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Abstract

A simple, fast method is presented for the interpolation of texture coordinates and
shading parameters for polygons viewed in perspective. The method has application in
scan conversion algorithms like z-buffer and painter’s algorithms that perform screen
space interpolation of shading parameters such as texture coordinates, colors, and nor-
mal vectors. Some previous methods perform linear interpolation in screen space, but
this is rotationally variant, and in the case of texture mapping, causes a disturbing
“rubber sheet” effect. To correctly compute the nonlinear, projective transformation
between screen space and parameter space, we use rational linear interpolation across
the polygon, performing several divisions at each pixel. We present simpler formulas
for setting up these interpolation computations, reducing the setup cost per polygon to
nil and reducing the cost per vertex to a handful of divisions.

Additional keywords: incremental, perspective, projective, affine.

1 Introduction

We first define our terminology, then summarize a naive, linear method for interpolating
shading parameters during scan conversion. After examining the flaws of linear interpola-
tion, we describe the new method and prove its correctness. Readers uninterested in the
proofs may want to read just the sections titled “Polygon Rendering with Linear Interpo-
lation” and “New Algorithm”.
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1.1 Definitions

We define the following coordinate systems: Object space is the 3-D coordinate system
in which each polygon is defined. There can be several object spaces. World space is a
coordinate system that is related to each object space by 3-D modeling transformations
(translations, rotations, and scales). 3-D screen space is the 3-D coordinate system of the
display, a “perspective space” with pixel coordinates (z,y) and depth z. Tt is related to
world space by the camera parameters. Finally, 2-D screen space (or “screen space” for
short) is the 2-D subspace of 3-D screen space without z.

To facilitate affine and projective (perspective) transformations, we use homogeneous
notation [Maxwell46] in which, for example, the 2-D real point (z,y) is represented by the
3-D homogeneous vector p = (zw,yw,w), where w is an arbitrary nonzero number. We
will be cavalier about treating the case where w = 0. In homogeneous notation, 2-D points
are represented by 3-vectors and 3-D points are represented by 4-vectors.

We use the following notation:

COORDINATE SYSTEM REAL HOMOGENEOUS

3-D object space (ona Yo, zo) Po = (wowm YoWo, 2oWo, wo)
3-D screen space (x,y,2) po = (zw, yw, 2w, w)

2-D screen space (x,y) ps = (zw, yw, w)

1.2 Projective and Affine Mappings

We will use two classes of mapping (transformation): affine and projective. The 3-D forms of
these mappings are ubiquitous in computer graphics [Newman-Sproull76]. The 2-D projec-
tive mapping (or perspective mapping) from (u, v) to (z,y) has the general form [Maxwell46]:
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The mapping is more simply represented in homogeneous matrix notation:

a d g
(zw yw w)=(uq vq q)[b e h]
c f i

Affine mappings include scales, rotations, translations, and shears; they are linear map-
pings plus a translation. A 2-D projective mapping is affine iff g = h = 0 and ¢ # 0.

These mappings are trivially generalized to map an m-dimensional space to an n-
dimensional space. The homogeneous matrix for such a mapping would be (m+1) x (n+1).
Unlike affine mappings, projective mappings do not preserve parallel lines or equispaced
points along a line, but like affine mappings, projective mappings preserve lines, that is,
lines transform to lines. Projective mappings are closed under composition: they may be
composed by concatenating their matrices. Projective mappings between spaces of equal
dimension are invertible using the inverse or adjoint matrix.



We call a parameter or space X-affine when it is an affine function or transform of space
X, and X-projective when it is an projective function or transform of space X. For example,
in texture mapping, texture space is typically object-affine, but screen-projective.

