
Prefetching in a Texture Cache Architecture 

Homan lgehy 

Computer Science Department 

Matthew Eldridge Kekoa Proudfoot 

Department of Electrical Engineering Department of Electrical Engineering 

Stanford University 

Abstract 
Texture mapping has become so ubiquitous in real-time graphics 
hardware that many systems are able to perform filtered texturing 
without any penalty in fill rate. The computation rates available 
in hardware have been outpacing the memory access rates, and 
texture systems are becoming constrained by memory bandwidth 
and latency. Caching in conjunction with prefetching can be used 
to alleviate this problem. 

In this paper, WC introduce a prefetching texture cache archi- 
tecture designed to take advantage of the access characteristics of 
texture mapping. The structures needed are relatively simple and 
arc amenable to high clock rates. To quantify the robustness of 
our architecture, we identify a set of six scenes whose texture 
locality varies over nearly two orders of magnitude and a set 01 
four memory systems with varying bandwidths and latencies. 
Through the use of a cycle-accurate simulation, we demonstrate 
that even in the presence of a high-latency memory system, our 
architecture can attain at least 97% of the performance of a zero- 
latency memory system. 

CR Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture. 

1 INTRODUCTION 
Texture mapping has become ubiquitous in real-time graphics 
hardware over the past few years. The accelerators found in every 
segment of the market, from the consumer level to the graphics 
supercomputer level, have on-chip support for performing the 
costly operations associated with texture mapping. The use of 
texture mapping is so pervasive that many systems are built to 
perform the necessary operations without any penalty in fill rate. 

Texture mapping is expensive both in computation and mem- 
ory accesses. Continual improvement in semiconductor technol- 
ogy has made the computation relatively affordable, but memory 
accesses have remained troublesome. Several researchers have 
proposed and demonstrated texture cache architectures which can 
reduce texture memory bandwidth. Hakura and Gupta examine 
different organizations for on-chip cache architectures which are 
useful for exploiting locality of reference in texture filtering, tex- 
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ture magnification, and to a limited extent, repeated textures 151. 
Cox, Bhandari, and Shantz extend this work to multi-level cach- 
ing 131, They demonstrate that on-chip caches in conjunction with 
large off-chip caches can be used to exploit all of the aforemcn- 
tioned forms of texture locality as well as inter-frame texture lo- 
cality. Thus, memory bandwidth requirements can be dramati- 
cally reduced for scenes in which the working set of a frame fits 
into the off-chip cache. 

A second troublesome point about texture memory access 
(which is not addressed by Hakura or Cox) is the high latencies 01 
modern memory systems. In order to address this problem, sev- 
eral systems have been described that make use of large pipelines 
which prefetch the texel data [ 1, 7, I I]. Two of the systems [I, 71 
do not use any explicit caching, although their memory systems 
are organized for the reference patterns of texture filtering, but 
one system [I I] does employ prefetching as well as two levels of 
caching, one of which holds compressed textures. However, the 
algorithm which combines the prefetching with the caching is not 
described. Several other consumer-level architectures exist which 
undoubtedly utilize some form of prefetching, possibly with 
caching. Unfortunately, none of these algorithms are described in 
the literature. 

In this paper, we introduce a texture architecture which com- 
bines prcfetching and caching. Our architecture is designed to 
take advantage of the peculiar access characteristics of texture 
mapping. The structures needed for implementing the prefetching 
algorithm are relatively simple, thus making them amenable to the 
high clock rates associated with texture mapping. To quantify the 
robustness of our prefetching texture cache architecture, we iden- 
tify a set of six scenes whose texture locality varies over nearly 
two orders of magnitude and a set of four memory systems with 
varying bandwidths and latencies. Through the use of a cycle- 
accurate simulation, we demonstrate that the texture prefetching 
architecture can successfully hide nearly all of the latency of the 
memory system over a wide range of configurations. The space 
ovcrhcad of this architecture is reasonable, and the resulting tex- 
ture system is always able to attain at least 97% of the perform- 
ance of a zero-latency memory system. 

2 MIP MAPPING 
Texture mapping, in its most basic form, is a process by which a 
2D image is mapped onto a projected screen-space triangle under 
perspective. This operation amounts to a linear transformation in 
2D homogeneous coordinates. The transformation is typically 
done as a backward mapping-for each pixel on the screen, the 
corresponding coordinate in the texture map is calculated. The 
backward mapped coordinate typically does not fall exactly onto a 
sample in the texture map, and the texture may bc minified or 
magnified on the screen. Filtering is applied to minimize the 
effects of aliasing, and ideally, the filtering should be efficient and 
amcnablc to hardware acceleration. 
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Figure 1: Mip Mapping. An image is filtered recursively 
into quarter-sized images. Trilincar interpolation recon- 
structs a sample hy linearly interpolating hetwcen two adja- 
cent levels of the mip map, each of which is sampled with 
hilincar filtering on the four closest texels in that level of the 
mip map. 

