the projective transformation of view-
space position into device space, the halfvector, and the ir-
radiance. These values will be ratiolinearly interpolated by
the rasterizer and the interpolated values will be assigned
to the fragments it generates. The rasterizer expects the last
parameter in each packet to be a device-space 4-component
homogeneous point.
ShShader phong0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters

// packed in order given

ShOutputVector3f hv; // half-vector (VCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShRegPoint3f pv = modelview * pm;

// compute DCS position

pd = perspective * pv;

// compute normalized VCS normal

nv = normalize(nm * inverse(modelview));

// compute normalized VCS light vector

ShRegVector3f lvv = light_position - pv;

ShRegParam1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShRegParam1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShRegVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

hv = normalize(lvv + vvv);

} SH_END_SHADER;

We do not need to provide prefixes for the utility functions
normalize , sqrt , etc. since they are distinguished by the
type of their arguments. In our examples we will also high-
light, using boldface, the use of externally declared attribute
and texture objects.

The types ShInput* and ShOutput* are classes
whose constructors call allocation functions in the API. The
order in which these constructors are called provides the nec-
essary information to the API on the order in which these
values should be unpacked from input packets and packed
into output packets. Temporary registers can also be declared
explictly as shown, although of course the compiler will de-
clare more temporary registers internally in order to imple-
ment expression evaluation, and will optimize register allo-
cation as well. These “register” declarations, therefore, are
really just smart pointers to expression parse trees.

SMASH permits allocation of named transformation ma-
trices in the same manner as other attributes. Matrices come

c© The Eurographics Association 2002.

61

McCool, Qin, and Popa / Shader Metaprogramming

in two varieties, representing affine transformations and pro-
jective transformations. When accessing a matrix value, the
matrix can be bound either as a transpose, inverse, transpose
inverse, adjoint, or transpose adjoint. The adjoint is useful as
it is equivalent to the inverse within a scale factor. However,
we do not need to declare these bindings explicitly since sim-
ply using a object representing a named attribute or matrix
stack is enough to bind it to the shader and for the API to
arrange for that parameter to be sent to the shader processor
when updated. The symbolic functionstranspose , in-
verse , adjoint , etc. cause the appropriate version of the
matrix to be bound to the shader. Note that the inverse is
not computed at the point of use of the matrix, it is com-
puted at the point of matrix specification. This is actually
just a special case of constant folding: when expressions in-
volving only constants and attributes are used inside shaders,
hidden attributes are automatically created representing the
results. It is this result that is downloaded to the shader,
not the original attribute. Whenever one of the attributes in-
volved in such an expression is modified, the host updates
all such “dependent” attributes. Note that this applies only
to attribute expressions giveninsideshader definitions. Out-
side shader definitions, expressions involving attributes are
evaluated immediately and do not result in the creation of
hidden dependent attributes.

5.1.2. Fragment Shader

This shader completes the Blinn-Phong lighting model ex-
ample by computing the specular lobe and adding it to the
diffuse lobe. Both reflection modes are modulated by spec-
ular and diffuse colors that come from texture maps us-
ing the previously declared texture objectsphong_kd and
phong_ks . In general, the notationt[u], wheret is a tex-
ture object, will indicate a filtered and interpolated texture
lookup, not just a simple array access (although, if the tex-
ture object access modes are set to nearest-neighbor interpo-
lation without MIP-mapping, it can be made equivalent to a
simple array access).

The rasterizer automatically converts 4D homogenous de-
vice space points (specifying the positions of vertices) to
normalized 3D device space points (specifying the posi-
tion of each fragment). We have chosen to place the 32-bit
floating-point fragment depthz first in the output packet to
automatically result in the correct packing and alignment for
x andy, making it easier for the compositor module follow-
ing the fragment shader to find these values.

The Phong exponent is specified here as a named attribute.
Ideally, we would antialias this lighting model by clamping
the exponent as a function of distance and curvature2, but
we have not implemented this functionality in this shader to
keep the example simple.

