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We present a simple and computationally efficient algorithm for approximating Catmull-Clark subdivision surfaces using a minimal set of bicubic patches.
For each quadrilateral face of the control mesh, we construct a geometry patch and a pair of tangent patches. The geometry patches approximate the shape
and silhouette of the Catmull-Clark surface and are smooth everywhere except along patch edges containing an extraordinary vertex where the patches are
C0. To make the patch surface appear smooth, we provide a pair of tangent patches that approximate the tangent fields of the Catmull-Clark surface. These
tangent patches are used to construct a continuous normal field (through their cross-product) for shading and displacement mapping. Using this bifurcated
representation, we are able to define an accurate proxy for Catmull-Clark surfaces that is efficient to evaluate on next-generation GPU architectures that expose
a programmable tessellation unit.
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1. INTRODUCTION

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have
become a standard modeling primitive in computer generated mo-
tion pictures and 3D games. To create a subdivision surface, an
artist constructs a coarse polygon mesh that approximates the shape
of the desired surface. A subdivision algorithm recursively refines
this base mesh to produce a sequence of finer meshes that converge
to a smooth limit surface. In practice, developers perform up to
5 off-line subdivision steps to generate a dense mesh suitable for
rendering a smooth surface.

This off-line refinement process leads to a number of difficulties
when dealing with Catmull-Clark surfaces in real-time applications
like games. The large, dense model produced by subdivision con-
sumes limited removable disk space and GPU memory, and requires
significant bus bandwidth to be transferred to and from memory. For
large numbers of models the amount of resources required can de-
grade system performance. However, the most serious issue encoun-
tered by this off-line refinement strategy is the expense of animation;
every vertex of the dense model may need to be modified indepen-
dently. To minimize the computational overhead needed by these
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shapes, developers often use a courser mesh, which leads to visible
faceting artifacts. All these factors could be mitigated if subdivision
was deferred until after base mesh vertex animation in the GPU.

In fact, support for higher order tessellation directly in hardware
is becoming a reality as exemplified by both the Microsoft Xbox
360 and the ATI Radeon HD 2900 series graphics cards [Lee 2006;
ATI/AMD 2007]. The tessellator unit in these GPUs provide hard-
ware support for adaptive tessellation of parametric surfaces. Based
on user-provided tessellation factors, the tessellator adaptively cre-
ates a sampling pattern of the underlying parametric domain and
automatically generates a set of triangles connecting these samples.
The programmer then provides a special shader program that the tes-
sellator calls with the parametric coordinates (u, v) for each sample
in the parametric patch; the shader then emits a vertex that corre-
sponds to the patch evaluated at those coordinates. This approach
allows the GPU to triangulate arbitrary parametric surfaces because
the evaluation details are provided by the programmer in the form
of a shader. Furthermore, the GPU is able to exploit parallelism
because multiple arithmetic units can be running the same evalua-
tion shader in lockstep. We expect tessellation hardware to become
standard in the near future [Blythe 2006; Boyd 2007].
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Fig. 1. Blue patches (left) contain more than one extraordinary vertex and cannot be evaluated using Stam’s method. The subdivided shape (right) contains
patches with one or less extraordinary vertex but increases the number of patches by a factor of 4.
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Fig. 2. Control point labeling for a bicubic Bézier patch.

1.1 Catmull-Clark Surfaces on Tessellation Hardware

Catmull-Clark subdivision surfaces are in fact piecewise parametric
and therefore amenable to hardware tessellation. Each quadrilateral
face in a Catmull-Clark control mesh corresponds to a single bicubic
patch except for quadrilaterals that contain an extraordinary vertex.
These extraordinary patches, patches containing one or more ex-
traordinary vertices, are actually composed of an infinite collection
of bicubic patches. Using this polynomial structure, Stam [1998]
developed an algorithm for directly evaluating the parametric form
of Catmull-Clark surfaces.