2 Polygon Rendering with Linear Interpolation

Scan conversion algorithms such as z-buffer, painter’s, and scanline methods [Rogers85]
typically use a set of interpolated shading parameters at each pixel. This set might include:
texture coordinates (u,v) for texture mapping [Blinn-Newell76], [Heckbert86], (r,g,b) for
Gouraud shading, a normal vector for Phong shading, and world space position for per-pixel
shading. Polygons are described by listing these parameter values along with the object
space coordinates (z,, Y., 2,) at each vertex. During scan conversion, both the parameters
and the screen coordinates (z,y,z) are interpolated along the edges of the polygon from
scanline to scanline, and then interpolated across each scanline for use at each pixel.

The steps of the linear interpolation algorithm are:

(1) Associate a record containing the parameters of interest with each vertex of the
polygon.

(2) For each vertex, transform object space coordinates to homogeneous screen space
using 4 X 4 object to screen matrix, yielding the values (zxw, yw, zw, w).

(3) Clip the polygon against plane equations for each of the six sides of the viewing
frustum, linearly interpolating all the parameters when new vertices are created.

(4) Perform a homogeneous division to compute x = zw/w, y = yw/w, z = zw/w.

(5) Scan convert in screen space, by linear interpolation of all parameters, using the
parameter values at each pixel for shading.

C code for such a generic polygon clipper and scan converter is available in [Heckbert90].

2.1 Flaws of Linear Interpolation

Linear interpolation algorithms like the above are usually used for Gouraud shading, Phong
shading, and often for texture mapping as well. It is wrong, however, to perform linear
interpolation in screen space of parameters that are not screen-affine. We assume that the
only perspective in the transformation pipeline lies between world space and screen space.
That is: world space, object space, and the parameters are mutually affine, but they are
screen-projective. The above algorithm is correct only when the parameters are screen-
affine, which occurs only for parallel projection or for perspective projection of a plane
perpendicular to the line of sight.

The flaws are most visible in texture mapping. Figure 2 shows the artifacts of linear,
screen space interpolation of texture coordinates. Note that this image does not exhibit the
foreshortening we expect from perspective. The texture also shows disturbing discontinuities
along horizontal lines passing through the vertices. In animation, the horizontal ripples will



Figure 1: A checkerboard texture.

move distractingly as the camera rolls, since the ripples are rotation variant, and the lack of
foreshortening will make the texture appear to slide across the surface like a rubber sheet.
Figure 3 shows the correct image.

The above problems occur because the texture transformation effected by our linear pa-
rameter interpolation is inconsistent with the geometry transformation used to transform the
vertices to screen space. Linear interpolation computes a piecewise bilinear mapping from
screen space to parameter space, while the actual mapping defined by affine transformations
and a perspective camera is projective. (A bilinear mapping from (z,y) to (u,v) is one of
the form v = azxy + bz + cy + d, v = exy + fx + gy + h).

Similar errors occur when colors, normals, or positions are linearly interpolated in a
space to which they are not affine, but these errors are much less noticeable than the errors
for texture mapping. The flaws in Gouraud and Phong shading are so subtle, in fact, that
they went unnoticed for several years in the production renderer at the New York Institute
of Technology (actually, it is hard to say what “correct” interpolation means for Gouraud
and Phong shading, since they are approximations).

The rubber sheet effect occurs for polygons with any number of sides, but rotational
variation occurs only for polygons with four or more sides. Linear interpolation across
polygons in screen space effects an affine mapping, which is rotation invariant. Rotation
invariance does not imply correctness, however: if the scene employs affine texture-to-
object parameterization and a perspective camera, then texture space is screen-projective,
not screen-affine, and linear interpolation is incorrect. Although triangulation is usually
inappropriate, it is often used to solve the rotational variation problem.

The correct solution described later involves several divisions per pixel. A cheap alter-
native that avoids divisions at each pixel is polygon subdivision, where parameter values
at the new vertices are computed using linear interpolation in object space. The Silicon
Graphics VGX machine currently does texture mapping this way. In figure 4 we can see how
splitting a polygon into a number of smaller polygons improves the approximation. Others
have approximated the nonlinear function with quadratic or cubic polynomials [Wolberg90].
But note that rational linear functions have poles (behaving like f(z) = 1/z) at the horizon
of an infinite plane, near which they are not well approximated by linear functions or other
polynomials. If subdivision is used, it should be adaptive. We do not recommend subdivi-
sion or approximation, however, as they increase the number of polygons, and the results



Figure 2: Image produced by texture mapping the checkerboard onto a rectangle in perspective
using linear interpolation of u,v. Note horizontal lines of discontinuity passing through the
vertices on the left.

