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We present a technique for large matrix-matrix multiplies
using low cost graphics hardware. The result is computed
by literally visualizing the computations of a simple parallel
processing algorithm. Current graphics hardware technol-
ogy has limited precision and thus limits immediate appli-
cability of our algorithm. We include results demonstrating
proof of concept, correctness, speedup, and a simple applica-
tion. This is therefore forward looking research: a technique
ready for technology on the horizon.
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1. INTRODUCTION

We present a technique for multiplying large matrices
quickly using the graphics hardware found in a PC. The
method is an adaptation of the technique from parallel com-
puting of distributing the computation over a logically cube-
shaped lattice of processors and performing a portion of the
computation at each processor. Our technique is essentially
to visualize this process. We represent matrix elements as
colors and render an image of this cube in a rendering mode
that properly computes the matrix product, which can then
be read from the screen memory. Graphics hardware is spe-
cialized in a manner that makes it well suited to this partic-
ular problem, giving faster results in some cases than using
a general-purpose processor.

When we refer throughout this paper to “graphics hard-
ware,” we refer to hardware that is found in common desk-
top PC machines. The performance available will vary from
vendor to vender. For our research, we have used cards with
nVidia’s GeForce3 GPU (Graphics Processing Unit). Other
common PC hardware companies include ATI, Matrox, and
3D Labs. Additionally, UNIX workstations typically have
graphics hardware comparable to PCs. In this work, we have
emphasized portability and simplicity and have not used any
specific vendor’s extensions. We suspect that improved per-
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formance may be available using some vendor specific ex-
tensions.

We use the graphics hardware for numerical computation,
rather than rendering images. This was also done by Hoff[4],
who showed that graphics hardware was well suited to the
problem of rapidly computing Voronoi regions of geomet-
ric primitives. Peercy et al.[6] and Proudfoot et al.[7] have
developed shading languages that run on standard graph-
ics hardware. A shading language is a specialized program-
ming language used for describing the appearance of a scene,
typically used in off-line rendering for computer animation.
These papers illustrate that traditional fixed-function graph-
ics hardware can be used much more generally than in-
tended, in the proper circumstances. Hart[3] and Kautz
et al.[5] have also used the multi-texturing capability of cur-
rent graphics hardware (described in Section 2) in ways that
go beyond those envisioned by the hardware architects.

Our work is somewhat forward looking, since current graph-
ics hardware provides limited output precision for the pixel
operations that our technique uses. Typically 8-bit fixed
point output is provided, rather than the 32-bit floating
point needed as a minimum for most numerical applications.
However, we believe that floating point pixel operations will
be available in future graphics hardware since game devel-
opers, the primary demand for PC graphics functionality,
have shown great interest in this capability for quite some
time.

Although graphics hardware is not the ideal hardware spe-
cialization for large matrix operations, we show that it pos-
sesses the necessary capabilities and yields competitive per-
formance. It is also inexpensive and pervasive, unlike most
specialized computational hardware.

In the remainder of the paper we give an overview of
graphics hardware, then present our matrix multiplication
technique. We then discuss precision issues, review our re-
sults, and finally contrast graphics processors with general-
purpose processors to show under what circumstances the
presented technique is competitive.

2. THE GRAPHICS PIPELINE

In this section, we overview the graphics pipeline used by
graphics hardware. This is intended to give a brief and high
level understanding of how the hardware renders scenes. We
will not cover everything. For full treatment, we refer the
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Polygons Surfaces of objects in the scene are represented
as polygons. The hardware draws polygons by con-
verting them to pixel fragments - a process known as



Figure 1: Multi- Texturing Beginning with a simple
white rectangle, we combine the brick texture with
the flashlight texture in modulate mode to produce
a wall with a flashlight pointed at it. The ability to
modulate with two textures provides us with the
ability to multiply values from two separate tex-
tures, using the graphics hardware.

“rasterization”. The polygon description includes the
position of the vertices. The polygon description can
also include information on how to texture the poly-
gon.