While programmable tessellation hardware will be capable of
running Stam’s algorithm, there are a number of issues that indicate
performance will be poor. Stam’s method requires branching, which
reduces SIMD efficiency. Stam also factors his computation into a
sequence of matrix multiplications. Counting the number of multi-
plies needed in this evaluation shows that, even in the regular case
(n = 4), Stam’s evaluation will be over an order of magnitude more
expensive than normal bicubic evaluation. Finally, Stam’s method
requires that extraordinary patches contain only one extraordinary
vertex. If there are patches that contain more than one extraordinary
vertex, one level of subdivision must be performed resulting in 4
times as many patches to evaluate (see Figure 1). If this subdivi-
sion step is performed off-line, then even more disk space, memory,
computational resources for animation and bandwidth to transfer the
data to the GPU are required. Furthermore, this subdivided mesh be-
comes the coarsest level of resolution, reducing the effectiveness of
level of detail management. Therefore, alternatives to exact eval-
uation are needed to improve performance on a GPU tessellator
pipeline.

4 8 42

2 1 2

2 1

1

16

4

4

4

4

11

1 1

(c)(b)(a)

Fig. 3. Masks for determining Bézier control points from a uniform bicubic
B-spline surface.

Fig. 4. Generalized masks for interior, edge and corner points.

1.2 Previous Work

Some of the early work in this area used Gregory patches [Chiyokura
and Kimura 1983] to create surfaces that interpolate networks of
curves and allow the user to specify cross-boundary derivatives.
While these patches could be used to approximate Catmull-Clark
surfaces, the patches are rational polynomials whose denominators
vanish at patch corners complicating evaluation. Furthermore, these
patches contain few degrees of freedom that can be used to approx-
imate Catmull-Clark surfaces.

Peters [2000] describes an algorithm that converts Catmull-Clark
surfaces into a NURBS approximation of the subdivision surface.
This method creates one bicubic patch for each face of a quad mesh.
The surfaces produced are C2 everywhere except near extraordinary
vertices where they are C1. However, this method requires that the
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Fig. 5. Control vectors for tangent patches ∂u and ∂v.
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Fig. 6. (a) Tangent mask for uniform bicubic B-splines surfaces (b) Mask
for Catmull-Clark limit tangent.

base quad mesh be subdivided at least once (twice if there are ex-
traordinary vertices of even valence) to create sufficient separation
of extraordinary vertices resulting in 4–16 times as many patches as
the base subdivision surface.

Recently, several researchers have considered techniques for per-
forming subdivision directly on the GPU. Bolz and Schröder [2002],
Shiue et al. [2005] and Bunnell [2005] have used the GPU to dynam-
ically tessellate Catmull-Clark surfaces. Bolz and Schröder [2002]
and Shiue et al. [2005] require that extraordinary vertices (a vertex
not touched by exactly four quadrilaterals) be sufficiently separated,
which necessitates at least one level of subdivision in software before
GPU acceleration. Bunnell [2005] does not require separation of ex-
traordinary vertices but is a multipass scheme requiring significant
CPU intervention. Also, all of these techniques can only produce
sampling patterns compatible with binary subdivision, which may
introduce visible popping artifacts when patch resolution changes
or require blending vertices between different resolutions. None of
these methods can produce sampling patterns compatible with fu-
ture tessellation hardware [Blythe 2006; Lee 2006; ATI/AMD 2007;
Boyd 2007].

Finally, Curved PN Triangles (sometimes known as N-
Patches) [Vlachos et al. 2001] bear the most similarity to our work.
This method takes as input a set of triangles with normals specified
at the vertices and attempts to build an interpolating, smooth surface
consisting of cubic Bézier triangles. Unfortunately, the patches are
not smooth across their edges. To combat this effect, the authors
create a separate normal field that gives the surface the appearance
of being smooth. The advantage of this method is that the com-
putations are local and a patch can be constructed using only the
information present in a single triangle. The disadvantage is that

the surfaces suffer from various shading artifacts and the lack of
smoothness can typically be seen in the silhouette of the object.

—Contributions. We propose an algorithm for visually approxi-
mating Catmull-Clark subdivision surfaces, possibly with bound-
aries, using a collection of bicubic patches (one for each face of
a quad-mesh). We contend approximating the surface with patches
that are in one-to-one correspondence with the faces of the coarsest
base mesh is best. Further subdividing mesh faces may improve the
quality of the approximation but diminishes tessellator utilization,
requires increased bandwidth to the GPU and limits the minimal
level of tessellation leading to over sampling. Our patches are also
smooth everywhere except along edges leading to an extraordinary
vertex where they are only C0; therefore shading discontinuities
may result. We overcome this difficulty by creating independent
tangent patches that conspire to produce a continuous normal field
and, hence, the appearance of a smooth surface. When each vertex
of the patch has valence 4, our geometry and tangent patches are
identical to the Catmull-Clark subdivision surface.