Mip mapprng [I21 is the filtering technique most commonly 
implemcntcd in graphics hardware. In mip mapping, an image 
pyramid is constructed from the hasc image which serves as the 
hottom of the pyramid. Each successive level of the pyramid is 
constructed by resampling the previous lcvcl of the pyramid by 
half in each dimension, as illustrated in Figure I. For each 
screen-space fragment, the rasterization process computes a tex- 
ture coordinate and an approximate texcl-to-pixel ratio (also 
known as the level-of-detail value). This ratio is used to compute 
the two closest corresponding mip map levels, and a hilinear in- 
terpolation is performed on the four nearest texcls in each of the 
two adjacent Icvcls. These two values are then combined with 
linear interpolation based on the level-of-detail value, and the 
resulting trilinearly interpolated sample is passed to the rest of the 
graphics pipeline. If a fragment falls beyond either end of the mip 
map pyramid, the algorithm performs hilinear filtering on the one 
closest level of the mip map. 

The popularity of mip mapping can be attributed to three char- 
acteristics. First. mip mapping reduces many aliasing artifacts. 
Although it is by no means an ideal tilter, especially since it often 
blurs cxcessrvely, the results are quite acceptahlc for interactive 
applications. Second, the computational costs of mip mapping, 
though by no means cheap, arc rcasonahle and fixed for each 
fragment, Finally, mip mapping is efficient with respect to mem- 
ory. The additional space required for the pyramid representation 
is only one-third the space occupied by the original image. Fur- 
thermore, because the level-of-detail computation is designed to 
make one step in screen space correspond to approximately one 
step in the appropriate mip map level, the memory access pattern 
of mip mapping is very coherent. 

3 CACHING AND PREFETCHING 
For the past few decades, many aspects of silicon have been expc- 
riencing exponential growth. However, not all aspects have 
grown at the same rate. While memory density and logic density 
have seen tremendous growth, logic speed has experienced mom 
moderate growth, and memory speed has experienced slight 
growth. These lactors have made the cost of computation on a 
chip very cheap, hut memory latency and bandwidth sometimes 
limit performance. Even with the advent of memory devices with 
high-speed interfaces [4], it is easy to build a texturing system that 
outpaces the memory it accesses. The problem of directly ac- 
cessing DRAM in a texture system is aggravated hy the fact that 
memory devices work hest with transfers that do not match the 
access patterns of texture mapping: DRAM provides high hand- 
width when moving large contiguous blocks of memory, but a 
fragment’s texture accesses typically consist of several small non- 
contiguous memory rcfcrences. 

An obvious solution to this problem is caching. Many issues 
are resolved by integrating a small amount of high-speed, on-chip 
memory organized to match the access patterns of the texture 
system. According to our measurements (detailed in Section 5.1) 
as well as data found in other literature 13, 51, it is quite rcason- 
able to expect miss rates on the order of I .5% per access. Many 
texture systems arc capable of providing the computation for a 
trilinearly mip mapped fragment on every clock cycle. Thus, 
hccausc there are eight texture accesses per cycle, the per- 
fragment texel miss rate is 12%. Even if these misses could he 
scrviccd in a mere 8 cycles each, a calculation of the average 
memory access time shows that overall performance is cut in half 
Clearly, this is not acceptable. 

While caching can alleviate the memory bandwidth problem, it 
does not solve the memory latency problem. The latency problem 
with relation to texture caching is a special one. In current inter- 
active graphics interfaces, texture accesses arc read-only for large 
amounts of time, and address calculation for one texture access is 
never dependent on the result of another texture access. Thus, 
there are no inherent dependencies to limit the amount of latency 
that can be covered. This means that a prefetching architecture 
should be capable of handling arbitrary amounts of latency. 

3.1 Traditional Prefetching 
In the absence of caching, prefetching is very easy. When a 
fragment is ready to be textured, the memory requests for the 
eight texel accesses are sent to the memory system, and the frag- 
ment is queued onto a fragment FIFO. When the replies to the 
memory requests arrive, the fragment is taken off the FIFO, and 
the fragment is textured. The time a fragment spends in the FIFO 
is equal to the latency of the memory system, and if the FIFO is 
sized appropriately, fragments may be processed without ever 
stalling. For greater efficiency, part of the fragment FIFO can 
actually be a fragment processing pipeline [I, 71. Note that this 
non-caching prefetching architecture assumes that memory replies 
arrive in the same order that memory requests are made, and that 
the memory system can provide the required bandwidth with 
small memory rcqucsts. 

One straightforward way to combine caching with prefetching 
is to use the architecture found in traditional microprocessors that 
use explicit prcfetch instructions. Such an architecture consists of 
a cache, a fully associative prefetch address buffer, and a memory 
rcqucst buffer. A fragment in such a system is processed as fol- 
lows: first, the fragment’s texel addresses arc looked up in the 
cache tags, and the tragment is stored in the fragment FIFO. 
Misses are forwarded to a prefetch buffer that is made fully asso- 
ciative so that multiple misses to the same memory block can bc 
combined. New misses arc queued in the memory request buffer 
before being sent to the memory system. As data returns from the 
memory system, it is merged into the cache. When a fragment 
reaches the head of the fragment FIFO, the cache tags arc checked 
again, and if all of the texels arc found in the cache., the fragment 
can be liltercd and textured. Othcrwisc, additional misses arc 
gcncrated, and the system stalls until the missing data returns 
from memory. Fortunately, the architecture works even in con- 
junction with an out-of-order memory system. 

