
~ Computer Graphics, Volume 23, Number 3, July 1989

Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories 1

Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather 2,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, Laura Israel

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

Abstract

This paper introduces the architecture and initial algorithms for
Pixel-Planes 5, a heterogeneous multi-computer designed both for
high-speed polygon and sphere rendering (1M Phong-shaded tri-
angles/second) and for supporting algorithm and application re-
search in interactive 3D graphics. Techniques are described for
volume rendering at multiple frames per second, font generation
directly from conic spline descriptions, and rapid calculation of
radiosity form-factors. The hardware consists of up to 32 math-
oriented processors, up to 16 rendering units, and a conventional
1280x1024-pixel frame buffer, interconnected by a 5 gigabit ring
network. Each rendering unit consists of a 128x 128-pixel array of
processors-with-memory with parallel quadratic expression evalu-
ation for every pixel. Implemented on 1.6 micron CMOS chips
designed to run at 40MHz, this array has 208 bits/pixel on-chip and
is connected to a video RAM memory system that provides 4,096 bits
of off-chip memory. Rendering units can be independently reas-
signed to any part of the screen or to non-screen-oriented computa-
tion. As of April 1989, both hardware and software are still under
construction, with initial system operation scheduled for fall 1989.

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and
Logic Structures]: Design Styles - parallel; C. 1.2 [Processor Archi-
tectures]: Multiprocessors - parallel processors; 1.3.1 [Computer
Graphics]: Hardware Architecture - raster display devices; 1.3.3
[Computer Graphics]: Picture/Image generation- display algorithms;
1.3.7 [Computer Graphics[: 3D Graphics and Realism - color, shad-
ing and texture, visible surface algorithms.

Additional Key Words and Phrases: logic-enhanced memory, ring
network, polygon scan-conversion

i This work supported by the Defense Advanced Research Projects
Agency, DARPA ISTO Order No. 6090, the National Science
Foundation, Grant No. DCI-8601152, the Office of Naval Research,
Contract No. N0014-86-K-0680, and U.S. Air Force Systems
Command, Contract No. F33615-88-C- 1848.

2 Department of Mathematics, Carleton College, Northfield, MN.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1. Introduction

Many computer applications seek to create an illusion of interaction
with a virtual world. Vehicle simulation, geometric modeling and
scientific visualization, for example, all require rapid display of
computer-generated imagery that changes dynamically according to
the user's wishes. Much progress has been made in developing high-
speed rendering hardware over the past several years, but even the
current generation of graphics systems can render only modest
scenes at interactive rates,

For many years our research goal has been the pursuit of truly
interactive graphics systems. To achieve the necessary rendering
speeds and to provide a platform for real-time algorithm research, we
have been developing a massively parallel image generation archi-
tecture called Pixel-Planes [Fuchs 81, 82, 85, Poulton 85]. We
briefly describe the basic ideas in the architecture:

Each pixel is provided with a minimal, though general, processor,
together with local memory to store pixel color, z-depth, and other
pixel information. Each processor receives a distinct value of a linear
expression in screen-space, Ax + By + C, where A,B,C are data inputs
and x,y is the pixel address in screen-space. These expressions are
generated in a parallel linear expression evaluator, composed of a
binary tree of tiny multiply-accumulator nodes. A custom VLSlchip
contains pixel memory, together with the relatively compact pixel
processors and the linear expression evaluator, both implemented in
bit-serial circuitry. An array of these chips forms a "smart" frame
buffer, a 2D computing surface that receives descriptions of graphics
primitives in the form of coefficients (A,B,C) with instructions and
locally performs all pixel-level rendering computations. Since
instructions, memory addresses, and A,B,C coefficients are broad-
cast to all processors, the smart frame buffer forms a Single-
lnstruction-Multiple-Datastream computer, and has a very simple
connection topology. Instructions (including memory addresses and
A,B,C's) are generated in a conventional graphics transformation
engine, with the relatively minor additional task of converting
screen-space polygon vertices and colors into the form of linear
expressions and instructions.

In 1986 we completed a full-scale prototype Pixel-Planes system,
Pixel-Planes 4 (Pxpl4) [Poulton 87, Eyles 88], which renders 39,000
Gouraud-shaded, z-buffered polygons per second (13,000 smooth-
shaded interpenetrating spheres/second, 11,000 shadowed poly-
gons/second) on a 512x512 pixel full-color display, While this
system was a successful research vehicle and is extremely useful in
our department's computer graphics laboratory, it is too large and
expensive to be practical outside of a research setting. Its main
limitations are:

©i989 ACM-0-89791- 312-4/89/007/0079 $00.75 79

:t~-~$1GGRAPH '89, Boston, 31 July-4 August, 1989

• large amount of hardware, often utilized poorly (particularly
when rendering small primitives)

• hard limit on the memory available at each pixel (72 bits)
• no access to pixel data by the transformation unit or host

computer
• insufficient front-end computation power

This paper describes its successor, Pixel-Planes 5 (Pxpl5). Pxpl5
uses screen subdivision and multiple small rendering units in a
modular, expandable architecture to address the problem of proces-
sor utilization. A full-size system is designed to render in excess of
one million Phong-shaded triangles per second. Sufficient "front
end" power for this level of performance is provided by a MIMD
array of general-purpose math-oriented processors. The machine's
multiple processors communicate over a high-speed network. Its
organization is sufficiently general that it can efficiently render
curved surfaces, volume-defined data and CSG-defined objects. In
addition it can rapidly perform various image-processing algorithms.
Pxpl5' s rendering units each are 5 times faster than Pxpl4 and contain
more memory per pixel, distributed in a memory hierarchy: 208 bits
of fast local storage on its processor-enhanced memory chips, 4K bits
of memory per pixel processor in a conventional VRAM "backing
store", and a separate frame buffer that refreshes normal and stereo
images on a 1280x1024 72Hz display.

2. Background

Raster graphics systems generally contain two distinct parts: a
graphics transformation engine that transforms and lights the geo-
metric description of a scene in accordance with the user's viewpoint
and a Renderer that paints the transformed scene onto a screen.

Designs for fast transformation units have often cast the series of
discrete steps in the transformation process onto a pipeline of
processing elements, each of which does one of the steps [Clark 82].
As performance requirements increase, however, simple pipelines
begin to experience communication bottlenecks, so designers have
turned to multiple pipelines [Runyon 87] or have spread the work at
some stages of the pipe across multiple processors [Akeley 88].
Vector organizations offer a simple and effective way to harness the
power of multiple processors, and have been used in the fastest
current graphics workstations [Apgar 88, Diede 88]. Wide vector
organizations may have difficulty with data structures of arbitrary
size, such as those that implement the PHIGS+ standard, so at least
one commercial offering divides the work across multiple processors
operating in MIMD fashion [Torberg 87].