2. GEOMETRY PATCHES

For each face in a quad-mesh, we construct a bicubic patch to ap-
proximate the Catmull-Clark surface over the corresponding region.
We represent these bicubic patches in Bézier form with the labeling
scheme illustrated in Figure 2.

Our geometry patch construction is a generalization of B-spline
knot insertion, used to convert from the B-spline to Bézier basis. If
all four vertices of a quad-mesh face have valence 4, then the con-
struction reproduces the standard uniform B-spline patch in Bézier
form. There are three types of masks needed to construct the control
points of a Bézier patch from a uniform B-spline control mesh as
shown in Figure 3. These masks encode a set of coefficients that
are applied by summing the products of these coefficients and the
corresponding points. For masks that generate points (such as the
masks in this figure) there is an implied normalization that these
masks sum to 1. However, masks that generate vectors must sum to
0 and, thus, do not have an implied normalization.

Referring to Figure 3, mask (a) is used (in four orientations) to
create the four interior points b11, b21, b12, and b22, correspond-
ing to each quad face; mask (b) is used to create the edge points
b10, b20, b01, b02, b31, b32, b13, and b23 corresponding to the edges
of the quad-mesh; finally, mask (c) is used to create the corner
points b00, b30, b03, and b33, corresponding to the vertices of the
quad-mesh. Note that each edge point lies at the midpoint of two
interior points, belonging to adjacent faces; and each corner point
lies at the centroid of the 4 interior points that surround that ver-
tex. Our general quad-mesh patch construction is inspired by these
geometric relationships.
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Fig. 7. The characteristic map of a Catmull-Clark surface for various valences.
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Fig. 8. Control vectors involved in smooth edge conditions.

In the ordinary case (all vertices of the patch have valence 4),
the corner points b00, b30, b03, and b33 interpolate the limit position
of the Catmull-Clark surface. Therefore, in the extraordinary case,
we also choose these control points to interpolate the limit position
of the Catmull-Clark surface. Halstead et al. [1993] showed that
the left eigenvector corresponding to the dominant eigenvalue of
the Catmull-Clark subdivision matrix corresponds to the mask that
generates the limit position of an extraordinary vertex. Figure 4(c)
illustrates this limit position mask.

If the centroid of the surrounding interior Bézier points creates
the corner point with the mask shown in Figure 4(c), then we can
infer the mask for the interior points (shown in Figure 4(a). Note that
the value n in the generalized interior point mask corresponds to the
valence of the vertex whose weight is n. Furthermore, this valence
may differ for each interior point b11, b21, b12, and b22. Finally, the
edge points are found as midpoints of the adjacent interior points
leading to the mask shown in Figure 4(b). Notice that, if n = 4, the
masks in Figure 4 reproduce the knot insertion masks in the uniform
case shown in Figure 3.

3. TANGENT PATCHES

In general, replacing the Catmull-Clark surface with the geometry
patches from the previous section results in a surface that is smooth
everywhere except along edges containing extraordinary vertices.
For some applications, this lack of smoothness may be acceptable.
However, for smooth shading, we need a surface that has a con-
tinuous normal field over the entire surface. The normal field of
a bicubic surface is biquintic, which produces a large number of
control vectors in Bézier form to exactly represent the biquintic
polynomial (36 control vectors). Furthermore, the control vectors
do not depend linearly on the underlying control mesh complicating
animation. Therefore, our approach uses a pair of tangent patches
denoted by ∂u, ∂v whose cross-product approximates the normal
field of the Catmull-Clark surface. These tangent patches have fewer
control vectors (they are degree 3 × 2) and depend linearly on the
control mesh.