Texture Mapping A “texture” is an image, usually 2D,
which alters the appearance of the fragment. For ex-
ample, a photograph of a brick wall may make a simple
rectangle look more like a brick wall. Another appli-
cation is the use of a texture whose intensities corre-
spond to the amount of light falling on a surface. If
this texture modulates the color of the fragment, then
the appearance of lighting can be given without com-
plex lighting equations. Figure 1 illustrates the use of
two textures to alter the appearance of a single white
rectangle. In the illustration, the two textures are mul-
tiplied together (pointwise). There are many different
ways that the two textures can be combined. Multi-
plicative combination is what we are interested in here.
The term “multi-texturing” refers to the application of
more than one texture to the same surface.

The Framebuffer and Blending The fragments are then
written into the framebuffer, which is a memory buffer
in the graphics hardware’s local memory. The incom-
ing fragment may optionally be blended in a variety of
ways with the value already stored at that pixel of the
frame buffer. The blending mode we use is to add the
two fragments together, storing the result in the frame
buffer. Pixel colors can be represented in the frame-
buffer using four channels: red, green, blue, and alpha.
The alpha channel has various uses outside the scope
of this paper. We treat all four channels identically.

Read back The contents of the framebuffer are most com-
monly scanned out to the screen for display. In our
case, we want to copy the contents to main memory

also, in order for our program to have the results of
our computations.

3. THE TECHNIQUE

Multiple processors are often used in parallel to compute
the multiplication of two matrices. One simple method
starts with imagining processors arranged to fill a cube. We
can then imagine the first matrix, lying horizontally, dis-
tributed in the usual chunk manner across all the processors
on the top face of the cube. This distribution is replicated
downwards, so that each horizontal “layer” is a distributed
copy of the matrix on the top face. Likewise, we can imag-
ine the second matrix, transposed, on a side face, distributed
among the processors on that face, and replicated sideways
through the cube. Each processor then performs the small
matrix-matrix multiply of its sub-matrices. Finally, these
results are summed onto the front face of the cube, and this
now holds our answer. Our technique is to simply visualize
this.

The naive visualization is to draw a little square for each
processor in the cube. Let us first assume we have = X
y X z processors, so each will only get one element of A
and one element of B to multiply. This is done by creating
two texture maps, one holds the data from A and the other
B. Then we set the multi-texturing mode to “modulate”
and assign the corresponding element of A and B to each
processor (little square). We axis align the cube with our
viewing window so that the front face of the cube is all
we see, observing that the processors on the front face now
occlude all the other processors. We use an orthographic
view (no perspective adjustments) so that the little squares
line up where they should. Finally, we set the blend mode
to “sum,” and draw all of these little squares so that their
individual results are added into the correct place on the
screen, at the front face of the cube. The resulting matrix
is retrieved as a memory copy from the graphics card to
main memory, there is no requirement for a human to try
to interpret the values seen on the monitor.

To simplify things, and speed them up, we first combine
all the little squares that are in planes parallel to the front
face into large squares — there are z of them. One column
of texture A and one row of texture B are used for each
large square, with the textures spreading perpendicularly to
replicate the data. Figure 2 illustrates this. In short, the
technique is to render z parallel rectangles (each x X y) one
behind the other — we can only see the first, and it fills our
view. Then texture map both matrices A and B onto each
one, and sum them up onto the screen. The answer is then
there on the screen. Hence, we say that our technique is to
literally “visualize a simple parallel algorithm.”

4. PRECISION

We mentioned in Section 1 that this is somewhat forward
looking research. This is because of the precision issues dis-
cussed in this section. We begin by tracing all data through
the pathway. We specify two texture maps based on the two
matrices we want to multiply. Historically, texture mapping
in hardware has used fixed point arithmetic. These texture
maps are limited to 8-bit precision. First, we multiply tex-
ture values. Experiments can show that the GeForce2 uses
14 bits of precision at this step, so underflow errors can oc-
cur here (e.g. 1g* 1g = 00s). Experiments can also show
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Figure 2: Graphics Hardware Matriz Multiplication
The two matrices, A and B, are shown (white is 1
and black is 0). The 3rd column of A is replicated
across a slice, and the 3rd row of B is replicated
down the slice. The two are then shown multiplied
together via multi-texturing. Finally, the result ma-
trix, C, is the sum of this 3rd slice with the other
three.

