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Abstract 

This paper introduces the architecture and initial algorithms for 
Pixel-Planes 5, a heterogeneous multi-computer designed both for 
high-speed polygon and sphere rendering (1M Phong-shaded tri- 
angles/second) and for supporting algorithm and application re- 
search in interactive 3D graphics. Techniques are described for 
volume rendering at multiple frames per second, font generation 
directly from conic spline descriptions, and rapid calculation of 
radiosity form-factors. The hardware consists of up to 32 math- 
oriented processors, up to 16 rendering units, and a conventional 
1280x1024-pixel frame buffer, interconnected by a 5 gigabit ring 
network. Each rendering unit consists of a 128x 128-pixel array of 
processors-with-memory with parallel quadratic expression evalu- 
ation for every pixel. Implemented on 1.6 micron CMOS chips 
designed to run at 40MHz, this array has 208 bits/pixel on-chip and 
is connected to a video RAM memory system that provides 4,096 bits 
of off-chip memory. Rendering units can be independently reas- 
signed to any part of the screen or to non-screen-oriented computa- 
tion. As of April 1989, both hardware and software are still under 
construction, with initial system operation scheduled for fall 1989. 
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1. Introduction 

Many computer applications seek to create an illusion of interaction 
with a virtual world. Vehicle simulation, geometric modeling and 
scientific visualization, for example, all require rapid display of 
computer-generated imagery that changes dynamically according to 
the user's wishes. Much progress has been made in developing high- 
speed rendering hardware over the past several years, but even the 
current generation of graphics systems can render only modest 
scenes at interactive rates, 

For many years our research goal has been the pursuit of truly 
interactive graphics systems. To achieve the necessary rendering 
speeds and to provide a platform for real-time algorithm research, we 
have been developing a massively parallel image generation archi- 
tecture called Pixel-Planes [Fuchs 81, 82, 85, Poulton 85]. We 
briefly describe the basic ideas in the architecture: 

Each pixel is provided with a minimal, though general, processor, 
together with local memory to store pixel color, z-depth, and other 
pixel information. Each processor receives a distinct value of a linear 
expression in screen-space, Ax + By + C, where A,B,C are data inputs 
and x,y is the pixel address in screen-space. These expressions are 
generated in a parallel linear expression evaluator, composed of a 
binary tree of tiny multiply-accumulator nodes. A custom VLSlchip 
contains pixel memory, together with the relatively compact pixel 
processors and the linear expression evaluator, both implemented in 
bit-serial circuitry. An array of these chips forms a "smart" frame 
buffer, a 2D computing surface that receives descriptions of graphics 
primitives in the form of coefficients (A,B,C) with instructions and 
locally performs all pixel-level rendering computations. Since 
instructions, memory addresses, and A,B,C coefficients are broad- 
cast to all processors, the smart frame buffer forms a Single- 
lnstruction-Multiple-Datastream computer, and has a very simple 
connection topology. Instructions (including memory addresses and 
A,B,C's) are generated in a conventional graphics transformation 
engine, with the relatively minor additional task of converting 
screen-space polygon vertices and colors into the form of linear 
expressions and instructions. 

In 1986 we completed a full-scale prototype Pixel-Planes system, 
Pixel-Planes 4 (Pxpl4) [Poulton 87, Eyles 88], which renders 39,000 
Gouraud-shaded, z-buffered polygons per second (13,000 smooth- 
shaded interpenetrating spheres/second, 11,000 shadowed poly- 
gons/second) on a 512x512 pixel full-color display, While this 
system was a successful research vehicle and is extremely useful in 
our department's computer graphics laboratory, it is too large and 
expensive to be practical outside of a research setting. Its main 
limitations are: 
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• large amount of hardware, often utilized poorly (particularly 
when rendering small primitives) 