The rendering problem has generally been much more difficult to
solve because it requires, in principal, computations for every pixel
of every primitive in a scene. To achieve interactive speeds on
workstation-class machines, parallel rendering engines have become
the rule. These designs must all deal with the memory bandwidth
bottleneck at araster system's frame buffer. Three basic strategies for
solving this problem are:

Rendering Pipelines. The rendering problem can also be pipelined
over multiple processors. The Hewlett-Packard SRX graphics
system [Swanson 86], for example, uses a pipeline of processors
implemented in custom VLSI that simultaneously perform 6-axis
interpolations for visibility and shading, operating on data in a pixel
cache,

The frame buffer bandwidth bottleneck can be ameliorated by
writing to the frame buffer only the final colors of the visible pixels.
This can only be achieved if all the primitives that may affect a pixel
are known and considered before that pixel is written. Sorting
primitives by screen position minimizes the number that have to be

8O

considered for any one pixel. Sorting first by Y, then by X achieves
a scan-line order that has been popular since the late 1960's and is the
basis for several types of real-time systems [Watkins 70]. The basic
strategy has been updated by several groups recently. The SAGE
design [Gharachorloo 88] contained a processor for every pixel on a
scan-line. Data for primitives active on a scan-line pass by this array,
and visible pixel colors are emitted at video rates; no separate frame
buffer is required. Researchers at Schlumberger [Deering 88]
recently proposed a system in which visibility and Phong-shading
processors in a pipeline are assigned to the objects to be rendered on
the current scan line. The latter two projects promise future commer-
cial offerings that can render on the order of 1M triangles per second
with remarkably little hardware, though designs for the front ends of
these systems have yet to be published. These machines have each
cast one particular rendering algorithm into hardware, enabling a
lower-cost solution but one not intended for internal programming by
users. New algorithms cannot easily be mapped onto hardware for
scan-line ordered pipelines. Finally, a difficulty with these designs
is ensuring graceful performance degradation for scenes with excep-
tional numbers of primitives crossing a given scan-line.

Interlaced Processors. As first suggested a decade ago [Fuchs 77,
79, Clark 80], the frame buffer memory can be divided into groups
of memory chips, each with its own rendering processor, in an
interlaced fashion (each processor-with-memory handles every nth
pixel on every mth row). The rendering task is distributed evenly
across the multiple processors, so the effective bandwidth into the
frame buffer increases by a factor of m.n. This idea is the basis of
several of the most effective current raster graphics systems [Akeley
88, Apgar 88]. Some of these systems, however, are again becoming
limited by the bandwidth of commercial DRAMs [Whitton 84]. With
increasing numbers of processors operating in SIMD fashion, proc-
essor utilization begins to suffer because fewer processors are able to
operate on visible pixels, the "write efficiency" problem discussed in
[Deering 88]. Raising the performance of interlaced processors by
an order of magnitude will probably require more complex organi-
zations or new memory devices,

Processor-Enhanced Memories. Much higher memory bandwidth
can be obtained by combining some processing circuitry on the same
chip with dense memory circuits. The most widely used example of
a"smart" memory is the Video RAM (VRAM), introduced by Texas
Instruments. Its only enhancement is a second, serial-access port into
the frame buffer memory; nevertheless these parts have had a great
impact on graphics system design. The SLAM system, described
some years ago in [Demetrescu 85], combines a 2D frame buffer
memory with an on-chip parallel 1D span computation unit; it
appears to offer excellent performance for some 2D applications but
requires external processing to divide incoming primitives into scan-
line slices. Recently NEC announced a commercial version of an
enhanced VRAM that performs many common functions needed in
2D windowing systems. This approach has been the focus of our
work since 1980; in the Pixel-Planes architecture we have attempted
to remove the memory bottleneck by performing essentially all pixel-
oriented rendering tasks within the frame buffer memory system
itself.

The architecture we will describe below employs a MIMD array of
processors in its transformation unit and seeks to make more effec-
tive use of the processor-enhanced memory approach.

3. Project Goals

We wanted Pixel-Planes 5 to be a platform for research in graphics
algorithms, applications and architectures, and a testbed for refine-
ments that would enhance the cost effectiveness of the approach. To
this end, we adopted the following goals:

~ Computer Graphics, Volume 23, Number 3, July 1989

Fast Polygon Rendering. Despite all the interest in higher-
order primitives and rendering techniques, faster polygon ren-
dering is still the most often expressed need for many applica-
tions: 3D medical imaging, scientific visualization, 'virtual
worlds' research. We therefore set a goal of rendering 1 million
z-buffered Phong-shaded triangles per second, assuming the
average triangle's area is 100 pixels and that it is embedded in
a triangle strip. We wanted to achieve this rate without using any
special structures for rendering just triangles - - we wanted a
system for much more than triangles.

Generality. For the system to be an effective base for
algorithm development, it needed to have a simple, general
structure whose power was readily accessible to the algorithm
developer programming in a high-level language. We wanted
it to have sufficient generality for rendering curved surfaces,
volume data, objects described with Constructive Solid Geome-
try, for rendering scenes using the radiosity lighting model, and
(we hoped) for a variety of other 3D graphics tasks that we have
not yet considered. It was essential that the system support a
PH1GS+ -like environment for application programmers not
interested in the system's low-level details. Further, the hard-
ware platform should be flexible to allow experiments in
hardware architectures.

Packaging. A high-performance configuration that met our
primary performance goals should fit within a workstation
cabinet with no unusual power requirements. We also wanted
a system that could be modularly built and flexibly configured
to trade cost for performance. The system should drive a
1280x1024 display at >60Hz, and be able to update full scene
images at >20 frames/second.

4. Parallel Rendering by Screen-space Subdivision

We now describe the scheme we use in Pxpl5 to attain high levels of
performance in a compact, modular, expandable machine. Our
previous work has depended on a single, large computing surface of
SIMD parallel processors operating on the entire screen space. In the
new architecture, we instead have one or more small SIMD engines,
called Renderers, that operate on small, separate 128x128-pixel
patches in a virtual pixel space. Virtual patches can be assigned on
the fly to any actual patch of the display screen. The system achieves
considerable speedup by simultaneously processing graphics primi-
tives that fall entirely within different patches on the screen.