Figure 3: Image produced by correct algorithm of §3.5 using rational linear interpolation of

texture coordinates. Note proper foreshortening.
=4
5



Figure 4: An object-affine parameter u is a rational linear function of screen x. Solid curve:
correct function u(x) = (az +b)/(cx +d); dashed curve: piecewise-linear approzimation for
one polygon; dotted curve: linear interpolation with two polygons.

are never exact. The per-polygon and per-vertex cost of transformation, clipping, and scan
conversion may even cancel the advantages of faster pixels.

3 Polygon Rendering with Rational Linear Interpolation

The “correct” solution requires rational linear interpolation: independent interpolation of
a linear numerator and linear denominator followed by division at each pixel. In previous
work, Newman and Sproull found the rational linear formula relating a linear interpolation
factor (between 0 and 1) for screen space to the interpolation factor for eye space [Newman-
Sproull76 p.362]. Smith applied a similar technique to texture mapping, showing that a
divide was needed at each pixel [Smith80].

3.1 Rational Linear Interpolation the Hard Way

In previous work, the first author described incremental interpolation of texture coordinates
with a per pixel cost of three additions, two divisions, and a texture access [Heckbert83].
Along each scanline, texture coordinate u has the form u(z) = (az +b)/(cz + d), and v(x)
is similar.

The method employed for computing the homogeneous texture coordinates (ug,vq, q)
at each vertex was quite involved, however [Heckbert89]. First, it required inference of
the affine texture-to-object parameterization from the correspondence at three vertices of
the polygon. This mapping was then concatenated with the object-to-screen mapping to
arrive at the 3 x 3 projective mapping matrix. The screen coordinates of each vertex of the
clipped polygon were transformed by the inverse of this matrix to compute the homogeneous
texture coordinates, which were linearly interpolated across the polygon. The cost of texture
mapping setup with this method was 133 arithmetic operations (multiplies and adds) per
polygon, plus 12 arithmetic operations per vertex. Transformation and clipping are usually
done in floating point, but scan conversion can work in 32-bit integer arithmetic if done
carefully.



3.2 The Easy Way: Derivation

There is a much simpler alternative, however! As observed by the second author, the
homogeneous texture coordinates suitable for linear interpolation in screen space can be
computed simply by dividing the texture coordinates by screen w, linearly interpolating
(u/w,v/w,1/w), and dividing the quantities u/w and v/w by 1/w at each pixel to recover
the texture coordinates. Any object-affine parameter may be interpolated in this fashion.
To demonstrate this, we need the following theorem:

Theorem:
Given:

1) n parameters r1,rs,---,r, that are object-affine,
2) a 3-D object space that is 3-D-screen-projective, and

3) a plane in object space that is not “edge-on” to screen space;

then the parameters are screen-projective on this plane.

Proof:
We write the homogeneous parameter space as py = (riwy, -, rpwy, w,), the homo-
geneous object space as Po = (oW, YoWo, ZoWe, W), homogeneous 3-D screen space as

pPs = (2w, yw, zw, w) and homogeneous (2-D) screen space as ps = (zw, yw,w). Let Mgy
denote the transform matrix from a space to b space. Then the parameters are py = poMor
for some 4 x (n + 1) parameterization matrix Mer, and since the parameters are object-
affine, the last column of this matrix is (0,0,0,1)”, so w, = w,. Similarly, since object
space is 3-D-screen-projective, we have po = poMgyo for some 4 x 4 matrix Mq.