There are three problems with using the traditional microproc- 
essor prcfctch architecture for texture mapping. First, if the prod- 
uct of the memory request rate and the memory latency being 
covered is large compared to the size of the caches utilized, a 
prcfetched block that is merged into the cache too early can cause 
conllict misses. Second, in order to support both reading and 
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prefetching of texels at the full fragment rate, tag checks must be 
performed at twice the fragment rate, increasing the cost of the tag 
logic. Finally, as the product of the memory request rate and the 
memory latency increases, the size (and therefore the associativ- 
ity) of the prefetch buffer must be increased proportionally. 

3.2 A Texture Prefetching Architecture 
While some of the problems with the traditional microprocessor 
prefetching architecture can he alleviated, we have designed a 
custom prefetching architecture that takes advantage of the special 
access characteristics of texture mapping. This architecture is 
illustrated in Figure 2. Three key features differentiate this archi- 
tecture from the one described in Section 3. I. First, tag checks 
are separated in time from cache accesses, and tag checks are 
performed only once per texel access. Second, because the cache 
tags arc only checked once and always describe the future con- 
tents of the cache, a fully associative prefetch buffer is not 
ncedcd. And third, a reorder buffer is used to buffer memory 
requests that come back earlier than needed. 

The architecture processes fragments as follows. As each 
fragment is generated, each of its texel addresses is looked up in 
the cache tags. If a tag check reveals a miss, the cache tags are 
updated with the fragment’s texel address immediately and the 
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Figure 2: A Texture Prefetching Architecture. 

address is forwarded to the memory request FIFO. The cache 
addresses associated with the fragment are forwarded to the frag- 
ment FIFO and are stored along with all the other data needed to 
process the fragment, including color, depth, and filtering infor- 
mation. As the request FIFO sends requests for missing cache 
blocks to the texture memory system, space is reserved in the 
reorder buffer to hold the returning memory blocks. This guar- 
antee of space makes the architecture robust and deadlock-free in 
the presence of an out-of-order memory system. A FIFO can be 
used instead of the reorder buffer if responses from memory al- 
ways return in the same order as requests sent to memory. 

When a fragment reaches the head of the fragment FIFO, it 
can proceed only if all of its texels are present in the cache. 
Fragments that generated no misses can proceed immediately, but 
fragments that generated one or more misses must first wait for 
their corresponding cache blocks to return from memory into the 
reorder buffer. In order to guarantee that new cache blocks do not 
prematurely overwrite older cache blocks, new cache blocks are 
committed to the cache only when their corresponding fragment 
reaches the head of the fragment FIFO. Fragments that are re- 
moved from the head of the FIFO have their corresponding texels 
read from the cache and proceed onward to the rest of the texture 
pipeline. 

Our simulated implementation can handle eight texel reads in 
parallel, consisting of two bilinear accesses to two adjacent mip 
map levels. To support these concurrent texel reads, we organize 
our cache tags and our cache memory as a pair of caches with four 
banks each. Adjacent levels of a mip map are stored in alternating 
caches to allow both mip map levels to be accessed simultane- 
ously. Data is interleaved so that the four accesses of a bilinear 
interpolation occur in parallel across the four banks of the respec- 
tive cache. Cache tags are also interleaved across four banks in a 
fashion that allows the tag checks for a bilinear access to occur 
without conflict. The details of this layout can be found in Figure 
3 of Section 5. 

In order to make our architecture amenable to hardware im- 
plementation, we impose two limitations. First, the number of 
misses that can be added to the request FIFO is limited to one 
miss per cache per cycle. Second, the number of cache blocks 
that can be committed to the cache from the reorder buffer is 
similarly limited to one block per cache per cycle. These commits 
match up to the requests-groups of misses that are added to the 
request FIFO together are committed to the cache together. This 
means that each fragment may generate up to four groups of 
misses. Because our implementation can only commit one of 
these groups per cycle, a fragment that has more than one group 
of misses will cause the system to stall one cycle for every group 
of misses beyond the first. 

4 ROBUST SCENE ANALYSIS 
When validating an architecture, it is important to use benchmarks 
that properly characterize the expected workload. Furthermore, 
when validating interactive graphics architectures, an architect 
should look beyond averages due to various characteristics of the 
human perceptual system. For example, if a graphics system 
provides 60 Hz rendering for the majority of the frames, but every 
once in a while drops to I.5 Hz for a frame, the discontinuity is 
distracting, if not nauseating. In designing a system, the graphics 
architect must evaluate whether or not sub-optimal performance is 
acceptable under bad-case conditions. Accordingly, a robust set 
of scenes that cover a broad range of workloads, from good-cast 
to bad-case, should be utilized to validate a graphics architecture. 
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4.1 Texture Locality
The effectiveness  of texture  caching is strongly scene-dependent.
For example,  the size and distribution  of prtmitivcs aft&t tcxturc
locality. Texture  locality is also affected by what we call the
scene’s  14niq~4~~ rc~.rc~/  (o,fr~~gnrent  rtrrio. Every scene  has a number
of tcxela that are accessed at least once; thcsc  tcxels are called
rcnicpw rc>xc~/.s.  Unless  caches arc big enough to exploit inter-tiamc
locality  (this requires several megabytes 131).  every unique  ~exel
must bc fetched at least once by the cache,  imposing  a lower limit
on the required  memory  bandwidth.  If WC  divide  this number by
the number 01‘ h-agmcnts  rendered for a scene. WC can calculate
the unique texel to fragment  ratio.  Note that this value is dcpend-
ent on the screen resolution.  A good-case scent will  have a low
ratio,  and a had-case  scene  will have a high ratio.  Ideally,  the
number of texcls fetched  hy the cachtng architecture  per fragment
will  be close to the scene’s  unique tcxel to fragment  ratio.