ShShader phong1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f hv; // half-vector (VCS)

ShInputTexCoord2f u; // texture coordinates

ShInputNormal3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputParam1f pdz; // fragment depth (DCS)

ShInputParam2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputParam1f fpdz(pdz); // fragment depth

ShOutputParam2us fpdxy(pdxy); // fragment 2D position

// compute texture-mapped Blinn-Phong model

fc = phong_kd [u] + phong_ks [u]

* pow((normalize(hv)|normalize(nv)), phong_exp);

// multiply lighting model by irradiance

fc *= ec;

} SH_END_SHADER;

Since it is not needed for bit manipulation, we use the oper-
ator “| ” to indicate the inner (dot) product between vectors
rather than bitwise OR. We also use the operator “&” for the
cross product, which has the advantage that the triple prod-
uct can be easily defined. However, parentheses should be
always be used around dot and cross products when they
are used with other operators due to the low precendence of
these operators.

Matrix multiplications are indicated with the “* ” opera-
tor. In matrix-vector multiplications if a vector appears on
the right of the product it is interpreted as a column and if on
the left as a row. For the most part this eliminates the need
to explicitly specify transposes. Since we have chosen to use
“* ” to generally represent matrix multiplication and not the
more abstract operation of typed transformation application,
to transform a normal you have to explicitly specify the use
of the inverse and use the normal as a row vector. Use of the
“* ” operator on a pair of tuples of any type results in pair-
wise multiplication. It might be more consistent to have this
operator mean dot product when applied between vectors,
but we felt that a separate operator for the dot product was
clearer. Use of “* ” between a 1D scalar value and anynD
tuple results in scalar multiplication.

5.1.3. Modularity

The Blinn-Phong model is an example of a shader program
which would make a useful subprogram in other places. We
would expect that many shaders in practice will be a com-
bination of several standard parts. We would like to have a
subprogram capability in order to be able to reuse code con-
veniently. The other reason for having a subprogram capa-
bility would be to save code space.

Even without a subprogram capability in the shader unit
itself, we can use the modularity constructs of the host lan-
guage to better organize our shaders for reuse. For instance,
we can define a variation on the above Blinn-Phong shader
as follows:

ShColor3f

phong (

ShVector3f hv,

ShVector3f nv,

c© The Eurographics Association 2002.

62

McCool, Qin, and Popa / Shader Metaprogramming

ShColor3f kd,

ShColor3f ks,

ShParam1f exp

) {

ShRegParam1f hn = (normalize(hv)|normalize(nv));

return kd + ks * pow(hn,exp);

}

class Phong {

private:

ShShader phong0, phong1;

public:

ShTexture2DColor3f kd;

ShAttributeColor3f ks;

Phong (

double exp

) {

ShShader phong0 = SH_BEGIN_SHADER(0) {

ShInputTexCoord2f ui;

ShInputNormal3f nm;

ShInputPoint3f pm;

ShOutputVector3f hv;

ShOutputTexCoord2f uo(ui);

ShOutputNormal3f nv;

ShOutputColor3f ec;

ShOutputPoint4f pd;

ShRegPoint3f pv = modelview * pm;

pd = perspective * pv;

nv = normalize(nm * inverse(modelview));

ShRegVector3f lvv = light_position - pv;

ShRegParam1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

ShRegParam1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

ShRegVector3f vvv = -normalize(ShVector3f(pv));

hv = normalize(lvv + vvv);

} SH_END_SHADER;

phong1 = SH_BEGIN_SHADER(1) {

ShInputVector3f hv;

ShInputTexCoord2f u;

ShInputNormal3f nv;

ShInputColor3f ec;

ShInputParam1f pdz;

ShInputParam2us pdxy;

ShOutputColor3f fc;

ShOutputParam1f fpdz(pdz);

ShOutputParam2us fpdxy(pdxy);

fc = ec * phong(hv,nv, kd [u], ks ,exp);

} SH_END_SHADER;

}

void

bind () {

ShBindShader(phong0);

ShBindShader(phong1);

}

};

Two kinds of modularity are used here. First, the C function
phong is used to define the basic Blinn-Phong model. This
function has arguments which are smart pointers to expres-
sions and returns a smart pointer to an expression. Note that
the classes used to declare parameter and return types in this
function are the common superclasses of both the “attribute”
and “register” classes, and these classes also support auto-
matic conversion from doubles and integers. This function
can now be used in many different shaders. In fact, this is
preciselyhow many “built-in” functions, such asnormal-
ize , sqrt , and even the expression operators, are defined.