The principal cost of this screen-space subdivision scheme is that the
primitives handled in the transformation engine must be sorted into
"bins" corresponding to each patch-sized region of the screen space.
Primitives that fall into more than one region are placed into the bins
for all such regions. The simplest (though expensive) way to support
these bins is to provide additional storage in the transformation
engine for the entire, sorted list of output primitives. Once trans-
formed, sorted, and stored, a new scene is rendered by assigning all
available Renderers to patches on the screen and dispatching to these
Renderers primitives from their corresponding bins. When a Ren-
derer completes a patch, it can discard its z-buffer and all other pixel
values besides colors; pixel color values are transferred from on-chip
pixel memory to the secondary storage system, or "backing store",
described below. The Renderer is then assigned to the next patch to
be processed. This process is illustrated in Figure 1 for a system
configured with only four Renderers.

The general idea of multiple independent groups ofpixel processors
operating on disjoint parts of the display screen was described in
several of our earlier publications as "buffered" Pixel-Planes. What

1024
pixels

Figure 1:

al [J, ~1 d,la,ld b e
a 3 d I) I)

" b ' 2C3 3

typical
I / 128x128
~ p i x e l patch

1280
pixels

Rendering process for a Pxpl5 system with 4
Renderers. 1280x1024 screen is divided into 80 128x128
patches. Patches are processed in raster order. Renderers
a-d are assigned initially to the first four patches. Renderer
a completes first, and is assigned to the next available
patch. Next Renderer d completes its first patch and is
assigned to the next available patch, and so forth.

is new about this implementation is the idea of flexibly mapping
small virtual pixel spaces onto the screen space. It allows useful
systems to be built with any number of small rendering units, permits
cost/performance to be traded nearly linearly, and can render into a
window of arbitrary size with only linear time penalty.

The virtual pixel approach is supported in the Pxpl5 implementation
by a memory hierarchy, whose elements are: (I) 208 bits of fast
SRAM associated on-chip with each pixel processor; (2) a "backing
store" built from VRAMs, tightly linked to the custom logic-en-
hanced memory chips; (3) a conventional VRAM frame buffer. The
backing store consists •f an array of VRAMs, each connected via its
video port to one of our custom memory chips; IMB VRAMs
provide 4Kbits of storage per pixel. The backing store memory is
available through the VRAM random I/O port to the rest of the
system, which can read and write pixel values in the conventional
way. A Renderer uses this memory to save and retrieve pixel values,
effectively allowing "context switches" when the Renderer ceases
operations on one patch and moves to another. A typical context
switch takes about 0.4 msec, the time to render a hundred or so
primitives, and can be fully overlapped with pixel processing.

In the simple multi-Renderer scheme described above, the backing
store is used to store pixel color values for patches of the screen as the
Renderer completes them. When the entire image has been rendered,
each of these regions is transferred in a t~lock to the (double-buffered)
display memory in the Frame Buffer, from which the display is
refreshed.

5. Architectural Overview

The major elements of Pxpl5 are:

• Graphics Processors (GPs), floating point engines, each with
considerable local code and data storage.

• Renderers , each a small SIMD array of pixel processors with
its own controller.

• Frame Buffer, double-buffered, built from conventional Video
RAMs, from which the video display is refreshed.

81

~(~SlGGRAPH '89, Boston, 31 July-4 August, 1989

 pOrtl o,, : , ,_ : ,
C ~ l ~ , < t o , r - - + , I + ~ . i _ . ,

'r L-C-r.~L_~r.~I .c'il Gi i I t Rin+ ~ - . . ~]

!

Network Workstation

5.2 Graphics Processors

The performance goals we have set require sustained computation
rates in the "front end" of several hundred MFlops, feasible today
only in parallel or vector architectures. We elected to build a M1MD
transformation unit; this organization handles PH1GS+ -like variable
data structures better than would a vector unit, and supports the
"bins" needed for our screen subdivision multi-Renderer.

Much of the system's complexity is hidden by ROS; the program-
ming model is therefore relatively simple. Load sharing is accom-
plished by dividing a database across the GPs, generally with each
GP running the same code. Since the GPs are programmable in the
C language, users have access to the machine's full capability
without needing to write microcode.

5.3 Renderer

Figure 2 :Pxp l5 block diagram.

Host Interface, which supports communications to/from a
UNIX workstation.

Ring Network to interconnect the various processors in a
flexible way.

5.1 Ring Network

Pxpl5's multi-processor architecture, motivated by the desire to
support a variety of graphics tasks, requires a capable communica-
tions network. Rather than build several specialized communica-
tions busses to support different types of traffic between system
elements, we instead provide a single, flexible, very high perform-
ance network connecting all parts of the system.

At rendering rates of IM primitives per second, moving object
descriptions from the GPs to the Renderers requires up to 40 million
32-bit words/second (40 MW/sec), even for relatively simple render-
ing algorithms. Simultaneously, pixel values must be moved from
the Renderers to the Frame Buffer at rates up to 40 MW/sec, for real-
time interactive applications. At the suggestion of J. William
Poduska of Stellar Computer, Inc., we explored technology and
protocols for fast ring networks, and eventually settled on a multi-
channel token ring. Ring networks have many advantages over
busses in high-speed digital systems. They require only point-to-
point communication, thus reducing signal propagation and power
consumption problems, while allowing a relatively simple commu-
nication protocol. Their major disadvantage, long latency, is not
acceptable for many computing systems, but is okay here.

Our network can support eight simultaneous messages, each at 20
MW/sec for a total bandwidth of 160 MW/sec. To avoid deadlock,
each transmitting device gains exclusive access first to its intended
receiver, then to one of the 8 data channels, before it transmits its data
packet. Each Ring Node is a circuit composed of commercial MSI
bus-oriented data parts and field-programmable controllers. (At the
expense of an expensive development cycle, the Ring Network could
be reduced to one or a few ASICs.) The controllers operate at
20MHz, while data is moved at 40MHz (to save wires). Each client
processor in the system has one or more of these Nodes, which
provides to the client a 20 MW/sec port onto the Ring network.

We have developed a low-level message-passing operating system
for the ring devices called the Ring Operating System (ROS). It
provides device control routines as well as hardware independent
communication. In addition, ROS controls the loading and initializa-
tion of programs and data.

Section 4 describes the essentials of the Renderer design, whose
block diagram is shown in Figure 3. It is based on a logic-enhanced
memory chip built using 1.6 micron CMOS technology and operat-
ing at 40MHz bit-serial instruction rates. In addition to 256 pixel
processing elements, each with 208 bits of static memory, the chip
contains a quadratic expression evaluator (QEE) that produces the
value Ax+By+C+DxZ+Exy+Fy 2 simultaneously at each pixel x,y
from global inputs A,B,C,D,E,F [Goldfeather 86]. Quadratic expres-
sions, while not essential for polygon rendering, are very useful for
rendering curved surfaces and for computing a spherical radiosity
lighting model (see Section 7.6).