• hard limit on the memory available at each pixel (72 bits) 
• no access to pixel data by the transformation unit or host 

computer 
• insufficient front-end computation power 

This paper describes its successor, Pixel-Planes 5 (Pxpl5). Pxpl5 
uses screen subdivision and multiple small rendering units in a 
modular, expandable architecture to address the problem of proces- 
sor utilization. A full-size system is designed to render in excess of 
one million Phong-shaded triangles per second. Sufficient "front 
end" power for this level of performance is provided by a MIMD 
array of general-purpose math-oriented processors. The machine's 
multiple processors communicate over a high-speed network. Its 
organization is sufficiently general that it can efficiently render 
curved surfaces, volume-defined data and CSG-defined objects. In 
addition it can rapidly perform various image-processing algorithms. 
Pxpl5' s rendering units each are 5 times faster than Pxpl4 and contain 
more memory per pixel, distributed in a memory hierarchy: 208 bits 
of fast local storage on its processor-enhanced memory chips, 4K bits 
of memory per pixel processor in a conventional VRAM "backing 
store", and a separate frame buffer that refreshes normal and stereo 
images on a 1280x1024 72Hz display. 

2. Background 

Raster graphics systems generally contain two distinct parts: a 
graphics transformation engine that transforms and lights the geo- 
metric description of a scene in accordance with the user's viewpoint 
and a Renderer that paints the transformed scene onto a screen. 

Designs for fast transformation units have often cast the series of 
discrete steps in the transformation process onto a pipeline of 
processing elements, each of which does one of the steps [Clark 82]. 
As performance requirements increase, however, simple pipelines 
begin to experience communication bottlenecks, so designers have 
turned to multiple pipelines [Runyon 87] or have spread the work at 
some stages of the pipe across multiple processors [Akeley 88]. 
Vector organizations offer a simple and effective way to harness the 
power of multiple processors, and have been used in the fastest 
current graphics workstations [Apgar 88, Diede 88]. Wide vector 
organizations may have difficulty with data structures of arbitrary 
size, such as those that implement the PHIGS+ standard, so at least 
one commercial offering divides the work across multiple processors 
operating in MIMD fashion [Torberg 87]. 

The rendering problem has generally been much more difficult to 
solve because it requires, in principal, computations for every pixel 
of every primitive in a scene. To achieve interactive speeds on 
workstation-class machines, parallel rendering engines have become 
the rule. These designs must all deal with the memory bandwidth 
bottleneck at araster system's frame buffer. Three basic strategies for 
solving this problem are: 

Rendering Pipelines. The rendering problem can also be pipelined 
over multiple processors. The Hewlett-Packard SRX graphics 
system [Swanson 86], for example, uses a pipeline of processors 
implemented in custom VLSI that simultaneously perform 6-axis 
interpolations for visibility and shading, operating on data in a pixel 
cache, 

The frame buffer bandwidth bottleneck can be ameliorated by 
writing to the frame buffer only the final colors of the visible pixels. 
This can only be achieved if all the primitives that may affect a pixel 
are known and considered before that pixel is written. Sorting 
primitives by screen position minimizes the number that have to be 
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considered for any one pixel. Sorting first by Y, then by X achieves 
a scan-line order that has been popular since the late 1960's and is the 
basis for several types of real-time systems [Watkins 70]. The basic 
strategy has been updated by several groups recently. The SAGE 
design [Gharachorloo 88] contained a processor for every pixel on a 
scan-line. Data for primitives active on a scan-line pass by this array, 
and visible pixel colors are emitted at video rates; no separate frame 
buffer is required. Researchers at Schlumberger [Deering 88] 
recently proposed a system in which visibility and Phong-shading 
processors in a pipeline are assigned to the objects to be rendered on 
the current scan line. The latter two projects promise future commer- 
cial offerings that can render on the order of 1M triangles per second 
with remarkably little hardware, though designs for the front ends of 
these systems have yet to be published. These machines have each 
cast one particular rendering algorithm into hardware, enabling a 
lower-cost solution but one not intended for internal programming by 
users. New algorithms cannot easily be mapped onto hardware for 
scan-line ordered pipelines. Finally, a difficulty with these designs 
is ensuring graceful performance degradation for scenes with excep- 
tional numbers of primitives crossing a given scan-line. 