Consider the tangent patch ∂u. This patch will be bidegree 2 × 3,
since differentiating the bidegree 3×3 geometry patch with respect
to u will lower the degree by one in the u-direction. Similarly, the ∂v
patch will be bidegree 3 × 2. Since the ∂u and ∂v patches represent
vector fields, their coefficients are control vectors, as illustrated in

Figure 5. The construction of tangent patches is symmetric; that
is, the constructions are identical up to an interchange of principle
directions, with appropriate change of signs. Therefore, we limit our
discussion to the ∂v patch.

For Bézier patches, the ∂v patch can be found using differences of
the control points. If bi, j are the coefficients of the geometry patch
and vk,l are the coefficients of the tangent patch, then

vi, j = 3
(
bi, j+1 − bi, j

)
, i = 0, . . . , 3 j = 0, . . . , 2. (1)

These control vectors represent a Bézier patch that exactly encodes
the tangent field in the v-direction of the corresponding geometry
patch. However, since the geometry patches do not meet with C1

continuity everywhere, the tangent patches ∂u and ∂v will not create
a continuous normal field. In particular, the tangent field must create
a unique normal at the corners of the patch (shared by multiple
patches) and along the edges of the patch (shared by two patches).
Therefore, we must modify the control points along the edges of
∂v such that we create a continuous normal field over the entire
surface.

3.1 Tangent Patch Corners

To modify our tangent patch ∂v, we begin with the corner vertices
v00, v02, v30, and v32, which should produce a unique tangent plane
among all patches sharing this corner. Unfortunately, our geome-
try patches are not smooth for an arbitrary valence vertex so our
construction from Equation (1) does not produce a unique tangent
plane. Given that the geometry patches are meant to approximate
the Catmull-Clark surface, we use the limit tangent mask of the
Catmull-Clark surface to create a unique tangent plane at the cor-
ners of the patch.

Halstead et al. [1993] showed that the tangent limit masks for
Catmull-Clark surfaces correspond to the left eigenvectors of the
subdivision matrix associated with the subdominant eigenvalue pair.
Using these eigenvectors, we arrive at a tangent mask

αL
i = cos

(
2π i

n

)
,

βL
i =

(√
4+cos( π

n )2−cos( π
n )

4

)
cos

(
2π i+π

n

)
.

where αL and βL are the coefficients for the left eigenvector and use
the labeling shown in Figure 6(b). Unfortunately, this relationship
between the left eigenvectors of the subdivision matrix and the tan-
gent mask only generates a mask that determines the direction of the
tangent vector and not its length (eigenvectors are independent of
scale). Therefore, we must find an appropriate scale for this vector
to ensure a well behaved tangent field.

Our approach conceptually uses the characteristic map of the
subdivision scheme as a local parameterization of the surface [Reif
1995]. Similar to the tangent mask, the coordinates of the character-
istic map are given by the pair of right eigenvectors corresponding
to the subdominant eigenvalues. If we allow αR, β R to be points
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Fig. 9. a) The patch structure we associate with a Catmull-Clark subdivision surface. The grey patches contain only valence 4 vertices, green have one
extraordinary vertex and blue have more than one extraordinary vertex. b) Our approximation to the Catmull-Clark subdivision surface using geometry patches
and c) our final approximation using geometry and tangent patches compared with d) the actual Catmull-Clark limit surface.

Fig. 10. An example mesh (top) and a zoomed in region of a complex patch structure (bottom). From left to right: Catmull-Clark patch structure, Geometry
patch approximation, Geometry/Tangent patch approximation and Catmull-Clark limit mesh.

Fig. 11. A complex mesh with boundary. From left to right: Catmull-Clark patch structure, Geometry patch approximation, Geometry/Tangent patch approx-
imation and Catmull-Clark limit surface.
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Fig. 12. Our Geometry/Tangent patch model (left) with displacement
mapping (right).

in the plane, then the one-ring control points of the characteristic
map are

αR
i =

(
cos

(
2π i

n

)
, sin

(
2π i

n

))

β R
i = 4√

4+cos( π
n )2+cos( π

n )

(
cos

(
2π i+π

n

)
, sin

(
2π i+π

n

))
.

The characteristic map is also independent of scale, which we are
free to choose. We pick a scale for the map such that αR

0 = (1, 0).
Figure 7 shows examples of the characteristic map for Catmull-Clark
surfaces for various valences.