A major design issue for the Renderer was choosing the size of the
processor array. The effectiveness of the screen-space subdivision
scheme for parallel rendering is determined in part by the frequency
with which primitives must be processed in more than one region,
and this in turn depends on the size of the Renderer's patch. On one
band, economy of use of the fairly expensive custom chips of the
processor array and the need to leverage performance by dividing the
rendering work across as many processors as possible argue for
smaller Renderer patches. A large Renderer patch, on the other hand,
reduces the likelihood that primitives wilt need to be processed more
than once. We elected a 128x128 Renderer size; it is fairly efficient
for small primitives, and its hardware conveniently fits on a reason-
able size printed circuit board.

Custom Memory Chips '

m ~. ~ lx2280~i~r?:]] i \ Renderer Board

"-,,q-,r-t~ II] ~ Backing Store Controller [

pnnnnnnq Back ng
] G e~n~ ~ n __LJ ~ 8 ! ~ P~ixAe~ray] ~ S t o r e
. , on,;ii:;I Pro<essors JI B
/ L___~ .._.___J [M ~ [~ [~ [~ t ~ 2 ~ (4K bits/pixel)

Figure 3: Block diagram of a Pxpl5 Renderer. Pixel
processor array implemented in 64 custom chips, each
with 2 columns of 128 pixel processors-with-memory and
a quadratic expression evaluator.

82

~ Computer Graphics, Volume 23, Number 3, July 1989

5.4 Frame Buffer and Host Interface

The Frame Buffer is built in a fairly conventional way using Video
RAMs. It supports a 1280x1024-pixel, 72Hz refresh-rate display,
24-bit true color and a color lookup table. Display modes include
stereo (alternating frames) and a hardware 2x zoom. The Frame
Buffer is accessed through two Ring Nodes, to provide an aggregate
bandwidth of 40 MW/sec into the buffer, allowing up to 24Hz
updates for full-size images. Pxpl5 is hosted by a Sun 4 workstation.
Host communication is via programmed I/O, providing up to 4
MBytes/sec bandwidth between Pxpl5 and its host.

5.5 Performance

Since the transformation engine in Pxpl5 is based on the same
processor used in Pxpl4, we estimate, based on the earlier machine's
performance, that a GP can process on the order of 30,000 Phong-
shaded triangles per second; 32 GPs are therefore required to meet
our performance goal. A single Renderer has a raw performance of
about 150,000 Phong-shaded triangles per second; actual perform-
ance is reduced somewhat by inefficiencies resulting from primitives
that must be processed in more than one patch. Simulations predict
an actual performance of around 100,000 triangles/sec, so a configu-
ration to meet the performance goals will require 8-10 Renderers.

6. PPHIGS Graphics Library

Pxpl5 may be programmed at various levels. We anticipate users
ranging from application programmers, who simply desire a fast
rendering platform with a PHIGS+ -style interface [van Dam 88], to
algorithm prototypers, who need access to the Renderer 's low-level
pixel operations and may depart from the PHIGS+ paradigm. To
meet these disparate needs, several layers of support software are
required. Program initialization and message passing between
processors are handled by the Ring Operating System (ROS). A local
variation of PHIGS+ (PixeI-Planes PHIGS or PPHIGS) provides a
high-level interface for users desiring portable code. This section
describes PPHIGS.

PPHIGS makes the hardware appear to the "high-level" graphics
programmer very much like any other graphics system: the
programmer's code (running on the host) makes calls to the graphics
system to build and modify a hierarchical data structure. This
structure is traversed by the PPHIGS system to create the image on
the screen.

6.1 Database Distribution

Since the applications programming library is based on PHIGS, it
allows the programmer to create a display list that is a directed acyclic
graph of structures. These structures contain elements that are either
graphics primitives, state-changing commands, or calls to execute
other structures. To take advantage of the multiple graphics proces-
sors in Pxpl5, we must distribute the database structure graph across
the graphics processors in a way that balances the computational
load, even in the presence of editing and changes in view. In order
to achieve this we must balance the load across GPs for each
structure. When a structure is created, some of the primitives are
placed on each GP. If the object goes out of view or a new instance
is created, the load will remain balanced.

In PHIGS, as in most structured display list systems, child structures
inherit information from their parents such as transformation matri-
ces and colors. These state-changing commands as well as structure
execution calls must be replicated on each GP since each structure is
distributed across multiple GPs. This replication should not be a
problem, since we expect the majority of structure elements to be

graphics primitives and not state-changing ones. We have devised
other distribution schemes for applications that violate this assump-
tion.

6.2 The Rendering Process

The rendering process is controlled by a designated graphics proces-
sor, the master GP, or MGP. By exchanging messages with other GPs
and sending commands to other modules when necessary, the MGP
synchronizes operations throughout the system.

Before discussing the steps in the rendering process, we first want to
emphasize the distinction between pixel operations that take place on
a per primitive basis, such as z comparison and storage, and those that
can be deferred until the end of all primitive processing or end-of-
frame. Shading calculations from intermediate values stored at the
pixels, for instance, need only be performed once per pixel, rather
than once per primitive (assuming there is sufficient pixel storage to
hold the intermediate values until end-of-frame). During end-of-
frame the final colors can be computed in parallel from the stored
values of the visible portions of every polygon that falls within the
128x128 pixel region. For expensive lighting and shading models,
such as Phong shading and textures, this speedup is dramatic.

The major steps in the rendering process are:

1. The application program running on the host edits the database
using PPHIGS library routines and transmits these changes to
the GPs.

2. Application requests anew frame. Host sends this request to the
MGP, which relays it to the other GPs.

3. The GPs interpret the database, generating Renderer commands
for each graphics primitive. These commands are placed into
the local bins corresponding to the screen regions where the
primitivelies. EachGPhas abin forevery 128x128pixelregion
in the window being rendered.

4. The GPs send bins containing commands to Renderers. The
Renderers execute commands and compute intermediate re-
suits.

5. The GP sending the final bin to a Renderer also sends end-of-
frame commands for the region. The Renderers execute these
commands and compute final pixel values from the intermedi-
ate results.

6. The Renderers send computed pixels to the frame buffer.
7. When all regions have been received, the frame buffer swaps

banks and displays the newly-computed frame.

The MGP assigns Renderers to screen regions while the frame is
being rendered. It communicates a Renderer assignment to the GPs
by sending a message to one GP, which sends its associated bin, and
then forwards the message to the next GP, which does the same. At
the end, the message is sent back to the MGP, indicating that all the
bins have been processed. This method ensures that at most one GP
attempts to transmit to a Renderer at a given time. This prevents
blocked transmissions, which would slow throughput.