Secondly, we have wrapped the definition of a complete

multistage shader in a class. Construction of a instance of
this class defines the shaders; destruction deallocates them.
We don’t need explicit deallocation of the subshaders since
deallocation ofphong0 and phong1 performs that task.
We have also defined a single method,bind , to load the
shader into all shader units, and have also used the class to
organize the attributes and textures for this shader. We have
also modified the shader somewhat, using a texture only for
kd , an attribute forks , and a definition-time constant for
exp . The use ofexp is especially interesting: basically,
each instance of thePhong class is a specialized shader,
with a different exponent compiled in for each instance (note
that automatic conversion is involved here). But we could
just as easily definedexp as an attribute,ks as a texture,
and so forth, without changing the definition ofphong . In
short, by embedding the shader definition language in the
host language we have made all the modularity constructs
of the host language available for organizing and structuring
shaders.

Later on, we plan to support operator overloading of “() ”
on shader objects to support true subroutines (using an ad-
ditional SH_RETURNtoken to define the return value, but
the same syntax as other shaders for defining input and out-
put parameters). The interesting thing about this is that the
shaders that use these subprograms do not have to know if
the subshader they are “calling” is a application-language
“macro”, as above, or a true subprogram on the shading unit:
the syntax would be exactly the same.

5.2. Separable BRDFs and Material Mapping

A bidirectional reflection distribution functionf is in gen-
eral a 4D function that relates the differential incoming irra-
diance to the differential outgoing radiance.

Lo(x; v̂) =
∫

Ω
f (x; v̂← l̂) max(0, n̂ · l̂)Li(x; l̂)dl̂.

Relative to a point source, which would appear as an impulse
function in the above integral, the BRDF can be used as a
lighting model:

Lo(x; v̂) = f (v̂← l̂;x) max(0, n̂ · l̂) I`/r2
` .

In general, it is impractical to tabulate a general BRDF. A
4D texture lookup would be required. Fortunately, it is pos-
sible to approximate BRDFs by factorization. In particular,
a numerical technique called homomorphic factorization23

can be used to find a separable approximation to any shift-
invariant BRDF:

fm(v̂← l̂) ≈ pm(v̂)qm(ĥ) pm(l̂)

In this factorization, we have chosen to factor the BRDF into
terms dependent directly on incoming light directionl̂, out-
going view directionv̂, and half vector direction̂h, all ex-
pressed relative to the local surface frame. Other parameter-
izations are possible but this one seems to work well in many
circumstances and is easy to compute.

c© The Eurographics Association 2002.

63

McCool, Qin, and Popa / Shader Metaprogramming

To model the dependence of the reflectance on surface po-
sition, we can sum over several BRDFs, using a texture map
to modulate each BRDF. We call thismaterial mapping:

f (u; v̂← l̂) =
M−1

∑
m=0

tm[u] fm(v̂← l̂)

=
M−1

∑
m=0

tm[u] pm[v̂]qm[ĥ] pm[l̂].

When storing them in a fixed-point data format, we also
rescale the texture maps to maximize precision:

f (u; v̂← l̂) =
M−1

∑
m=0

αmt′m[u] p′m[v̂]q′m[ĥ] p′m[l̂].

5.2.1. Vertex Shader

Here is a vertex shader to set up material mapping using a
separable BRDF decomposition for each material.

ShShader hf0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputVector3f t1; // primary tangent

ShInputVector3f t2; // secondary tangent

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters

// packed in order given

ShOutputVector3f vvs; // view-vector (SCS)

ShOutputVector3f hvs; // half-vector (SCS)

ShOutputVector3f lvs; // light-vector (SCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShRegPoint3f pv = modelview * pm;

// compute DCS position

pd = perspective * pv;

// transform and normalize tangents

t1 = normalize(modelview * t1);

t2 = normalize(modelview * t2);

// compute normal via a cross product

ShRegNormal3f nv = normalize(t1 & t2);

// compute normalized VCS light vector

ShRegVector3f lvv = light_position - pv;

ShRegParam1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShRegParam1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShRegVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

ShRegVector3f hv = norm(lvv + vvv);