C = 3rd slice added tc
1st, 2nd, and 4th slice

that the GeForce3 has this internal precision increased to 16
bits, correcting this issue.

Next, we sum up z of these values. We designate k to be
the number of bits required to represent z. The correct sum
requires k + 16 bits, where only 16 are given. To make mat-
ters worse, the graphics hardware uses saturation arithmetic
(i.e. FFi6+ 0116 = FFig). This makes sense in graphics
as adding intensity to an already saturated color should not
cause it to wrap and turn black. But this makes it harder
to design a higher precision fixed-point implementation. We
can prevent the overflow in the adds from occurring by set-
ting the polygon color to 1/z. Since the textures are being
multiplied by the polygon color, this effectively shifts off
the least significant k bits before any of the adds take place.
This gives us an answer that has not been saturated, but
can be erroneous in the least significant k bits (because the
k truncated bits may have introduced carries that should be
visible). This is less useful when k approaches 8, because
then all bits are shifted off and only zeros remain. Finally,
the output, stored in the framebuffer, reduces the precision
back to 8 bits. Further, what is really needed is floating
point support, not just higher precision fixed point.

Assuming 8 bits in and 8 bits out are satisfactory for the
application, the major source of error is overflow. As the oc-
currence of overflow is a result of adding z values with fixed
point arithmetic, using values within the range [0,1/z) pre-
vents overflow. On matrices for which overflow does not
occur, a reference implementation and our graphics acceler-
ated implementation give identical results.

There is growing demand in the graphics industry for
higher precision graphics arithmetic, and even for floating
point arithmetic. There are various classic algorithms for
improving precision, but we have found the primary obsta-
cle here is the saturation arithmetic. A synthetic approach
may be found, but we have strong suspicions that the graph-

ics hardware industry will provide more native support in
the near future.

Precision Effects and Applications

Eight bits is not satisfactory for many scientific applications.
We first note that a variety of general-purpose processor ven-
dors have introduced SIMD multimedia extensions, includ-
ing the Intel MMX, MIPS MDMX, SPARC VIS, and HP
PA2 architectures. Many of these provide for, and many
applications have found good use for, 8-bit precision with
optional saturation arithmetic. Applications using these ar-
chitectures include audio, communications, graphics, image
processing, video, etc. A discussion as to why the graphics
hardware can be efficient for matrix multiplication, in the
right application, is found in Section 6.

In theory, any large matrix operation would be a candi-
date for our technique. In practice, and with current tech-
nology, the right application needs to be resilient to the
limited arithmetic mentioned already. Some applications
that currently use MMX could be candidates. Some uses
of Markov processes, which require raising a matrix to var-
ious powers, depend on which elements of the matrix go to
one and zero the fastest rather than the precise value of the
less important elements. All this said, application of our
technique is certainly limited using current technology. The
elegance and results shown in Section 5 suggest that this
method of computing large matrix-matrix multiplications is
useful, assuming that the future provides the technology.
We believe this to be the case.

As a sample application, we have implemented the prob-
lem of finding connected components in a graph. This prob-
lem includes raising a square matrix to a power. Since the
matrix is simply an adjacency matrix, with zero and non-
zero values denoting connectivity, it can be implemented
using the currently available fixed point precision. We dis-
cuss our results and implementation of this application in
Section 5.

5. RESULTS

After hardware initialization, our program can compute
many matrix matrix multiplies. As this is a constant time,
one time setup cost, we did not consider it in our compar-
isons. This step takes about 0.20 = 0.05 seconds.