Since projective mappings preserve planes, a plane in object space transforms to a plane
in screen space, and since the plane is not edge-on, the plane has a unique depth z at each
(z,y), so z = ax + By + v for some «, B, and . On this plane,

1 0 aa O
(z y z 1)=(zx y 1)[0 1 g 0
0 0 v 1

or p, = psMsg,.

Since the screen-to-3-D-screen, 3-D-screen-to-object, and object-to-parameter mappings
are all projective, their composition is projective, so the screen-to-parameter mapping is
projective, and pr = psMgy, where Mg, is a 3 X (n + 1) matrix:

a1 ao a, A
Msr = MsaMaoMor = bl b2 te bn B
c1  C c, C

for some a;, b;, ¢;, A, B, and C. |}

The parameter values on the plane are thus related to the screen coordinates via:
(’rlwra t 7rnwrawr) = (zmu,yw,w)Msr, S0

(riwy /w, - rpwy Jw, w, Jw) = (z,y, 1) Mgy (1)



OBJECT-AFFINE SPACES SCREEN-AFFINE SPACES

texture space div by 1/w homogeneous texture space
(u,v) = (u/w, viw, 1/w)

object space

world space

\ homogeneous screen space ; screen space
(xw, yw, w) = x,y)

Figure 5: Interrelationship of the coordinate systems required for standard texture mapping.
The parameter set is (u,v). Affine transformations relating two spaces are indicated by a
solid line, projection transformations are indicated by a double arrow.

is screen-affine on this plane. To solve for the parameter values at each pixel we could
simply compute the matrix multiply above, but that would be unnecessarily slow. A faster,
incremental method is feasible if we can determine the unknown function w,(x,y).

If we start with a point on the plane that has object space coordinates po with w, =
1, transform it through the mapping Moy, = Myo !, and discard z, we can compute
homogeneous screen coordinates (xw, yw, w). If this point is then transformed back to object
space, we will recover po, of course, but most importantly, its homogeneous coordinate w,
will be unchanged, since the concatenated matrices annihilate each other and the point is
on the plane. Transforming further to parameter space, we find that w, = 1, since w, = w,.
And since we transformed all the way back from screen space to parameter space, equation
(1) applies, so

= a;x + by + ¢, = Az + By+C

w(z,y)

The homogeneous parameter space so computed is screen-affine.

3.3 The Easy Way: Summary

If the parameters are affine with respect to object space, and the homogeneous screen
coordinates are computed by transforming an object space point with w, = 1 (or any
nonzero constant), then the homogeneous parameter vector (ry /w,---,ry,/w,1/w) is screen-
affine, so it can be interpolated with linear interpolation in screen space (figure 5).

Setup for interpolation is much simpler with this method than with the previous method.
None of the matrices used in the proof need to be computed, and no matrix multiply to
transform from screen space to homogeneous parameter (or texture) space is needed. The
only setup required is that each parameter value be divided by the screen w at that point,



and an extra parameter with value 1/w be added to the interpolated-variable list. To
compute n parameters, n + 1 divisions are needed per vertex, and n + 1 variables must be
interpolated. At each pixel, we divide the n interpolated homogeneous parameters by the
interpolated 1/w to compute each parameter value:

ri(s,y) = ri(@, y)/w(z,y) @iz +biy+ci
iy 1/ w(z,y) Az + By + C

Note: on most machines the fastest way to divide » numbers by a common value is to
compute the reciprocal of that value and then perform n multiplications.

If it turns out that w is identical at all the vertices, then the parameters are screen-affine
for that polygon, and the division at each pixel can be avoided.