Three factors affect the unique texel to fragment  ratio of a
scene.  First, when a texture  is viewed  under magnification,  each
tcxcl gets mapped to multiple  screen pixels,  and the ratio dc-
crcascs.  Second,  when a texture  is rcpcatcd across a surface,  the
ratio also decreases.  This temporal  cohercncc can be exploited  hy
a cache large enough to hold the repeated tcxturc.  Third, when a
mip map texture  is viewed under minilication, the ratio becomes
dependent on the relationship between texel area and pixel area.
This relationship is characterized  by the level-of-detail  value 01
the mip mapptng computation that aims to keep the footprint  of a
backward-mapped  pixel equal to the size of a texel in a mip map
Icvel. Although this value is normally  calculated  automatically,
the application programmer  may bias it in either  direction, thus
moditying  the scene’s  unique texcl to fragment ratio.

A more surprising  effcc~  that occurs  even without  biasing is
characterized  by the tracttonal  portion ol’thc Icvcl-of-detail  value.
The lcvcl-of-detail  value determines  the two levels  of the mip
map I‘rom whtch samples  arc taken; the tractional portion is pro-
portional to the distance from the lower, more detailed  level.
Given  a texture  mapped polygon that is parallel to the screen,  a
fractional portion close  to zero implies a texel area to pixel arca
ratio of nearly  one in the lower mip map level and a quarter  in the
upper mip map Icvcl,  yielding  a tcxcl to fragment  ratio near I .2.5.
Likewise, a fractional portion close to one implies a tcxcl area to
pixel area ratio of tour in the lower mip map level and one in the
upper mip map level, yielding  a tcxel to fragment  ratio near 5.
The ratios arc lower for polygons  that are not parallel  to the
screen. Normally,  WC expect a wide variation in the tcxel to
fragment ratio due to the tractional portion of the level-of-detail
V;ilUC However, most  scenes  exhibit  worst-case behavior for

short  amounts of time,  and a few scenes  exhibit  worst-cast  bc-
havior for large amounts of time.

4.2 The Benchmark Scenes
In order to validate our texture caching architecture,  we chose six
real-world  sccncs  that span  a wide range of texture  locality.
These six sccncs  originated from three traces  of OpenCL  [IO]
applications  captured by g/.struce, a tool implemented  on top ol
the OpcnGL  Stream Codcc. In the future, we expect to see more
texture  t’or a given screen resolution; this will increase  the umquc
tcxcl to fragment  ratio.  To simulate  this effect, each of the traces
was captured twice.  once with the textures at original  size, and
once with the textures at double  resolution.  Table I summarizes
our six scenes,  and high resolution  images  can he found in the
Color  Plate.  Our workloads span  nearly two orders of magnitude
in the unique tcxcl to fragment  ratio (0.033 to 2.83).  This is in
contrast to the ratios in the scenes  used  by Hakura (0.2 to I. I ) [5]
and the animations  used by Cox (0. I to 0.3) [ 31. These  workloads
result from the fact  that applications  programmers  choose  the way
they use texture  according  to the needs  of the application and the
constraints  of the tar@ systems.  WC  now give a brief  summary
of each scene  and highlight  the points relevant  to texture  caching:

n cpukc☺ This is a liamc from the OpenGL  port of the
video game Quake. This application is cssen-
tially  an architectural  walkthrough with visibil-
ity culling.  Color  mapping  is performed  on all
surfaces  which arc, tar the most  part, large
polygons  that make use of repeated texture. A
second  texturing pass blends low-resolution
light  maps with the base tcxturcs to provide rc-
alistic  lighting  effects. Approximately  40%1  01
the base textures are magnilicd,  and 100% of the
light  maps are magniticd.

9 c@ir2.x In order to account fbr increasing texture  rcso-
lutions  nccdcd  fbr larger screen resolutions
(Quake’s  content  was geared towards smaller
scr-eens), the texture  maps in yuclka were
zoomed by a (actor of two to create  quakr2x.
This results  in a scene  which  magnifies  only the
light maps.