// project BRDF parameters onto SCS

vvs = ShRegVector3f((vvv|t1),(vvv|t2),(vvv|nv));

hvs = ShRegVector3f((hvv|t1),(hvv|t2),(hvv|nv));

lvs = ShRegVector3f((lvv|t1),(lvv|t2),(lvv|nv));

} SH_END_SHADER;

5.2.2. Fragment Shader

The fragment shader completes the material mapping shader
by using an application program loop (running on the host,
not the shader unit) to generate an unrolled shader program.
A looping construct is not required in the shader program

to implement this. In fact, the API does not even see the
loop, only the calls it generates. We also use a shader spe-
cialization conditional that selects between cube maps and
parabolic maps using introspection. If the platform supports
them, we would want to use cube maps for the factors; how-
ever, parabolic maps will work on anything that supports 2D
texture mapping. The shader compiler and the shading sys-
tem do not have to support conditionals or a special mech-
anism for shader specialization, and in fact never even sees
these conditionals, only the resulting API calls. Of course,
such conditionals can only depend on information that is
known at shader definition time.
ShTexCoord3f

parabolic (

ShVector3f v

) {

ShTexCoord3f u;

u(0) = (7.0/8.0)*v(0) + v(2) + 1;

u(1) = (7.0/8.0)*v(1) + v(2) + 1;

u(2) = 2.0*(v(2) + 1);

return u;

}

ShShader hf1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f vv; // view-vector (SCS)

ShInputVector3f hv; // half-vector (SCS)

ShInputVector3f lv; // light-vector (SCS)

ShInputTexCoord2f u; // texture coordinates

ShInputColor3f ec; // irradiance

ShInputParam1f pdz; // fragment depth (DCS)

ShInputParam2us pdxy; // fragment position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputParam1f fpdz(pdz); // fragment depth

ShOutputParam2us fpdxy(pdxy); // fragment position

// intialize total reflectance

fc = ShColor3f(0.0,0.0,0.0);

// sum up contribution from each material

for (int m = 0; m < M; m++) {

ShRegColor3f fm;

if (hf_p [m].isa(SH_TEXTURE_2D)) {

// is a parabolic map

fm = hf_p [m][parabolic(vv)]

* hf_p [m][parabolic(lv)];

} else {

// is a cube map

fm = hf_p [m][vv]

* hf_p [m][lv];

}

if (hf_q [m].isa(SH_TEXTURE_2D)) {

// is a parabolic map

fm *= hf_q [m][parabloic(hv)];

} else {

// is a cube map

fm *= hf_q [m][hv];

}

// sum up weighted reflectance

fc += hf_mat [m][u] * hf_alpha [m] * fm;

}

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

Here the texture array objectshf_mat , hf_p , andhf_q
should have been previously defined, along with the normal-
ization factor attribute arrayhf_alpha . The introspection
methodisa checks if the texture objectshf_p andhf_q

c© The Eurographics Association 2002.

64

McCool, Qin, and Popa / Shader Metaprogramming

are 2D texture maps. In this case, the shader assumes the
factors are stored as parabolic maps. We define the param-
eters as homogenous coordinates (when we make a lookup
in a 2D texture using a 3D coordinate the last coordinate
is automatically interpreted as a homogeneous coordinate).
Otherwise, we assume that the texture maps are cube maps
so unnormalized direction vectors can be used directly as
texture parameters.

Note also the use of the() operator on register tuple val-
ues to represent swizzling, component selection, and write
masking. This is implemented by defining a function that
adds a swizzle/mask object to the top of the expression
parse tree; this object is interpreted differently depending on
whether it appears on the left or right side of an expression.
It can have one to four integer arguments to represent swiz-
zling.

5.2.3. Run-Time Conditional Execution

If the underlying shader unit supports it, we can also use
run-time shader conditionals to avoid unneeded execution of
parts of shaders. On a system that does not directly support
conditionals, a mux-select, multiplication by zero, or tex-kill
(on a multipass implementation) would be used, as appropri-
ate, but of course some of these options would be less effi-
cient than true conditional execution. However, the real ben-
efit of true conditional execution in this example would be
that we can avoid filling up the texture cache and using mem-
ory bandwidth for textures that will not be used. A SIMD
execution scheme that inhibited instructions from having an
effect but still used clock cycles for them would be sufficient
to gain this specific benefit.