The steps of the rendering process can be overlapped in several ways;
at maximum throughput, several frames may bein progress at once.
This requires that the bin memory be double buffered. If a GP runs
out of bin memory it must send some of its bin data to a Renderer to
free up memory. The MGP handles synchronization to keep the
frames properly separated [Ellsworth 89].

7. Rendering Algorithms

We now discuss various rendering algorithms in turn. Some of these
have been published before, in which case, we review their applica-

83

bility to Pxpl5 and give performance estimates. We also report new
techniques for efficiently displaying procedural textures and conic
spline-defined fonts, for calculating radiosity form-factors, and for
displaying volume-defined images at interactive rates.

7.1 Phong Shading

Since Pxpl5 can evaluate quadratic expressions directly, we can
implement Phong shading using Bishop and Wiemer 's Fast Phong
Shading technique [Bishop 86]. However, the power of the pixel
processors allows us to compute the Phong lighting model [Phong
73] directly. This means that the graphics processors do not have to
do th_ extensive computation necessary to compute the quadratic
coefficients. We feel that this approach will be faster and more
general.

As polygons and other primitives are processed, the x, y, and z
components of the surface normal are stored in all the pixels where
the primitive is visible. For polygons this is done by simple linear
interpolation of each component. When all the primitives for a region
have been processed, the pixel-parallet end-of-frame operations are
performed. First, the normal vector is normalized by dividing by the
square root of its length, which is computed using a Newton iteration;
then the color for each pixel is computed using the standard Phong
lighting model.

Simulation indicates that the end-of-frame computation for the
Phong lighting model with a single light source consumes around
23,000 Renderer cycles or .57 milliseconds. With full screen
resolution of 1024 by 1280 and, a 16 Renderer system, the total end-
of-frame time is .57msec • (80/16) or 2.85msec per frame. At 24
frames per second this is 6.8 percent of the rendering time.

'89, Boston, 31 July-4 August, 1989

polygon's shadow volume will cross many screen regions, the
speedup we would get from screen-space subdivision will be greatly
reduced. A naive approach would be to send the plane equations for
the shadow volume to every region. This would greatly increase both
the amount of data that would be sent over the ring and the amount
of computation that the Renderers would have to do. A simple
optimization would be to have the graphics processors compute
which regions could possibly be shadowed by a polygon. We have
not yet explored these options in depth. Because of the problems
mentioned above, we anticipate increasing use of the fast radiosity
technique described in Section 7.6.

7.4 Texture Mapping

We have previously reported a technique to compute the u,v texture
coordinates for polygons in perspective [Fuchs 85]. The speed of this
technique is limited by the time to broadcast the individual texture
values to the pixels. While 64x64 image textures run at interactive
rates on Pxpl4 (see Figure 4), a more efficient method for Pxpl5 is to
calculate the texture values directly in each pixel. Broadcasting the
texture values will be significantly faster on Pxpl5 than on Pxpl4,
since texture values can be stored in bins and only broadcast when
needed for one or more pixels of a region.

Image-based Textures. We have explored both summed area tables
[Crow 84] and mip-maps [Williams 83] for anti-aliasing image

7.2 Spheres

Pxpl5 can render spheres using the same algorithm as on Pxpl4
[Fuchs 85], but is both faster (taking advantage of the QEE), and can
generate higher-quality images (Phong shading with 24-bit color).
Phong shading is achieved as follows. The expressions for the
coordinates of the surface normal for a sphere are:

nx _ x - a
r

y - b
n y - r

~/r 2 - (x - a) 2 - (y - b) 2
n z :

r ' -

The expression for nz can be approximated by a parabola:

Figure 4: Mandrill mapped onto a plane and hoop on
Pxpl4. Estimated rendering time on Pxpl5 is 31 msec.

r 2 - (x - a) 2-(y -b) 2
n z =

r2

Then the normals are computed at each pixel by broadcasting two
linear expressions and one quadratic expression. Results from simu-
lation indicate that this approximation produces satisfactory shading
including the specular highlights. Assuming one light source and 24
frames per second, we estimate the system performance to be 1.8M
spheres per second for 100 pixel area spheres and 900K spheres per
second for 1600 pixel area spheres.

7.3 Shadows

Pxpl4 was able to generate images with shadows very rapidly - -
nearly half as fast as images without shadows [Fuchs 85]. Unfortu-
nately we will not achieve similar results with Pxpl5. Since a

Figure 5: Procedural earth, water, sky, fire and stars
textures (simulated). Estimated rendering time on Pxpl5 is
5.5 milliseconds.

84

~ Computer Graphics, Volume 23, Number 3, July 1989

textures. We feel that mip-maps will work best on Pxpl5. During
rendering the mip-map interpolation value can be linearly interpo-
lated across the polygon. At end of frame, the mip-map is broadcast
to each pixel-processor, and each processor loads the texture ele-
ments at its u,v coordinate along with neighboring values for inter-
polation.

Procedural Textures. We have begun to explore procedural tex-
tures, as shown by Perlin [Perlin 85] :~d Gardner [Gardner 88], for
use in Pxpl5. We have written a p~o~ am for Pxpl4 that allows one
to explore in real-time the space of textures possible using Gardner's
technique. This program and software written by Douglass Turner
were used to create the textures shown in Figure 5.

The two-dimensional Gardner spectral functions are calculated us-
ing quadratic approximations for the cosine functions. This requires
nine multiplies per term plus one multiply to combine the x and y
directions. Different textures for different pixels can be computed
simultaneously. The images shown in the figure contains five terms.
On Pxpl5 they would require about 15,000 cycles or 360 microsec-
onds using 10 bits of resolution. These procedural methods can be
anti-aliased by eliminating high frequency portions of the texture;
terms whose wavelength spans less than one pixel are simply not
computed [Norton 82].

7.5 Fonts

Herve Tardif has been developing methods for rapidly rendering
fonts. Conic splines, as advocated by several researchers [Pavlidis
83, Pratt 85], are particularly well suited for rendering by Pxpl5; with
the QEE in the processor-enhanced memories, Pxpl5 can directly
scan convert conic section, from which characters are defined.
Initially, a character is represented by a sequence of straight line
segments and arcs of conics joined together in the plane. As
suggested by Pratt, each arc of a conic is in turn represented by three
points M, N, P and a scalar S which measures the departure of the
conic from a parabola (Figure 6). Hence, a letter can be represented
either by a simple closed polygon or, for letters with holes, two or
more polygons. The character is initially converted into the differ-
ence between its unique convex hull and the discrepancy with that
hull. (Holes are treated the same as other discrepancies.) The process
is repeated if the discrepancy region(s) are concave. This process
amounts to building a tree whose leaves are convex regions and
nodes are set operators [Tor 84]. A character is rendered by
traversing its corresponding tree, scan converting each convex
region in turn. Since conic sections are invariant under projective
maps, this technique can also be applied to the rendering of planar
characters embedded in a 3D environment.