n ,/li,qhl This sccnc from an SGI  llight simulator demo
shows  a jet flying above a tcxturcd  terrain  map.
The triangle size distribution  centers  around
moderately sized triangles.  and most textures are
used  only once.  A significant portion of the
tcxturc  (38%) is magnified.
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Figure 3: Texture Data Organization. In our architecture, textures are stored using a 6D blocking pattern. Each mip map level is di- 
vided into cache-sized superblocks, with each superblock further divided into blocks. Each block is a rectangular, linearly-addressable 
region of the original mip map level. Each of eight texcl addresses is computed by adding an offset (formed by permuting the texel’s 
coordinates) to a corresponding texture base address. The eight resulting texel addresses, four from each of two adjacent mip map 
levels, arc then directed to two caches, each of which has four banks and services alternating levels of the mip map. Within each su- 
perblock, tags are interlcavcd on a block basis, causing all 2x2 texel accesses to fall onto one, two, or four adjacent blocks, with each 
block’s tag stored in a separate bank of the tag memory. This interleaving is accomplished by permuting the bits of the block index, 
yielding a tag bank and a tag index for each tcxel address. Similarly, tcxels are interleaved within each block, causing all 2x2 texel 
accesses to fall into separate banks of the cache memory even if the texels of the 2x2 access do not all fall into the same block. A 
permutation of the block offset results in a cache hank and a sub-block offset for every texel address; used in conjunction with the 
block index, these values locate each texel in the cache memory. Note that both of these permutations extract the least significant bit 
of the corresponding s and t fields to determine the tag or cache bank. 

1 Jig ht2.r As texture systems become more capable of 
handling larger amounts of texture, applications 
will use larger textures to avoid the blurring arti- 
fact of filtered magnification. In flighRn, the 
textures of Jlight were zoomed by a factor of 
two. This results in a scene which only magni- 
fies 13% of the texture. 

This scene comes from an OpenGL-based 
QuickTime VR [2] viewer looking at a pano- 
rama from Mars. This huge panorama, which 
measures 8K by 1 K, is mapped onto a polygonal 
approximation of a cylinder made of tall, skinny 
triangles. Even though all of the texture is mag- 
nified, the lack of repeated texture keeps the 
number of unique tcxcls per fragment high. 

The texture of qtvr was scaled up to l6K by 2K. 
This increases the number of unique tcxcls ac- 
cesses by the scene since all the texture is mini- 
lied. Furthermore, the fractional portion of the 
level-of-detail value is always high in qtvr2x be- 
cause the panorama is viewed more or less head- 
on at just the wrong zoom value. Note that these 
same effects would occur if qtvr was run at 
quarter-sized screen resolution, and that qtvr2x 
is by no means a hand-tailored pathological 

case. In fact, it was while gathering trace data 
on qtvr that we first observed the texture locality 
effects of a level-of-detail fraction close to one. 
This scene is representative of a bad-case frame 
in a real-world application. 

5 MEMORY ORGANIZATION 
In designing our prefetching cache architecture, careful attention 
was paid to choosing the proper parameters for the cache and the 
memory system. To narrow our search space, we leveraged Ha- 
kura’s findings on blocking [S]. First, Hakura demonstrates the 
importance of placing texture into tiles according to cache block 
size. This addressing scheme is referred to as 4D blocking. Fur- 
thermore, rastcrization should also occur in a 2D blocked fashion 
rather than in scan line order. And finally, tiles should be organ- 
izcd in a 2D blocked fashion according to the cache size in order 
to minimize conflict misses. This is called 6D blocking. In ac- 
cordance to with these guidelines, we employ 6D blocking for 
texture maps according to the cache block size and the cache size, 
and WC rasterize triangles in 8 pixel by 8 pixel blocks. The layout 
of texture data is illustrated in Figure 3. Figure 3 also illustrates 
how texture data is banked in both the cache tags as well as the 
cache memory in order to allow conflict-free access for bilinear 
interpolation. Note that for the purposes of this study, all texture 
data is stored as 32-hit RGBA values. 
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5.1 Cache Efficiency 
Since we have decided to provide a separate cache for each of the 
bilinear accesses which needs to occur during every trilinear tex- 
ture access, three cache parameters need to be chosen. The first 
choice is the cache block size. A small block size increases miss 
rates, but keeps bandwidth requirements low. A large block size 
can decrease miss rates, but bandwidth requirements and latency 
can skyrocket. An additional factor that needs consideration is 
that modern DRAM devices require large transfer sizes to sustain 
bandwidth. Hakura found that 16 texel tiles (64 bytes) work well, 
and most next-generation DRAM chips can achieve peak effi- 
ciency at such transfer sizes [4]. 

Given a 16 texel block size, we are left with choices for cache 
associativity and cache size. Figure 4 shows the miss rates for our 

six test scenes. We see that increasing associativity does not de- 
crease the miss rate significantly. Intuitively, this make sense 
since having a separate cache for alternate levels of a mip map 
minimizes conflict misses. Thus, a direct-mapped cache is quite 
acceptable if we use 6D blocking when alternate levels of the mip 
map are cached independently. According to Hakura, if a unified 
cache is used for trilinear accesses (and thus the bilinear accesses 
do not occur simultaneously), a 2-way set associative cache is 
appropriate. In the more general case of multi-texturing, m inde- 
pendent n-way set associative caches are well suited towards pro- 
viding texture accesses at the rate of m bilinear accesses per cycle 
to m*n textures (in this scheme, trilinear accesses count as two 
accesses to two textures). Since we are limiting our study to a 
single trilinear access per cycle, two independent direct-mapped 
caches are appropriate. 
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Figure 4 also illustrates the effects of modifying the total cache 
size on the miss rates of the various scenes. We see that for 
scenes in which texture locality is not dependent on repeated tex- 
tures (f2i$zr, JZightZx, ytvr, qtvr2x), the miss rate curves flatten 
somewhere between a total cache size of 4 KB and I6 KB. This 
cache size represents the working set for filtering locality when 
rasteriztion is done in 8 by 8 blocks. On scenes that contain re- 
peated texture (such as quuke and quuke2x) the miss rates are 
lower, but the miss rate curves tlattcn later (at 32 KB and I28 KB, 
respectively). These points correspond to the working set sizes of 
the repeated textures in each scene. The miss rate realized once 
any of the curves flattens corresponds closely to the unique texcl 
to fragment ratio of the respective scene. 