We focus on operation speed in order to make the results
more generally comparable. Dongarra [1] has shown that a
P4 with the SSE2 extensions can get 4.0 Gflop/s on ATLAS
with 32-bit precision (n = 1000). We would like to compete
with this. In considering the results here, we again caution
the reader regarding the precision of the resulting matrices,
as discussed in Section 4.

When the graphics technology on the horizon becomes re-
ality, then more significant tests can be done. At that time,
we expect the competing technologies to have improved also.
Competition includes general purpose processors, the MMX,
SSE, and SSE2 extensions and SIMD instructions and exten-
sions for other platforms, including MIPS MDMX, SPARC
VIS, and HP PA2.

The operations performed on graphics hardware are byte
sized. This puts serious comparisons at a significant disad-
vantage. Hence, we have measured Bops (byte operations
per second). Our timings include the time to convert from
matrix to texture map, time to send the textures to the
graphics hardware memory, perform the calculations, copy
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Figure 3: Performance Performance for matrix-matrix multiplies, in MBops (Byte Operations per Second).
z ranges from 4 to 1024 and y and z range from 4 to 4096. In the left graph, the performance is shown
as a function of the number of the number of elements passed into the computation. In the right graph,
performance is shown as a function of the number of computations. The dips in the left graph and the lower
strata of the right graph both correlate to oblong sized matrices. We believe this is caused by cache misses

with oblong sized matrices.

the framebuffer back to main memory, and convert back to
matrix format. In determining operation speed, we used an
operation count of 2xx Xy X z—x Xy (x Xy X z multiplies and
x Xy X z—ax Xy adds). Using an nVidia GeForce3 graphics
chip, we have achieved 4.4GBops performance. Performance
as a function of matrix size is plotted in Figure 3. A tex-
ture can be laid out in texture memory in layouts which are
optimal for common graphics applications. These layouts
are often not the traditional linear layout. This can cause
unusual cache misses with oblong textures. In the figure
(3), there are two strata of results, with the lower represent-
ing oblong textures and the upper representing more square
matrix sizes.

Sample Application

An adjacency matrix raised to a power p yields a matrix
with non-zero entries indicating paths of length p. Adding
matrices of all powers less than and equal to p tells us which
nodes cannot be reached by which other nodes in p steps.
For our implementation of this application we raise an adja-
cency matrix to various powers. Note that MP = M® x M®
where p = a + b. Using this, matrices can be raised to large
powers using few matrix multiplies. We show timing results
for multiplying a 1024 x 1024 matrix by itself twenty times,
using each result in the next multiplication.

To raise a matrix to successive powers requires copying
the result matrix from the frame buffer to a texture so that
it may be used as input. This memory copy is done locally
in video memory and is approximately twice as fast as the
time to copy a matrix to or from application memory. This
is illustrated by the times shown in Figure 4.

All three kinds of memory copies - loading matrices into
textures, copying the result from the frame buffer to a tex-
ture for successive powers, and copying the final result from
the frame buffer to application memory - are a small frac-

tion of the total time for reasonably sized matrices. This is
shown in Figure 5.

Implementation

We mention here some observations we made during our
implementation that may be of interest to those duplicating
our results.

Refresh Rate We found that setting the refresh rate on
the monitor as low as possible made marginal improve-
ments (about 10%).

RGBA We found that 4 numbers can be packed into a
single pixel, by setting the red, green, blue, and alpha
channels to different values.

Texture Format Changing the format of the texture cre-
ation and read-back from RGBA to ABGR_EXT (in
OpenGL) gave about 40% improvement on our hard-
ware. This is because the hardware driver avoids re-
formatting the data from the application format to the
card format. There is a number of options here, with
near equal performance for each option except the one
used natively on the specific hardware. The native
format should give significant improvement.

Full Screen Running full screen instead of in a window
provides improved performance.

Various other optimizations yielded minor (<1%) improve-
ments.