Performance estimates have been obtained from a conic representa-
tion of a Times Roman font given to us courtesy of Michael Shantz
of Sun Microsystems. The average number of convex polygons per
character in this set is 8.12, the average number of straight edges per
polygon is 4.13, and the average number of conics per character is

• /

M

Q O O

Figure 6: Conic font constructed by regions bounded by
lines and conic sections.

8.4. This indicates that the average character can be scan-converted
with 36 linear coefficients and 8.4 quadratic coefficients. This
suggests that each Renderer can scan-convert over 20,000 letters per
second. Assuming each character falls into an average of 1.4
rendering regions, 16 Renderers can draw over 225,000 letters per
second. The GPs will have difficulty keeping up with this rendering
rate, but they can cache coefficients in 2D applications.

7.6 Fast Radiosity

The realism of indoor scenes is greatly enhanced by the radiosity
lighting model [Gora184, Cohen 85], where the lighting contribution
due to diffuse interreflection is taken into account. We believe that
Pixel-Planes 5 can be used to speed up the calculations neede~t to
compute radiosity. Initial implementations of radiosity required the
lighting of all polygons in a scene to be computed before an image is
displayed, and this requires many minutes even for simple scenes.
The progressive radiosity method [Cohen 88] allows images of
progressively better quality to be displayed as light is being distrib-
uted through the scene, thus making radiosity more attractive for
interactive applications. The most time-consuming step of this
process is in computing the form-factors of a polygon patch, that is,
how much a patch "sees" of other patches in the scene. This means
that a separate visibility calculation must be performed from each
patch in a scene. Two common methods used to compute form-
factors are tracing rays from a patch and z-buffer rendering onto five
image planes that form a hemi-cube at each patch.

We could use PxplS's Renderers to compute the five z-buffer images
needed for each hemi-cube and then bring this information back to
the GPs where the rest of the radiosity calculation can be performed.
The quadratic expression tree offers another possibility: one z-
buffered image will suffice for the visibility calculation at a patch if
the polygons are projected onto a hemisphere. Figure 8 illustrates
how the edges of a polygon become sections of ellipses when
projected onto a hemisphere and from there onto a plane. To compute
such a projected image each edge of a polygon in the scene is scanned
using the quadratic expression tree, and then a depth value is
computed either by using an approximate depth or by storing special
constants at each pixel [Goldfeather 89]. An identifying number for
the polygon is stored at all pixels where the polygon is visible. A
completed hemisphere image is sent to a GP which uses the image to
compute the form-factors, and then this information is used to
compute the colors at vertices of the patches in the scene. A radiosity-
lit scene is then displayed by the regular scan conversion procedure
and by interpolating the vertex colors across each polygon patch.
Since the resolution within a single Renderer appears to be more than
adequate for each projected image, multiple Renderers can be used
independently. Each Renderer should be able to process about
100,000 quadrilaterals per second.

Projection Equations (x,y,z)

x=ptl ~ i""""

/ ~ Projection Plane

v
Figure 7: Hemispherical projection of a triangle.

85

c~~SIGGRAPH '89, Boston, 31 July-4 August, 1989

Figure 8: (a) Hemispherical projection of Tebbs and Turk's office, generated on the Pxpl5 simulator. Estimated rendering time on
Pxpl5 is 2.8 milliseconds. (b) Standard view of the same room as in (a), displayed on Pxpl4 (radiosity software described in [Airey
89]). The viewpoint in (a) is from the light fixture near the door.

would be assigned 64 voxels, so the time required to classify and
7.7 Volume Render ing shade the entire dataset would be about 64 msec.

One example of Pxpl5's generality is its ability to perform volume
rendering. Marc Levoy plans to implement a version of the algorithm
described in [Levoy 89a, 89b], To briefly summarize the algorithm:
We begin with a 3D array of scalar-valued voxels. We first classify
and shade the array based on the function value and its gradient to
yield a color and an opacity for each voxel. Parallel viewing rays are
then traced into the array from an observer position. Each ray is
divided into equally spaced sample intervals, and a color and opacity
is computed at the center of each interval by tri-linearly interpolating
from the colors and opacities of the nearest eight voxels. The
resampled colors and opacities are then composited in front-to-back
order to yield a color for the ray.

For Pxpl5, we propose to store the function value and gradient for
several voxels in the backing store of each pixel processor. The
processor then performs classification and shading calculations for
all voxels in its backing store. The time to apply a monochrome
Phong shading model at a single voxel using a pixel processor is
about I msec. For a 256x256x256 voxel dataset, each pixel processor

The GPs perform the ray-tracing to generate the image. They are
each assigned a set of rays and request sets of voxels from the pixel
processors as necessary~ The GPs perform the tri-linear interpolation
and compositing operations, then transmit the resulting pixel colors
to the frame buffer for display. Hierarchical subdivision techniques
can be used to reduce the amount of data that must be sent to each
graphics processor.

The flame rate we expect from this system depends on which
parameters change from frame to frame. Preliminary estimates
suggest that for changes in observer position alone, we will be able
to generate a sequence of slightly coarse images at 10 frames per
second and a sequence of images of the quality of Figure 9 at 1 frame
per second.

7.8 Rendering CSG-defined Objects

We and others have developed algorithms to directly render Con-
structive Solid Geometry (CSG) defined objects on graphics systems
with deep frame buffers [Jansen 87, Rossignac 86, Goldfeather 88].
On Pxpl4 we developed a CSG modeler that displays small datasets
at interactive rates.

Pxpl5 provides several opportunities to increase CSG rendering
speed: the QEE on Pxpl5 renders curved-surfaced primitives without
breaking them into polygonal facets; having more bits per pixel
allows surfaces that are used multiple times to be stored and re-used,
rather than being re-rendered, greatly increasing performance; fi-
nally, the screen-subdivision technique advocated in [Jansen 87]
provides a way to take advantage of Pxpl5"s multiple Renderers.
Pxpl4 interactively renders CSG objects with dozens of primitives
(Figure 10). We expect Pxpl5 to interactively render objects with
hundreds of primitives.