We chose to use a I6 KB cache (composed of two direct- 
mapped 8 KB caches) for our study. According to our workloads, 
this size is large enough to exploit nearly all of the coherence 
found in scenes which demonstrate poor locality (such asJliRht2.x 
and qtvr2x). and even though a larger size could help in scenes 
with repeated textures (such as quake and quake2x). these scenes 
already perform very well. This cache size is in consensus with 
the cache sizes proposed in other texture cache analyses [3, 51. 
Though we stress that different choices can also be reasonable, for 
the rest of the paper, we assume a cache architecture with two 
direct-mapped 8 KB caches (interleaved by mip map level) with 
64-byte blocks. 

5.2 Bandwidth Requirements 
In formulating bandwidth requirements, we can relate the number 
of texels of memory bandwidth required per fragment to the cache 
miss rate by the cache block size. These equivalent measures are 
shown as left- and right-axes in Figure 4. One key point of Table 
I and Figure 4 is that even though caching can work well some- 
times, there are cases when the bandwidth requirements are ex- 
tremely high. In the case of qtvr2x, nearly 3 texels have to be 
fetched for each fragment no matter what size on-chip cache is 
utilized. This is quite high considering that eight texels are re- 
quired to texture a trilinearly mip mapped fragment. However, 
this should not be seen as an argument for not having a cache: the 
cache still provides a way of matching the access patterns of mip 
mapping with the large block requests required for achieving high 
memory bandwidth. If a system wants to provide high perform- 
ance robustly over a wide variety of scenes, it needs to provide 
high memory bandwidth even with the use of caching. If a sys- 
tem’s target applications have high texture locality, or if cost is a 
primary concern, a memory system with lower memory band- 
width can be employed. 

Figure 4 can also be a bit misleading because the average 
bandwidth requirement does not tell the whole story. From the 
data, one could falsely infer that a memory system which provides 
enough bandwidth to supply I texel per fragment will perform 
perfectly on quake2x since, according to the graph, only 0.63 
texels per fragment are required given the I6 KB cache size. 
Figure 5 illustrates why this is not the case. The average cache 
miss rate does not properly encapsulate temporal variations in 
bandwidth requirements. Even though the average bandwidth 
requirement is 0.63 texels per fragment over the whole frame, 
large amounts of time exist when the system needs double that 
bandwidth, and large amounts of time exist when the system does 
not need most of that bandwidth (i.e., when light maps are drawn). 
Because of the large separation in time between these two phases, 
a system cannot borrow from one to provide for the other, and 
thus the overall performance will decrease. 

period 

latency 

iz 7 rdr i. 

so loll 20 20 so 150 2so 

Table 2: Memorv Models. The values reported here are in 
terms of a fragment clock cycle of 200 MHz, which corre- 
sponds to 5 nsec. The memory period determines the rate at 
which 64 byte blocks of memory can be provided. Thus, 
bandwidths of I, 2,4, and 4 texels per fragment are provided 
on up, rdram, rdram2x, and numu, respectively. 

5.3 Memory Models 
In order to validate our texture prefetching architecture more pre- 
cisely, we now explore the bandwidths and latencies provided by 
memory systems. For our study, we examine an architecture 
which can sustain the texturing performance projected for the near 
future. Current high-end architectures such as the SGI InfiniteRe- 
ality [9] provide approximately 200 million trilinear fragments per 
second from a single board. Low-end professional-level archi- 
tectures provide approximately 30 million trilinear fragments per 
second [7], as do many consumer-level graphics accelerators. 
Given these rates, we decided to set our nominal fragment clock 
rate at 200 MHz, meaning that under optimal memory conditions, 
the architecture provides a trilinearly sampled fragment every 5 
nanoseconds. Based on this fragment clock rate, we decided to 
simulate four memory models, summarized by bandwidth and 
latency histogram in Table 2. 

9 rdram 

n rdram2x 

- numa 

This models a system in which the texture cache 
requests blocks from system memory over ln- 
tel’s Advanced Graphics Port [6]. The AGP 4X 
standard can provide a sustained bandwidth of 
800 MB/set. Because system memory is shared 
with the host computer, we estimate that the la- 
tency of agp varies between 250 nsec and 500 
nsec. 

Direct RDRAM from Rambus [4] will serve as 
our baseline dedicated texture memory. These 
devices provide extremely high bandwidth (a 
sustainable I .6 GBlsec) with reasonable latency 
(90 nsec) at high densities for commodity prices. 
We estimate that on-chip buffering logic adds IO 
nsec of latency to this memory. 