If we apply the limit tangent mask to the control points of the
characteristic map, the result will be a vector with nonunit length.
We then find a scalar σ such that

σ
n−1∑

i=0

αL
i αR

i + βL
i β R

i = (1, 0).

Solving for σ yields

σ = 1
n

+
cos

(
π
n

)

n
√

4 +
(
cos

(
π
n

))2
.

Multiplying the previous tangent mask by σ produces the final tan-
gent mask.

αi =
(

1
n + cos( π

n )
n

√
4+(cos( π

n ))2

)
cos

(
2π i

n

)
,

βi =
(

1

n
√

4+(cos( π
n ))2

)
cos

(
2π i+π

n

)
.

(2)

This tangent mask is used to construct the vectors v00, v02, v30, and
v32 resulting in a unique tangent plane at each of the patch corners.
Also, note that all these vectors must be consistently aligned. In
particular, the tangent vector directions must be reversed (multiplied
by −1) for v02 and v32. The construction of tangent field vectors
u00, u20, u03, and u23 is identical. Finally, notice that if n = 4,
this tangent mask exactly reproduces the tangent mask for bicubic
B-splines in Figure 6(a) including scale.

3.2 Tangent Patch Edges

Given the tangent patch from Equation (1) with corner vertices spec-
ified by Equation (2), the tangent patches create a unique tangent
plane everywhere except along the edges of a patch. Therefore,
we must modify the control vectors along the edges of the patch
as well.

Consider the patch edge in Figure 8 shared by two patches. vi, j are
the control vectors for the top patch along the shared patch boundary
in the v-direction, ui, j are the control vectors for the tangent in the

u-direction shared by both patches and v̂i, j are the control vectors of
the tangent in the v-direction for the bottom patch along the shared
edge. These control vectors define two cubic functions v(t), v̂(t)
and one quadratic function u(t). These three vector fields will be
linearly dependent if

((1 − t)c0 − tc1) u(t) = 1
2

(v(t) + v̂(t)) ∀t ∈ [0, 1],

where ci = cos( 2π
ni

) and n0, n1 are the valence of the left and right
endpoints. Solving for the Bézier coefficients results in four condi-
tions:

c0 u00 = 1
2 (v00 + v̂00) , (3)

1
3 (2 c0u10 − c1u00) = 1

2 (v10 + v̂10) , (4)
1
3 (c0u20 − 2 c1u10) = 1

2 (v20 + v̂20) , (5)

−c1 u20 = 1
2 (v30 + v̂30) . (6)

Conditions (3) and (6) are satisfied by construction using
Equation (2). Condition (4) will be satisfied if

v̂10 = 1
3 (2 c0u10 − c1u00) + x,

v̂10 = 1
3 (2 c0u10 − c1u00) − x

for any choice of x. We choose x = 3 (b11 − b10) since, by con-
struction, we get the same vector x (up to sign) when processing
either patch sharing an edge. Furthermore, this construction repro-
duces the regular case (n = 4). The control vector v20 can be found
in a similar fashion. To summarize, we set

v10 = 1
3 (2 c0u10 − c1u00) + 3 (b11 − b10) ,

v20 = 1
3 (c0u20 − 2 c1u10) + 3 (b21 − b20) .

The construction for v̂10, and v̂20 follows in a similar manner.

4. RESULTS

Over the ordinary patches in the mesh (no extraordinary vertices),
our construction for the geometry and tangent patches exactly re-
produces the surface and tangent field of the Catmull-Clark surface.
Therefore, the only regions that our surfaces differ from the actual
Catmull-Clark surface are those patches containing one or more ex-
traordinary vertices. Furthermore, our method interpolates the limit
position and normal of the Catmull-Clark surface at each vertex of
the mesh.

Figures 9, 10, and 11, show examples of subdivision surfaces
containing patches with one or more extraordinary vertices. The
approximation using only Geometry patches matches the Catmull-
Clark surface very well, but is noticeably not smooth along some of
the edges. Adding the tangent field to the model creates a smooth
normal field and results in a surface that is nearly identical visually
to the original Catmull-Clark surface. Because the tangent patches
create a continuous normal field over the surface, we can use these
shapes for displacement mapping as well. Figure 12 shows an ex-
ample of displacement mapping applied to our geometry/tangent
patch approximation from Figure 9.