7.9 Transparency

Figure 9: Volume-rendered head from CT data, generated
by Marc Levoy on a Sun 4. Estimated rendering time on
Pxpl5 is 1 second.

Several methods for rendering transparent surfaces are possible,
given the generality and power of Pxpl5. The most promising is to
enhance the bin sorting in each GP to generate twice as many bins,
one for transparent and another for opaque primitives for each region.
The transparent primitives are rendered after all the opaque ones.
Since we expect relatively few transparent polygons, each of the

86

~ Computer Graphics, Volume 23, Number 3, July 1989

Figure 10: CSG-modeled truck generated on Pxpl4. Es-
timated rendering time on Pxpl5 is 40 milliseconds.

"transparent" bins can be sorted from back to front and rendered by
simple composition. For difficult cases, in which a cluster of
transparent polygons cannot be sorted in z (as in a basket-weave of
transparent strips), multiple z values can be stored at each pixel to
control the compositing step. With this approach, difficult primitives
may need to be sent to Renderers several times to ensure correct
blending.

8. Current Status of Pxpl5 (April 1989)

Of the three custom CMOS VLSI chips being designed, the backing-
store interface chip is being tested and the processor-enhanced
memory chip is in fabrication. Layout of the third chip, the Renderer
controller, is nearly complete. Detailed simulation of the board-level
logic design is well along, and PCBs are being designed. A small
version of the Ring Network with a pair of Graphics Processors is
expected to become operational by late summer, with a complete
system running by year's end. On the software front, a high-level
language porting base is running simple code. The Renderer simu-
lator is yielding useful images.

9. Acknowledgments

We wish to thank: our colleagues on the Pixel-Planes team, Michael
Bajura, Andrew Bell, Howard Good, Chip Hill, Victoria Interrante,
Jonathan Leech, Marc Levoy, Ulrich Neumann, John Rhoades,
Herve Tardif, and Russ Tuck for many months of dedicated, creative
work; Vernon Chi for the design of a novel clock distribution scheme
for the system; J. William Poduska and Andries van Dam for valuable
criticism and advice on architecture design; Douglass Turner for the
texture rendering program; John Rohlf for implementing textures on
Pxpl4 and computing the radiosity office image; John Airey for
writing the radiosity software used for Figure 9b; Randy Brown,
Penny Rheingans, and Dana Smith for the office model; UNC
Department of Radiation Oncology for the volumetric data set; US
Army Ballistic Research Laboratory for the CSG truck data; Sun
Mierosystems for the Times Roman font data; John Thomas and
Brad Bennett for laboratory support; Sharon Waiters for engineering
assistance.

10. References

[Airey 89[Airey, J. and M. Ouh-young, "Two Adaptive Techniques
Let Progressive Radiosity Outperform the Traditional Radiosity
Algorithm," University of North Carolina Department of Com-
puter Science Technical Report TR89-020.

[Akeley 88] Akeley, Kurt and T. Jermoluk, "High-Performance
Polygon Rendering," Computer Graphics, 22(4), (Proceedings
of SIGGRAPH '88), pp 239-246.

[Apgar 88] Apgar, B., B. Bersack, A. Mammen, "A Display System
for the Stellar Graphics Supercomputer Model GS 1000," Com-
puter Graphics, 22(4), (Proceedings of SIGGRAPH '88), pp
255-262.

[Bishop 86] Bishop, Gary and David M. Wiemer, "Fast Phong
Shading," Computer Graphics, 20(4), (Proceedings of
SIGGRAPH '86), pp. 103-106.

[Clark 80] Clark, J. and M. Hannah, "Distributed Processing in a
High-Performance Smart Image Memory," LAMBDA (VLSI
Design), Q4, 1980, pp 40-45.

[Clark 82] Clark, J. July, 1982. "The Geometry Engine: A VLSI
Geometry System for Graphics," Computer Graphics, 16(3),
(Proceedings of SIGGRAPH '82), pp 127-133.

[Cohen 85] Cohen, Michael F., and Donald P. Greenberg, "The
Hemi-cube: A Radiosity Solution for Complex Environments,"
Computer Graphics, 19(3), (Proceedings of SIGGRAPH '85),
pp. 31-40.

[Cohen 88] Cohen, Michael F., Shenchang Eric Chen, John R.
Wallace, and Donald P. Greenberg, "A Progressive Refinement
Approach to Fast Radiostiy Image Generation," Computer Graph-
ics, 22(4), (Proceedings of SIGGRAPH '88), pp. 75-84.

[Crow 84] Crow, F., "Summed-Area Tables for Texture Mapping,"
Computer Graphics, 18(4), (Proceedings of SIGGRAPH '84),
pp. 207-212.

[Deering 88] Deering, M., S. Winner, B. Schediwy, C. Duffy, N.
Hunt, "The Triangle Processor and Normal Vector Shader: A
VLS1 System for High Performance Graphics," Computer
Graphics, 22(4), (Proceedings of SIGGRAPH '88), pp 21-30.

[Demetrescu 85] Demetrescu, S., "High Speed Image Rasterization
Using Scan Line Access Memories," Proceedings of the 1985
Chapel Hill Conference on VLSI, Rockville, MD, Computer
Science Press, pp 221-243.

[Diede 88] Diede, T., C. Hagenmaier, G. Miranker, J. Rubenstein,
W. Worley, "The Titan Graphics Supercomputer Architecture,"
Computer, 21(9), pp 13-30.

[Ellsworth 89] Ellsworth, David, "Pixel-Planes 5 Rendering Con-
trol," University of North Carolina Department of Computer
Science Technical Report TR89-003.

[Eyles 88] Eyles, J., J. Austin, H. Fuchs, T. Greer, J. Poulton,"Pixel-
planes 4: A Summary," Advances in Computer Graphics Hard-
ware 11, Eurographics Seminars, 1988, pp 183-208.

[Fuchs 77] Fuchs, Henry, "Distributing a Visible Surface Algorithm
over Multiple Processors," Proceedings of the ACM Annual
Conference, 449-451.

[Fuchs 79] Fuchs, H., B. Johnson, "An Expandable Multiprocessor
Architecture for Video Graphics," Proceedings of the 6th ACM-
1EEE Symposium on Computer Architecture, April 1979, pp 58-
67.

87

'89, Boston, 31 July-4 August, 1989

[Fuchs 81] Fuchs, H. and J. Poulton, "Pixel-planes: A VLSI-
Oriented Design for a Raster Graphics Engine," VLSI Design, 3rd
Quarter, 1981., 2(3),.pp 20-28.