In order to sustain the high and variable band- 
width requirements of scenes such of JlightZx 
and qrvr2x, a texture architecture may choose to 
utilize 2 RDRAM parts for double the band- 
width of rdram at the same latency. 
Although not based on any existing specitica- 
tion, we use the numa memory model to exam- 
ine the feasibility of our prefetching architecture 
in novel and exotic texture memory architec- 
tures. The bandwidth of this memory model is 
the same as the bandwidth of rdram2x, but the 
latency of such a system is extremely high and 
highly variable. It can range anywhere between 
250 nsec and 1.25 usec. This latency is in the 
range of what can be expected if texture is dis- 
tributed across the shared memory of a NUMA 
multiprocessor [S]. 
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Figure 6: Prefetching Performance. In (a), we compare our prefetching architecture and one in which no prefetching takes place 
against an idea1 architecture (one in which a fragment is generated on every clock cycle) on a logarithmic scale. On many contigura- 
tions, the prefetching architecture is able to achieve near-ideal performance (as indicated by the near-total absence of a dark gray bar). 
Configurations which do not achieve near-ideal performance are bandwidth-limited, as illustrated in (b). This graph characterizes the 
architecture’s execution time by useful work, pipeline stalls, limited memory bandwidth, and uncovered latency across the four mem- 
ory models and the six scenes. For all of the cases in which near-ideal performance was not attained, memory bandwidth is by far the 
limiting factor. Thus, the architecture is able to hide nearly all of the latency of the memory system with little overhead. 

6 PERFORMANCE ANALYSIS 
A cycle-accurate simulator was written to validate the robustness 
of the prefetching texture cache architecture proposed in this pa- 
per. We analyze the architecture by running each scene with each 
memory model. First, the architecture is compared against an 
ideal architecture and an architecture with no prefetching. We 
then account for all of our execution time beyond the ideal execu- 
tion time. 

Figure 6a presents the execution time for each of the scenes 
with each of the memory models on both our architecture and an 
architecture with no prefetching. Performance is normalized to 
the ideal execution time of I cycle per fragment. In all cases, our 
architecture performs much better than an architecture lacking 
prefetching. However, we do not achieve an idea1 I cycle per 
fragment across many of the scenes when running the agp and 
r&urn memory models. 

In order to account for lost cycles, we enumerate four compo- 
nents of our architecture’s execution time: 

I. A cycle is required to move each fragment through the 
texture pipeline. 

2. If either cache has more than one miss for any fragment, 
the pipeline must stall. 

3. The pipeline may stall due to insufficient texture memory 
bandwidth. 

4. Cycles may be lost to uncovered latency in the prefetch- 
ing architecture. 

Each of these components can be calculated as follows. The 
number of cycles spent moving fragments through the pipeline is 
simply the number of fragments in the scene. The number of 
pipeline stalls attributed to multiple misses per fragment can be 
measured by counting the number of misses per cache per frag- 
ment beyond the first miss. Stalls occur infrequently, and our 
experiments show the performance lost to such pipeline stalls is 
typically less than 1%. Performance lost to insufficient memory 
bandwidth is determined by the execution time of the trace with 
the memory latency set to zero. Finally, when the scene is simu- 
lated with our memory latency model, any additional cycles not 
attributed to the first three categories are counted as uncovered 
latency in our architecture. Experimental results show that most 
of the latency of the memory system is indeed covered by our 
architecture, with at least 97% utilization of hardware resources 
using nominal sizes for the fragment FIFO, the memory request 
FIFO, and the reorder buffer. Most of the performance difference 
from an ideal system is caused by insufficient memory bandwidth. 
The breakdowns of the execution times for our configurations are 
presented in Figure 6b. 
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Figure 7: Time-Varying Execution Time Characterization. 
As predicted in Section 5.2, the performance of a workload 
can vary greatly over time if not enough memory bandwidth 
is provided. The graph above characterizes the execution 
time of the quake2x workload on the agp memory system. 
Even though the I texel per fragment bandwidth of agp by 
far exceeds quake2x’s average requirement of 0.63 texels per 
fragment, performance suffers due to the time-varying 
bandwidth requirements of quake2x. 

6.1 Intra-Frame Variability 
A typical scene provides both an overall memory bandwidth de- 
mand over the course of the frame (several milliseconds) as well 
as localized memory bandwidth demands over several microsec- 
onds, as illustrated in Figure 5. Figure 7 shows how this trans- 
lates into lost performance. The performance of the quake2.x 
scene on the agp memory system is very different in the first and 
second half of the frame due to switching between color map 
textures and light maps. As predicted in Section 5.2, the fragment 
rate while drawing the color texture is limited by memory band- 
width while the pipeline runs at full speed while drawing the light 
maps. This does indeed cause an overall performance penalty 
even though the I texel per fragment bandwidth of agp far ex- 
ceeds the average texel per fragment bandwidth requirement of 
quake2.x. Figure 7 also illustrates that the performance of our 
architecture closely tracks the performance of a zero-latency 
memory system over time. 

6.2 Buffer Sizes 
The data in Figure 6 and Figure 7 was derived with a specific set 
of buffer sizes for each memory model. These sizes are presented 
in Table 3, and in all cases the buffers are reasonable in size when 
compared to the I6 KB of cache employed. 