6. CONCLUSION

We expected our graphics hardware matrix multiplication
technique to provide speedup over CPU implementations.
The primary reasons for this are the memory system and
the specialized processing of the graphics hardware. The
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Figure 4: Comparison of memory copy times Texture
Load is the time to copy matrices from application
memory to the graphics card. Copy is the time to
copy a result matrix from the frame buffer to texture
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a final result from the frame buffer to application
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Figure 5: Breakdown of times in our sample ap-
plication For performing twenty matrix multiplies,
the time to perform the multiplies and accumulates
vastly dominates the time to set up the problem by
copying the matrices to and from the graphics mem-

ory.

problem of large matrix-matrix multiplies is traditionally
memory limited. Since the matrices are not large enough to
store in level 2 cache, the problem becomes one of streaming
memory. 3D computer graphics also includes the problem of
streaming memory, and the specialized memory subsystem
on graphics cards is made for this problem.

The memory subsystem on current graphics hardware is
128 bits wide, running at double data rate, allowing 256 bits
to be read or written per clock. The GeForce3 memory clock
is 233 MHz, yielding 7.4 GB/sec memory bandwidth. With
this particular chip, the 128 bit interface is divided into four
independent 32-bit memory busses, so four memory streams
may be read or written at burst speeds. Compare this to
the memory interface of an AMD Athlon CPU, which is 64
bits wide, at 133 MHz, optionally double data rate, yielding
up to 2.1 GB/sec memory bandwidth. Likewise, the Intel
Pentium IV with PC800 (RAMBUS) memory benchmarks
at 1.5GB/sec.

Note that although CPUs have much higher clock rates
than graphics chips (e.g., 1.4 GHz vs. 200 MHz), this has lit-
tle impact because in a memory streaming problem, memory
reads dominate. Even with memory Pre-fetching, the up to
10:1 ratio between CPU clock speed and memory bus clock
speed prevents the CPU from going full speed.

The processors in the graphics hardware do not have to
be as general purpose as CPUs. They optimize for a dif-
ferent set of operations that are more common for graphics.
The highly accelerated operations of multiplication of tex-
ture maps and accumulation into the frame buffer is essen-
tially the same as the multiply-accumulate used in matrix
matrix multiplication.

Unfortunately, most graphics cards must perform a frame
buffer read to implement the accumulate, whereas a CPU
can accumulate into a register. An embedded frame buffer
graphics architecture such as the Sony PlayStation2 might
alleviate this problem. Specifically, the time to compute

a single matrix multiply for a 1024 x 1024 matrix is 0.546

seconds on the GeForce3. With the 7.4 GB/sec memory

bandwidth, this yields a theoretical bandwidth consump-
tion of 4.1 GB. Since the processor performs 10243 multiply-
accumulate operations, this is an average of 3.79 bytes read
or written per multiply-accumulate. This corresponds very
closely to reading one element from each texture (operand
matrix) and one element from the frame buffer (result ma-
trix) and writing one element to the frame buffer. Texture
cache efficiencies seem to be nearly offset by inefficiencies
elsewhere in the pipeline. This shows that our hardware is
bandwidth limited for this application. On the other hand,
an embedded framebuffer would avoid the framebuffer reads
and writes and could significantly improve performance.
When comparing the results presented in this paper to
those of Dongarra [1], it is important to note that our ma-
trix elements are 8 bits, whereas the cited results of Don-
garra are for 32 bit elements. Both implementations achieve
the same number of operations per second, although our
elements are one fourth as large. Thus, when graphics hard-
ware supports 32-bit arithmetic we believe that despite the
much higher memory bandwidth of graphics hardware, our
technique will not be competitive against cache aware CPU
implementations unless frame buffer reads and writes can
be performed at register speeds and graphics chip core clock
rates increase significantly.



Summary

We demonstrate that literal “visualization” of the work done
in a simple parallel algorithm for matrix-matrix multipli-
cation can calculate solutions quickly using common 3D
graphics accelerators. These “solutions” currently have lim-
ited precision (which limits applicability), but the graphics
hardware industry is making strides towards changing this.
Graphics hardware is low cost and computationally power-
ful. We use this inexpensive specialized hardware to solve a
numerical problem to which it is also well suited.
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