[Fuchs 82] Fuchs, H., J. Poulton, A. Paeth, and A. Bell, "Developing
Pixel Planes, A Smart Memory-Based Raster Graphics System,"
Proceedings of the 1982 M1T Conference on Advanced Research
in VLSI, Dedham, MA, Artech House, pp 137-146.

[Fuchs 85] Fuchs, H., J. GoldFeather, J.P. Hultquist, S. Spach, J.
Austin, F.P. Brooks, Jr., J. Eyles, and J. Poulton, "Fast Spheres,
Textures, Transparencies, and Image Enhancements in Pixel-
Planes," Computer Graphics, 19(3), (Proceedings of SIGGRAPH
'85), pp. 111-120.

[Gardner 88] Gardner, G., "Functional Modeling of Natural Scenes,
Functional Based Modeling," SIGGRAPH Course Notes, vol. 28,
1988, pp. 44-76.

[Gharachorloo 88] Gharachorloo, Nader, S. Gupta, E. Hokenek, P.
Balasubramanian, B. Bogholtz, C. Mathieu, C. Zoulas,"Subnanos-
econd Pixel Rendering with Million Transistor Chips, " Com-
puter Graphics, 22(4), (Proceedings of SIGGRAPH '88), pp 41 -
49.

[Goldfeather 86] Goldfeather, Jack and Henry Fuchs, "Quadratic
Surface Rendering on a Logic-Enhanced Frame-Buffer Memory
System," IEEE Computer Graphics and Applications, 6(1), pp
48-59.

[Goldfeather 88[Goldfeather, Jack, S. Molnar, G. Turk, and H.
Fuchs, "Near Real-Time CSG Rendering using Tree Normaliza-
tion and Geometric Pruning," University of North Carolina
Department of Computer Science Technical Report TR88-006.
To appear in CG&A, 1989.

[Goldfeather 89] Goldfeather, Jack, "Progressive Radiosity Using
Hemispheres," University of North Carolina Department of
Computer Science Technical Report TR89-002.

[Goral 84] Goral, Cindy M., Kenneth E. Torrance, Donald P.
Greenberg and Bennett Battaile, "Modeling the Interaction of
Light Between Diffuse Surfaces," Computer Graphics, 18(3),
(Proceedings of SIGGRAPH '84), pp. 213-222.

[Immel 86] lmmel, D., M. Cohen, and D. Greenberg, "A Radiosity
Method for Non-Diffuse Environments," Computer Graphics,
20(4), (Proceedings of SIGGRAPH '86), pp. 133-142.

[Jansen 87] Jansen, F. and R. Sutherland, "Display of Solid Models
with a Multi-processor System," Proceedings of Eurographics
"87, Elseviers Science Publications, 1987, pp 377-387.

[Levoy 89a] Levoy, Marc, "Volume Rendering by Adaptive
Refinement," The Visual Computer, 5(3), June, 1989 (to appear).

[Levoy 89b] Levoy, Marc, "Design for a Real-Time High-Quality
Volume Rendering Workstation," Chapel Hill Workshop on
Volume Visualization, Chapel Hill, North Carolina, May 1989 (to
appear)

[Norton 82] Norton, Alan, "Clamping: A Method of Antialiasing
Textured Surfaces by Bandwidth Limiting in Object Space,"
Computer Graphics, 16(3), (Proceedings of SIGGRAPH ' 82), pp
1-8.

[Pavlidis 83] Pavlidis, T., "Curve Fitting with Conic Splines,"ACM
Transactions on Graphics, 2(1), January 1983.

[Perlin 85] Perlin, K., "An Image Synthesizer," Computer Graphics,
19(3), (Proceedings of SIGGRAPH '85), pp. 151-159.

[Phong 73] Phong, B.T., "Illumination for Computer-Generated
Pictures," Ph.D. Dissertation, University of Utah, Salt Lake City,
1973.

[Poulton 85] Poulton, J., H. Fuchs, J.D. Austin, J.G. Eyles, J.
Heinecke, C-H Hsieh, J. Goldfeather, J.P. Hultquist, and S.
Spach, "PIXEL-PLANES: Building a VLSI-Based Graphic
System," Proceedings of the 1985 Chapel Hill Conference on
VLSI, Rockville, MD, Computer Science Press, pp 35-60.

[Poulton 87] Poulton, J., H. Fuchs, J. Austin, J. Eyles, T. Greer.
"Building a 512x512 Pixel-planes System," Proceedings of the
1987 Stanford Conference on Advanced Research in VLS1, MIT
Press, pp 57-71.

[Pratt 85] Pratt, V., "Techniques for Conic Splines," Computer
Graphics, 19(3), (Proceedings of SIGGRAPH '85), pp. 151-159.

[Rossignac 86] Rossignac, J., A. Requicha, "Depth Buffering
Display Techniques for Constructive Solid Geometry," IEEE
Computer Graphics and Applications, 6(9), pp 29-39.

[Runyon 87] Runyon, S., "AT&T Goes to 'Warp Speed' with its
Graphics Engine," Electronics Magazine, July 23, 1987, pp 54-
56.

[Swanson 86] Swanson, R., L. Thayer, "A Fast Shaded-Polygon
Renderer," Computer Graphics, 20(4), (Proceedings of
SIGGRAPH '86), pp 95-101.

[Tor 84] Tor, S. and A. Middleditch, "Convex Decomposition of
Simple Polygons," ACM Transactions on Graphics, 3(4), Octo-
ber 1984, pp 244-265.

[Torberg 87] Torberg, J., "A Parallel Processor Architecture for
Graphics Arithmetic Operations," Computer Graphics, 21(4),
(Proceedings of SIGGRAPH '87), pp 197-204.

[van Dam 88] van Dam, A., Chairman, PHIGS+ Committee,
"PHIGS+ Functional Description, Revision 3.0," Computer
Graphics, 22(3), July, 1988, pp 125-218.

[Wallace 87] Wallace, J., M. Cohen, and D. Greenberg, "A Two-
Pass Solution to the Rendering Equations: A Synthesis of Ray-
Tracing and Radisoity Methods," Computer Graphics, 21(4)
(Proceedings of SIGGRAPH '87), pp. 311-320.

[Watkins 70] Watkins, G., "A Real-Time Visible Surface Algo-
rithm, " University of Utah Computer Science Department,
UTEC-CSc-70-101, June 1970, NTIS AD-762 004.

[Whitton 84] Whitton, Mary., "Memory Design for Raster Graphics
Displays," IEEE Computer Graphics and Applications, 4(3),
March 1984, pp 48-65.

[Williams 83] Williams, Lance, "Pyramidal Parametrics," Corn-.
puter Graphics 17(3) (Proceedings of SIGGRAPH '83), pp. 1-
11.

88