ShShader hf1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f vv; // view-vector (SCS)

ShInputVector3f hv; // half-vector (SCS)

ShInputVector3f lv; // light-vector (SCS)

ShInputTexCoord2f u; // texture coordinates

ShInputColor3f ec; // irradiance

ShInputParam1f pdz; // fragment depth (DCS)

ShInputParam2us pdxy; // fragment position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputParam1f fpdz(pdz); // fragment depth

ShOutputParam2us fpdxy(pdxy); // fragment position

// intialize total reflectance

fc = ShColor3f(0.0,0.0,0.0);

// sum up contribution from each material

for (int m = 0; m < M; m++) {

SH_IF(hg_mat [m][u](3) > 0.0) {

ShRegColor3f fm;

if (hf_p [m].isa(SH_TEXTURE_2D)) {

fm = hf_p [m][parabolic(vv)]

* hf_p [m][parabolic(lv)];

} else {

fm = hf_p [m][vv]

* hf_p [m][lv];

}

if (hf_q [m].isa(SH_TEXTURE_2D)) {

fm *= hf_q [m][parabolic(hv)];

} else {

fm *= hf_q [m][hv];

}

fc += hf_mat [m][u] * hf_alpha [m] * fm;

} SH_ENDIF

}

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

The braces shown around the body of the
SH_IF/SH_ENDIF are optional, but give a host-language
name scope that corresponds to the shading language name
scope for values declared inside the body of theSH_IF
statement.

5.3. Parameterized Noise

To implement marble, wood, and similar materials, we have
used the simple parameterized model for such materials pro-
posed by John C. Hart et al.11. This model is given by

t(x) =
N−1

∑
i=0

αi |n(2ix)|,

u = xTAx+ t(x),

kd(x) = cd[u],

ks(x) = cs[u].

where n is a bandlimited noise function such as Perlin
noise29, t is the “turbulence” noise function synthesized from
it, A is a 4×4 symmetric matrix giving the coefficients of the
quadric functionxTAx, cd andcs are a 1D MIP-mapped tex-
ture maps functioning as filtered color lookup tables, andx
is the model-space (normalized homogeneous) position of a
surface point. The outputs need to be combined with a light-
ing model, so we will combine them with the Phong lighting
model (we could just as easily have used separable BRDFs
and material maps, with one color lookup table for each).

Generally speaking we would use fractal turbulence and
would haveαi = 2i ; however, for the purposes of this ex-
ample we will permit theαi values to vary to permit further
per-material noise shaping and will bind them to named at-
tributes. Likewise, various simplifications would be possible
if we fixedA (marble requires only a linear term, wood only
a cylinder) but we have chosen to give an implementation of
the more general model and will bindA to a named attribute.

The low-level SMASH API happens to have support for
Perlin noise, generalized fractal noise, and generalized tur-
bulence built in, so we do not have to do anything special to
evaluate these noise functions. If we had to compile to a sys-
tem without noise hardware, we would store a periodic noise
function in a texture map and then could synthesize aperi-
odic fractal noise by including appropriate rotations among
octaves in the noise summation.

5.3.1. Vertex Shader

The vertex shader sets up the Phong lighting model, but also
computes half of the quadric as a linear transformation of

c© The Eurographics Association 2002.

65

McCool, Qin, and Popa / Shader Metaprogramming

the model space position. This can be correctly ratiolinearly
interpolated.

ShShader pnm0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters

// packed in order given

ShOutputPoint4f ax; // coeffs x MCS position

ShOutputPoint4f x; // position (MCS)

ShOutputVector3f hv; // half-vector (VCS)

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// transform position

ShRegPoint3f pv = modelview * pm;

pd = perspective * pv;

// transform normal

nv = normalize(nm * inverse(modelview));

// compute normalized VCS light vector

ShRegVector3f lvv = light_position - pv;

ShRegParam1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShRegParam1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShRegVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

hv = norm(lvv + vvv);

// projectively normalize position

x = projnorm(pm);

// compute half of quadric

ax = quadric_coefficients * x;

} SH_END_SHADER;

5.3.2. Fragment Shader

The fragment shader completes the computation of the
quadric and the turbulence function and passes their sum
through the color lookup table. Two different lookup tables
are used to modulate the specular and diffuse parts of the
lighting model, which will permit, for example, dense dark
wood to be shinier than light wood (with the appropriate en-
tries in the lookup tables).