Figure 13 illustrates an example of a mesh with a boundary con-
taining both ordinary and extraordinary vertices (our boundary con-
struction can be found in Appendix A). The Catmull-Clark surface
uses the boundary rules of Biermann et al. [2000] to produce a
smooth subdivision surface.

Despite the fact that our geometry patch approximation is only
C0, the lack of smoothness is rarely if ever visible in the silhouette
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Fig. 13. An example of a mesh with a boundary. From left to right: Catmull-Clark patch structure, Geometry patch approximation, Geometry/Tangent patch
approximation and Catmull-Clark limit surface using Biermann et al.’s boundary rules.

Fig. 14. A model with a valence 24 vertex at the tip composed entirely of patches with more than one extraordinary vertex (left). Our Geometry/Tangent patch
approximation (center) actually appears to have a smoother profile at the valence 24 vertex than the Catmull-Clark surface (right).

Fig. 15. Comparison of our method with PN-Triangles and PCCM. The figures show the difference between the normal of the Catmull-Clark surface as well
as the geometric error. There is not sufficient separation of extraordinary vertices for PCCM in this example.

of the model (we have not been able to discern the C0 regions of
the models along the silhouette in any of our examples). Figure 14
depicts an extreme case that typically is not found in practice. This
model consists of a very high valence vertex (24 at the top vertex)
and patches that all contain more than one extraordinary vertex.
Interestingly, our geometry patch approximation produces a surface
that looks smoother than the Catmull-Clark surface at the valence
24 vertex despite the lack of continuity (Catmull-Clark surfaces are
known to have unbounded curvature at high valence vertices).

Figures 15–18 show a comparison of our technique with PN-
Triangles [Vlachos et al. 2001] and Patching Catmull-Clark Meshes
(PCCM) [Peters 2000]. In these pictures, color denotes the error

between the given surface and the actual Catmull-Clark surface,
where blue is no error and red represents high error. We mea-
sure the geometric error as the difference between the given sur-
face and the actual Catmull-Clark surface as a percentage of the
length of the bounding box diagonal. The normal error represents
the angle between the normals of the two surfaces. In all cases,
the correspondence between the two shapes is given by parametric
correspondence.

For surfaces composed of triangles, PN-Triangles [Vlachos et al.
2001] can create the illusion of a smooth surface in a similar man-
ner to our Approximate Catmull-Clark Patches for Catmull-Clark
surface. We modify PN-Triangles for Catmull-Clark surfaces by
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Fig. 16. Comparison of our method with PN-Triangles and PCCM with the surface from Figure 15 subdivided twice. PCCM creates a flat spot with undulations
in the surface away from the extraordinary vertex in order to make the surface smooth. ACC Patches produces a surface nearly indistinguishable from the true
subdivision surface.

Fig. 17. Comparison of our method with PN-Triangles and PCCM on a two-hole torus containing only odd valence extraordinary vertices. There is not
sufficient separation of extraordinary vertices for PCCM in this example.

triangulating the surface and forcing the PN-triangles to interpolate
the limit position and normal of the Catmull-Clark surfaces at the
vertices. PCCM [Peters 2000] is also similar to our method except
that PCCM creates an actual C1 surface using a finite collection
of bicubic patches as opposed to our C0 surface. However, the ex-
traordinary vertices must be sufficiently separated for PCCM, which
requires two-ring separation for odd valence vertices and four-ring
separation for even valence vertices.

Figures 15–18 illustrate that, as expected, PN-Triangles does not
produce good approximations of the Catmull-Clark surface. This
is especially true for the normal field approximation since PN-
Triangles only have a quadratic normal field whereas ordinary bicu-
bic patches have a degree 5×5 normal field. Hence, even in ordinary
regions of the surface, PN-Triangles do not provide good approxi-
mations to the underlying subdivision surface.