We determined the sizes of the three buffers-the fragment 
FIFO, the request FIFO, and the reorder buffer-by inspection 
and then validated them by experimentation. The fragment FIFO 
primarily masks the latency of the memory system. If the system 
is not to stall on a cache miss, it must be able to continually serv- 
ice new fragments while previous fragments are waiting for tex- 
ture cache misses to be tilled. Thus, the fragment FIFO depth 
should at least match the latency of the memory system. The 
fragment FIFO also provides elasticity between the burstiness of 
texture misses and the constant rate at which the memory system 
can service misses, and therefore should be larger than just the 
memory system latency. The memory request FIFO also provides 

elasticity between the potentially bursty stream of miss addresses 
generated by the fragments and the fixed rate at which the mem- 
ory system can consume them. The size of this buffer was deter- 
mined primarily by experimentation. Finally, in order to provide 
a robust, deadlock-free solution which can handle out-of-order 
memory responses, our architecture requires that a reorder buffer 
slot be reserved when a memory request is made. Since a mem- 
ory response will not be received and applied to the cache at least 
until after the memory latency has passed, the reorder buffer 
should be sized to be at least the ratio of the memory access time 
(latency) to the memory cycle time (period) entries deep. 

The above guidelines were used to determine the approximate 
buffer sizes for each memory model, and then the choices were 
adjusted by measuring the performance of the system. We fine- 
tuned the buffer sizes by holding two of the buffer sizes constant 
and varying the third. If the buffer is sized appropriately, the 
performance of the overall system should decrease significantly 
when the buffer is made much smaller, and performance should 
increase very slowly if the buffer is made larger. The data for this 
process with the flight2x workload is shown in Figure 8. This 
process provided useful information in the cases of the rdram and 
rdram2x memory systems. The fragment FIFOs were originally 
sized to be 32 entries deep. However, simulation revealed that 
this did not provide enough elasticity, and increasing the FIFO 
depth to 64 entries improved performance by several percent. 
Similarly, simulation revealed that performance increased slightly 
when the reorder buffer size was increased to 8 slots and I6 slots 
for rdram and rdram2x, respectively. 

7 FUTURE WORK 
In formulating a model for measuring the performance of our 
prefetching texture cache architecture, we assumed that the entire 
scene is rasterized by a renderer which is able to provide a frag- 
ment to the texture subsystem on every clock cycle. In a real 
system, this may not be the case. When triangles are smaller, 
caching does not work as well; but smaller triangles may also 
imply a lower fill rate (i.e., the scene is geometry limited), thus 
alleviating some of the penalty associated with the caching. A 
more detailed analysis of bandwidth requirements in a rasteriza- 
tion architecture should take this effect into account. 

Another issue not addressed by our paper is the effect of par- 
allel rasterization. Rasterization work may distributed amongst 
multiple processors in some fashion (e.g., pixel interleaved, trian- 
gle interleaved, tiled) that reduces the effectiveness of caching. 
Again, this affects the bandwidth requirements of a prefetching 
texture cache architecture. An additional possibility to explore 

Fragment Request Reorder 
FIFO Size FIFO Size Buffer Size 

am 
128 slot 8 slot 8 slot 
2.0 KB 64 byte 576 byte 

rdram 64 slot 8 slot 8 slot 
1.0 KB 64 byte 576 byte 

rdramfx 64 slot 16 slot 16 slot 
1.0 KB 128 byte 1.1 KB 

nutna 256 slot 16 slot 64 slot 
4.0 KB 128 byte 4.5 KB 

Table 3: Buffer Sizes. The numbers in each entry represent 
the sizes of the various buffers used in the various memory 
systems. Fragment FIFO entries are I6 bytes, memory re- 
quest FIFO entries are 8 bytes, and reorder buffer entries are 
72 bytes. 
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Figure 8: 1 Ill : Effects of Varying Buffer Sizes. The graphs above show the effects of varying buffer sizes on theflighr2.r workload 
across the different memory models. For each graph, one buffer size is varied while the other two are held fixed (at the values speci- 
tied in Table 3). The results are reported in fragments per cycle (fpc), and the dot on each graph represents the final values used for 
the architecture on each memory model. The memory models whose fragments per cycle values do not approach 1 .O are bandwidth- 
limited. 

Fragment FIFO Size Request FIFO Size Reorder Buffer Size 

1 4 16 64 256 1 4 16 64 256 4 16 64 256 

1 4 16 64 256 

1 4 16 64 256 I 4 16 64 256 4 16 64 256 

with parallel rasterization is shared texture memory and its effect 
on latency. 

8 CONCLUSION 
In this paper, we have presented and analyzed a prefetching tex- 
ture cache architecture. We designed the architecture to take ad- 
vantage of the distinct memory access patterns of mip mapping. 
In order to validate the architecture, we presented a measurement 
of texture locality and identified six workloads that span over two 
orders of magnitude in texture locality. By examining the per- 
formance of these workloads across four different memory mod- 
els, we demonstrated the architecture’s ability to hide the memory 
latency with a 97% utilization of the available hardware re- 
sources. 
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