ShShader pnm1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputPoint4f ax; // coeffs x MCS position

ShInputPoint4f x; // position (MCS)

ShInputVector3f hv; // half-vector (VCS)

ShInputVector3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputParam1f pdz; // fragment depth (DCS)

ShInputParam2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputParam1f fpdz(pdz); // fragment depth

ShOutputParam2us fpdxy(pdxy); // fragment 2D position

// compute texture coordinates

ShRegTexCoord1f u = (x|ax) + turbulence(pnm_alpha ,x);

// compute Blinn-Phong lighting model

fc = pnm_cd[u] + pnm_cs [u]

* pow((normalize(hv)|normalize(nv)), phong_exp);

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

Two things are worth pointing out here. First, we have not
given the dimensionality ofpnm_alpha . In the underlying
system, it must be at most 4, so it can fit in a single register.
However, the high-level language compiler can easily syn-
thesize noise functions with more octaves given the ability
to do one with four:

t0:3(u) =
3

∑
i=0

αi |n(2iu)|,

t0:7(u) =
7

∑
i=0

αi |n(2iu)|

=
3

∑
i=0

αi |n(2iu)|+
3

∑
j=0

α j+4|n(242 ju)|

= t0:3(u)+ t4:7(2
4u).

The functionturbulence given above is in fact a tem-
plate function that does this based on the dimensionality of
its first argument. It also calls a noise function of the ap-
propriate dimensionality based on the dimensionality of its
second argument.

The second thing to point out is that on hardware accel-
erators without built in noise functions, noise can be either
stored in textures or generated from a small subprogram. All
that is really needed is the ability to hash a point in space to
a determinisitic but random-seeming value. This can be sup-
ported using a 1D nearest-neighbour texture lookup (Perlin’s
original implementation of his noise function in fact uses
such an approach for implementing a hash function29, 6) or
ideally a special “hash” instruction. The rest of the arith-
metic can be done using arithmetic operations already sup-
ported by the shading unit. The main point really of this
example is this: we can’t tell ifturbulence is a built-
in function or something supported by the compiler, which
supports backward compatibility as new features are added
to graphics accelerators. In fact, the implementation of the
turbulence function could use introspection to see if the
target accelerator the program in running on at the moment
the shader is defined supports noise functions directly or if
one needs to be synthesized.

5.4. Julia Set

This example demonstrates the use of a conditional loop.
This is not really a practical example, it is just meant to show
the syntax for the definition of loops.

We assume that a 1D texture mapjulia_map and a
scale factor attributejulia_scale have been previously
defined to map from the iteration count to the color of the fi-
nal output and also that an attributejulia_max_iter has
been defined to specify the maximum number of iterations
permitted. The 2D attributejulia_c can be manipulated
to give different Julia sets.

c© The Eurographics Association 2002.

66

McCool, Qin, and Popa / Shader Metaprogramming

5.4.1. Vertex Shader

Just convert from MCS to DCS and pass along a texture
coordinate. The product of theperspective andmod-
elview matrix attributes should be precomputed on the
host as part of attribute synchronization, not at runtime in
the shading unit.
ShShader julia0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters

// packed in order given

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputPoint4f pd; // position (HDCS)

// compute DCS position

pd = (perspective * modelview) * pm;

} SH_END_SHADER;

5.4.2. Fragment Shader
ShShader julia1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputTexCoord2f u; // texture coordinates

ShInputParam1f pdz; // fragment depth (DCS)

ShInputParam2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputParam1f fpdz(pdz); // fragment depth

ShOutputParam2us fpdxy(pdxy); // fragment 2D position

ShRegParam1f i = 0.0;

SH_WHILE((u|u) < 2.0 && i < julia_max_iter) {

u(0) = u(0)*u(0) - u(1)*u(1) + julia_c (0);

u(1) = 2*u(0)*u(1) + julia_c (1);

i += 1;

} SH_ENDWHILE;

// send increment through lookup table

fc = julia_map [julia_scale *i];

} SH_END_SHADER;

We do not have complex numbers built in (although it would
be feasible to define appropriate types and overloaded oper-
ators) so we write out the Julia set iteration explicitly and
use two-vectors to store complex numbers. The shape of the
Julia set can be manipulated by changing thejulia_c at-
tribute, and the resolution can be increased by increasing
julia_max_iter , although at the cost of increased com-
putation. Eventually we also run out of precision, so if any-
thing this shader would be a good visual indicator of the pre-
cision available in a fragment shader implementation. The
texture mapjulia_map andjulia_scale can be used
to colour the result in various interesting ways. In theory,
we could use an integer for the iteration counteri , but we
assume at present that shader evaluation is basedonly on
floating-point numbers.