Many of our examples (Figures 9, 10, 11, 13, 15, and 17) do not
have sufficient separation of extraordinary vertices for PCCM and
require one or more levels of subdivision before we can apply this
technique. In Figures 15 and 17 this lack of separation is denoted
by “N/A.” Figures 16 and 18 show the same surfaces subdivided to
provide sufficient separation of extraordinary vertices. Surprisingly,
ACC patches provide a better approximation to the Catmull-Clark

surface both in terms of geometric error as well as normal field
error. The reason behind this phenomenon is that PCCM patches
are quite constrained by the need to create a C1 surface using only
bicubic patches and can create flat spots or undulations (at even va-
lence vertices) not present in the Catmull-Clark surface. In contrast,
ACC patches decouple the geometry and normal field approxima-
tion and, therefore, have more degrees of freedom leading to lower
error approximations.

5. IMPLEMENTATION

The GPU processing stages needed to support hardware tessellation
are illustrated in Figure 19. We should emphasize that no GPU’s
currently exist that implement all of these stages in hardware and,
hence, this section reflects our view of the proposed pipeline neces-
sary for hardware tessellation. Processing begins at the left with the
base control mesh as input and proceeds to the right, ending with
triangle rasterization. The function of these stages are as follows:

—Vertex Processing. In addition to vertex transform, vertices are
also animated in this stage.

—Patch Assembly. Patch control nets are formed by averaging over
local collections of control mesh vertices.
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Fig. 18. Comparison of our method with PN-Triangles and PCCM on a two-hole torus containing only odd valence extraordinary vertices after one level of
subdivision. Our ACC-Patches provide superior approximation both in terms of the normals of the surface as well as its geometry.

vertices patches triangles   vertex
processing

  patch
assembly tessellation

   pixel 
processingindices

Fig. 19. Proposed future GPU pipeline.

—Tessellation. Patches are evaluated at hardware generate domain
points.

—Pixel Processing. Conventional pixel/fragment shading.

Both the Xbox 360 and the Radeon HD 2900 have vertex and pixel
units, as well as tessellation hardware [Lee 2006; ATI/AMD 2007].
Currently, the patch assembly stage on these devices must be im-
plemented as vertex program. In future hardware, we expect patch
assembly to be a dedicated hardware stage [Boyd 2007].

The algorithm for patch construction presented in this paper is in-
tended to run as a patch assembly program. Without this specialized
hardware stage, our algorithm could be implemented instead as ver-
tex program. In either case, a control mesh would consist of a pair
buffers; one that contains control mesh vertices, and a second con-
taining a neighborhood of indices corresponding to the quad faces
of the control mesh. The vertices in the first buffer are transformed
and animated. Each entry of the second buffer contains the indices
of the union of all mesh vertices belonging to faces incident on a
quad, together with the valence of each of the four vertices of the
quad. These local index neighborhoods are computed as a prepro-
cess by visiting each base mash face. In order to optimize SIMD
efficiency and avoid underutilizing GPU buffers, the amount of data
that can be packed into an index neighborhood structure must be
limited. Therefore, this approach cannot accommodate arbitrarily
high valence vertices. The structure for storing these perquad in-
dex neighborhoods should only be large enough to handle common
cases; larger structures will waste resources in all but extreme sit-
uations. When each index neighborhood structure is processed, the
shader gathers the needed vertices and averages these to form patch
vertices that are written to an output buffer for input to the tessellator
stage.

Even though the patches input to the tessellator unit contain 40
control points (16 for geometry and 12 for each tangent), we do
not need to transfer this amount of data since many of these control
points are redundant. In reality, all we need is the quad of the cor-
responding patch with its edge-adjacent quads (12 points) as well

as the limit positions at the corners of the patch (4 points) and the
tangents (8 vectors). Along with the valence at each patch corner
we only need 25 points to evaluate the patch on the GPU.

6. FUTURE WORK

While Catmull-Clark surfaces are typically created from quad-
meshes, the subdivision rules are general enough to handle meshes
with arbitrary sided polygons. Arbitrary polygons are theoretically
possible in our framework, but are not practical for adaptive tessel-
lation on current graphics hardware, which support only triangular
and quadrilateral domains. However, it is possible to incorporate
triangle patches into the tessellation process.

For simplicity, we only operate on meshes consisting entirely of
quads. We can, of course, produce an all-quad mesh by performing
one step of subdivision. However, the disadvantage of this approach
is the increase in the number of patches similar to Figure 1. In the
future we would like to extend our method to triangular patches, and
more generally triangle-quad surfaces [Stam and Loop 2003] using
Bézier triangles.