3.4 Generalizations and Limitations

Gouraud and Phong shading often require a renderer to interpolate parameters with arbi-
trary values at the vertices. If the interpolation method described here is used, but the first
condition of this algorithm is not met, that is, the parameters are not object-affine, then for
polygons with four or more sides, the results will be rotation variant, in general. Interpola-
tion of arbitrary data over polygons with five or more sides requires mappings more complex
than those discussed here, but for quadrilaterals, interpolation can be done using projective
mappings. To do this we assume that the parameters are object-projective, not object-affine.
Our interpolation technique can be generalized further for the interpolation of parameters
all of which are screen-projective but some of which are not object-affine. For example,
with a projective texture parameterization, w, = 1 & w, = 1, so we can’t assume w, = 1,
as above, but if w, were computed, we could linearly interpolate (vw, /w, - - -, vw, /w, w, /w)
to find the correct values of u and v at each pixel. A different homogeneous variable w, /w
must be interpolated for each mutually affine cluster of parameters in the parameter set.
This generalization also allows perspective transformations to be used as modeling trans-
formations in addition to camera transformations.

The new method cannot be used when there is no 3-D information, as in image warping.
In that case, warp inference techniques must be used [Heckbert89].

3.5 New Algorithm

The rational linear rendering algorithm is:

(1) Associate a record containing the n parameters of interest (r1,rs,---,r,) with
each vertex of the polygon.

(2) For each vertex, transform object space coordinates to homogeneous screen space
using 4 X 4 object to screen matrix, yielding the values (zxw, yw, zw, w).

(3) Clip the polygon against plane equations for each of the six sides of the viewing
frustum, linearly interpolating all the parameters when new vertices are created.



(4) At each vertex, divide the homogeneous screen coordinates, the parameters r;,
and the number 1 by w to construct the variable list (z,y, 2, s1,52, ", Sn+1),
where s; = r;/w for i <n, sp41 = 1/w.

(5) Scan convert in screen space by linear interpolation of all parameters, at each
pixel computing r; = s;/s,41 for each of the n parameters; use these values for
shading.

4 Conclusions

We have presented a new method for setup of parameter interpolation on polygons viewed in
perspective. The previous method, when interpolating two parameters, cost 133 arithmetic
operations per polygon and 12 operations per vertex. The new method allows interpolation
of any number, n, of parameters. It is simpler than the old method, it has no per-polygon
overhead, and its per-vertex cost is n + 1 divisions. The per pixel cost of the new method
is identical to the old rational linear cost: n divisions per pixel. For texture mapping, the
dominant cost is thus three divisions per vertex and two divisions per pixel.

The ability to cheaply and correctly interpolate parameters is useful for a number of
shading parameters. This interpolation technique is most helpful for texture mapping,
however, where the flaws of linear interpolation are most visible.

5 References

[Blinn-Newell76] James F. Blinn, Martin E. Newell, “Texture and Reflection in Computer
Generated Images”, CACM, vol. 19, no. 10, Oct. 1976, pp. 542-547.

[Heckbert83] Paul S. Heckbert, Texture Mapping Polygons in Perspective, NYIT Com-
puter Graphics Lab, TM 13, Apr. 1983.

[Heckbert86] Paul S. Heckbert, “Survey of Texture Mapping”, IEEE Computer Graphics
and Applications, vol. 6, no. 11, Nov. 1986, pp. 56-67.

[Heckbert89] Paul S. Heckbert, Fundamentals of Texture Mapping and Image Warping,
Master’s thesis, UCB/CSD 89/516, CS Dept, UC Berkeley, May 1989.

[Heckbert90] Paul S. Heckbert, “Generic Convex Polygon Scan Conversion and Clipping”,
Graphics Gems, Andrew Glassner, ed., Academic Press, Boston, 1990.

[Maxwelld6] E. A. Maxwell, The Methods of Plane Projective Geometry, Based on the
Use of General Homogeneous Coordinates, Cambridge U. Press, London, 1946.

[Newman-Sproull79] William M. Newman, Robert F. Sproull, Principles of Interactive
Computer Graphics (2nd ed.), McGraw-Hill, New York, 1979.

[Rogers85] David F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill,
New York, 1985.

10



[Smith80] Alvy Ray Smith, “Incremental Rendering of Textures in Perspective”, SIG-
GRAPH ’80 Animation Graphics seminar notes, July 1980.

[Wolberg90] George Wolberg, Digital Image Warping, IEEE Computer Society Press, Los
Alamitos, CA, 1990.

11