6. Conclusions

We have presented techniques for embedding a high-level
shading language directly in a C++ graphics API. This re-

quires run-time compilation of shaders, but in return pro-
vides a great deal of flexibility in the specification of shaders.
The control and modularity constructs of C++ can be used
in various ways to provide similar capabilities in the shad-
ing language. In particular, the scope rules of C++ can be
used to control which attributes get bound to which shaders,
and functions in C++ can be used to implement macros for
the shading language, all without any additional work by the
shader compiler.

A string-based shading language and a C++ shading lan-
guage might coexist in practice. However, the “string” based
shading language could be implemented by invoking the
C++ compiler with a stub mainline program that compiles
the shader and outputs a compiled version in binary form
for later reloading, or an object file that could be used for
dynamic linking.

Although we have built our system on top of an exper-
imental graphics system (SMASH) we feel that a similar
shading language could easily be built for OpenGL2.0 and
DX9. This would not require modification to these APIs —
in fact, the restriction to C++ is problematic for Java and
FORTRAN embeddings of APIs, so lower-level APIs would
be required at any rate — but could be implemented as a li-
brary. As soon as sufficiently powerful graphics hardware is
available, we plan to target these platforms. For maximum
efficiency, ideally the backend API should provide the abil-
ity to directly specify shader programs in an intermediate
assembly-level language via a function call interface to avoid
the need for string manipulation.

Acknowledgements

This research was funded by grants from the National
Science and Engineering Research Council of Canada
(NSERC), the Centre for Information Technology of Ontario
(CITO), the Canadian Foundation for Innovation (CFI), the
Ontario Innovation Trust (OIT), and finally the Bell Univer-
sity Labs initiative.

References

1. 3DLabs.OpenGL 2.0 Shading Language White Paper,
1.1 edition, December 2001.

2. John Amanatides. Algorithms for the detection and
elimination of specular aliasing. InProc. Graphics In-
terface, pages 86–93, May 1992.

3. Anthony A. Apodaca and Larry Gritz.Advanced Ren-
derMan: Creating CGI for motion pictures. Morgan
Kaufmann, 2000.

4. ATI. Pixel Shader Extension, 2000. Specification doc-
ument, available from http://www.ati.com/online/sdk.

5. Scott Draves. Compiler Generation for Interactive
Graphics Using Intermediate Code. InDagstuhl Semi-
nar on Partial Evaluation, pages 95–114, 1996.

c© The Eurographics Association 2002.

67

McCool, Qin, and Popa / Shader Metaprogramming

6. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley.Texturing and Model-
ing: A Procedural Approach. Academic Press, second
edition, 1998.

7. Conal Elliott, Sigbjørn Finne, and Oege de Moor. Com-
piling Embedded Languages. InSAIG/PLI, pages 9–27,
2000.

8. Dawson R. Engler. VCODE: A retargetable, extensible,
very fast dynamic code generation system. InProc.
ACM SIGPLAN, pages 160–170, 1996.

9. B. Guenter, T. Knoblock, and E. Ruf. Specializing
shaders. InProc. ACM SIGGRAPH, pages 343–350,
August 1995.

10. Pat Hanrahan and Jim Lawson. A language for shad-
ing and lighting calculations. InComputer Graphics
(SIGGRAPH ’90 Proceedings), pages 289–298, August
1990.

11. John C. Hart, Nate Carr, Masaki Kameya, Stephen A.
Tibbitts, and Terrance J. Coleman. Antialiased pa-
rameterized solid texturing simplified for consumer-
level hardware implementation. In1999 SIGGRAPH/-
Eurographics Workshop on Graphics Hardware, pages
45–53. ACM Press, August 1999.