Finally, Catmull-Clark surfaces are smooth everywhere while,
in practice, many surfaces contain sharp edges or corners. We can
handle these creases by marking edges in the mesh and treating
them as boundary edges. However, DeRose et al. [1998] introduced
rules to create semi-sharp creases in Catmull-Clark surfaces. We
believe that we may be able to incorporate semi-sharp creases into
our method by modifying the patch coefficients as well.

APPENDIX A. MESHES WITH BOUNDARIES

Orginally, Catmull-Clark surfaces were assumed to be closed sur-
faces; however, not all meshes are closed. Nasri [1987] extended
Catmull-Clark subdivision to surfaces with boundaries. Along the
boundary, Nasri chose the subdivision rules to reproduce cubic
B-splines. To generalize our geometry patches to boundaries, we
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Fig. 20. Rules for Bézier control points along the boundary to create a cubic B-spline. Bolded edges indicate boundaries. From left to right: mask for an edge
control point, corner control point and a corner control point contained by only one quad.

Fig. 21. Rules for creating the interior Bézier control point adjacent to a
boundary vertex contained by more than one quad (a) and only one quad (b).

follow Nasri [1987] and require that the boundary curves form cu-
bic B-splines.

A.1 Geometry Patches

For a boundary edge, the two edge points are found along the edge
at ratios 1 : 2 and 2 : 1 from the endpoints. For a boundary ver-
tex incident on two or more faces, we find the corner point as the
midpoint of the two adjacent edge points. For a boundary vertex
contained by only one face, we set the corner point to the boundary
vertex. These rules are summarized in Figure 20 with the implied
normalization that the masks sum to 1.

Besides modifying the Bézier control points along the boundary,
we also modify the interior control point adjacent to a boundary
vertex. For boundary vertices contained by more than one quad, we
use the mask in Figure 21(a) where k is equal to the number of
quads containing the boundary vertex. When a boundary vertex is
contained by only one quad, the interior control point is given by
Figure 21(b). Similar to Section 2, edge points on interior edges
are placed at the midpoint of the adjacent interior points. In the
interest of simplicity, we ignore topologically anomalous configu-
rations, such as bow-ties and pin-wheels; though in principle, such
configuration do not cause problems.

We make a distinction from the valence n used in Sections 2 and 3
and the number of quads k containing a boundary vertex because
we treat the boundary as being half of a closed mesh. Therefore,
n = 2k. In fact, if we apply this identity to Figure 21, we obtain the
interior point mask for closed meshes shown in Figure 4.

A.2 Tangent Patches

Our tangent patch construction is identical to Section 3 except that
we modify the way the limit tangents are computed at boundary
vertices. For boundary vertices contained by more than one quad,
we use the tangent masks derived for Catmull-Clark surfaces by
Biermann et al. [2000] to compute the tangent vectors. These tangent
vectors provide direction, but lack length information and we use the
same normalization process from Section 3 to choose an appropriate
length. The result is two tangent masks that create two vectors r0 and
r1 that span the tangent plane at that vertex. Referring to Figure 22,

Fig. 22. Labeling for vertices around a boundary vertex contained by k
quads.

the mask for r0 is

α0 = 1
2

αk = − 1
2

αi %=0,k = γ = βi = 0,

and for r1

γ = −4s
3k+c

α0 = αk = − (1+2c)
√

1+c
(3k+c)

√
1−c

αi %=0,k = 4si
3k+c

βi = si +si+1
3k+c

where c = cos
(

π
k

)
, s = sin

(
π
k

)
and si = sin

(
π i
k

)
.

The tangent vector along the j th edge is then given by

cos
(

π j
k

)
r0 + sin

(
π j
k

)
r1.

The rest of the tangent patch construction is the same except that
we use the substitution n = 2k in Section 3.2 for the edges of the
tangent patches.

For boundary vertices contained by only one quad (k = 1), we
again change the tangent masks for r0

γ = −1
α0 = 1

αi %=0 = βi = 0

and for r1

γ = −1
α1 = 1

αi %=1 = βi = 0.

The rest of the tangent patch construction is identical in Section 3.2
except that we substitute n = 4 for the vertex contained by only one
quad.
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