12. Wolfgang Heidrich and Hans-Peter Seidel. View-
independent environment maps. InEurograph-
ics/SIGGRAPH Workshop on Graphics Hardware,
pages 39–45, 1998.

13. Wolfgang Heidrich and Hans-Peter Seidel. Realistic,
hardware-accelerated shading and lighting. InCom-
puter Graphics (SIGGRAPH ’99 Proceedings), August
1999.

14. Jan Kautz and Michael D. McCool. Approximation of
glossy reflection with prefiltered environment maps. In
Proc. Graphics Interface, pages 119–126, May 2000.

15. Jan Kautz, Pere-Pau Vázquez, Wolfgang Heidrich, and
Hans-Peter Seidel. Unified approach to prefiltered en-
vironment maps. InRendering Techniques (Proc. Eu-
rographics Workshop on Rendering), 2000.

16. B. W. Kernighan. Pic – a language for typesetting
graphics.Software – Pract. and Exper. (GB), 12:1–21,
January 1982.

17. E. Lafortune and Y. Willems. Using the modified Phong
reflectance model for physically based rendering. Tech-
nical Report CW197, Dept. Comp. Sci., K.U. Leuven,
1994.

18. Anselmo Lastra, Steven Molnar, Marc Olano, and Yu-
lan Wang. Real-time programmable shading. In1995
Symposium on Interactive 3D Graphics, pages 59–66.
ACM SIGGRAPH, April 1995.

19. Peter Lee and Mark Leone. Optimizing ML with Run-
Time Code Generation. InSIGPLAN Conference on
Programming Language Design and Implementation,
pages 137–148, 1996.

20. Jon Leech. OpenGL extensions and restrictions for Pix-
elFlow. Technical Report TR98-019, Department of
Computer Science, University of North Carolina, 1998.

21. Erik Lindholm, Mark J. Kilgard, and Henry Moreton.
A user-programmable vertex engine. InProc. SIG-
GRAPH, pages 149–158, August 2001.

22. William R. Mark and Kekoa Proudfoot. Compiling to a
VLIW fragment pipeline. InGraphics Hardware 2001.
SIGGRAPH/Eurographics, April 2001.

23. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic
factorization of brdfs for high-performance rendering.
In Proc. SIGGRAPH, pages 171–178, August 2001.

24. Michael D. McCool. SMASH: A Next-Generation
API for Programmable Graphics Accelerators. Techni-
cal Report CS-2000-14, University of Waterloo, April
2001. API Version 0.2. Presented at SIGGRAPH 2001
Course #25,Real-Time Shading.

25. Microsoft. DX9, 2001. Microsoft Meltdown 2001 pre-
sentation, available from http://www.microsoft.com/-
mscorp/corpevents/meltdown2001/ppt/DXG9.ppt.

26. M. Olano and A. Lastra. A shading language on graph-
ics hardware: The PixelFlow shading system. InProc.
SIGGRAPH, pages 159–168, July 1998.

27. Marc Olano. A Programmable Pipeline for Graphics
Hardware. PhD thesis, University of North Carolina at
Chapel Hill, 1999.

28. Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey
Ungar. Interactive multi-pass programmable shading.
In Proc. SIGGRAPH, pages 425–432, July 2000.

29. Ken Perlin. An image synthesizer. InProc. SIG-
GRAPH, pages 287–296, July 1985.

30. Massimiliano Poletto, Wilson C. Hsieh, Dawson R. En-
gler, and M. Frans Kaashoek. ’C and tcc: a Language
and Compiler for Dynamic Code Generation.ACM
Transactions on Programming Languages and Systems,
21(2):324–369, 1999.

31. K. Proudfoot, W. R. Mark, P. Hanrahan, and
S. Tzvetkov. A real-time procedural shading system
for programmable graphics hardware. InProc. SIG-
GRAPH, August 2001.

32. Todd L. Veldhuizen. C++ Templates as Partial Evalu-
ation. In ACM SIGPLAN Workshop on Partial Eval-
uation and Semantics-Based Program Manipulation,
1999.

c© The Eurographics Association 2002.

68

	Introduction
	Parsing
	Parameters and Attributes
	Testbed
	Examples
	Modified Phong Lighting Model
	Separable BRDFs and Material Mapping
	Parameterized Noise
	Julia Set

	Conclusions
	References