Interlaced Processors. As first suggested a decade ago [Fuchs 77, 
79, Clark 80], the frame buffer memory can be divided into groups 
of memory chips, each with its own rendering processor, in an 
interlaced fashion (each processor-with-memory handles every nth 
pixel on every mth row). The rendering task is distributed evenly 
across the multiple processors, so the effective bandwidth into the 
frame buffer increases by a factor of m.n. This idea is the basis of 
several of the most effective current raster graphics systems [Akeley 
88, Apgar 88]. Some of these systems, however, are again becoming 
limited by the bandwidth of commercial DRAMs [Whitton 84]. With 
increasing numbers of processors operating in SIMD fashion, proc- 
essor utilization begins to suffer because fewer processors are able to 
operate on visible pixels, the "write efficiency" problem discussed in 
[Deering 88]. Raising the performance of interlaced processors by 
an order of magnitude will probably require more complex organi- 
zations or new memory devices, 

Processor-Enhanced Memories. Much higher memory bandwidth 
can be obtained by combining some processing circuitry on the same 
chip with dense memory circuits. The most widely used example of 
a"smart" memory is the Video RAM (VRAM), introduced by Texas 
Instruments. Its only enhancement is a second, serial-access port into 
the frame buffer memory; nevertheless these parts have had a great 
impact on graphics system design. The SLAM system, described 
some years ago in [Demetrescu 85], combines a 2D frame buffer 
memory with an on-chip parallel 1D span computation unit; it 
appears to offer excellent performance for some 2D applications but 
requires external processing to divide incoming primitives into scan- 
line slices. Recently NEC announced a commercial version of an 
enhanced VRAM that performs many common functions needed in 
2D windowing systems. This approach has been the focus of our 
work since 1980; in the Pixel-Planes architecture we have attempted 
to remove the memory bottleneck by performing essentially all pixel- 
oriented rendering tasks within the frame buffer memory system 
itself. 

The architecture we will describe below employs a MIMD array of 
processors in its transformation unit and seeks to make more effec- 
tive use of the processor-enhanced memory approach. 

3. Project Goals 

We wanted Pixel-Planes 5 to be a platform for research in graphics 
algorithms, applications and architectures, and a testbed for refine- 
ments that would enhance the cost effectiveness of the approach. To 
this end, we adopted the following goals: 
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Fast Polygon Rendering. Despite all the interest in higher- 
order primitives and rendering techniques, faster polygon ren- 
dering is still the most often expressed need for many applica- 
tions: 3D medical imaging, scientific visualization, 'virtual 
worlds' research. We therefore set a goal of rendering 1 million 
z-buffered Phong-shaded triangles per second, assuming the 
average triangle's area is 100 pixels and that it is embedded in 
a triangle strip. We wanted to achieve this rate without using any 
special structures for rendering just triangles - -  we wanted a 
system for much more than triangles. 

Generality. For the system to be an effective base for 
algorithm development, it needed to have a simple, general 
structure whose power was readily accessible to the algorithm 
developer programming in a high-level language. We wanted 
it to have sufficient generality for rendering curved surfaces, 
volume data, objects described with Constructive Solid Geome- 
try, for rendering scenes using the radiosity lighting model, and 
(we hoped) for a variety of other 3D graphics tasks that we have 
not yet considered. It was essential that the system support a 
PH1GS+ -like environment for application programmers not 
interested in the system's low-level details. Further, the hard- 
ware platform should be flexible to allow experiments in 
hardware architectures. 

Packaging. A high-performance configuration that met our 
primary performance goals should fit within a workstation 
cabinet with no unusual power requirements. We also wanted 
a system that could be modularly built and flexibly configured 
to trade cost for performance. The system should drive a 
1280x1024 display at >60Hz, and be able to update full scene 
images at >20 frames/second. 

4. Parallel Rendering by Screen-space Subdivision 

We now describe the scheme we use in Pxpl5 to attain high levels of 
performance in a compact, modular, expandable machine. Our 
previous work has depended on a single, large computing surface of 
SIMD parallel processors operating on the entire screen space. In the 
new architecture, we instead have one or more small SIMD engines, 
called Renderers, that operate on small, separate 128x128-pixel 
patches in a virtual pixel space. Virtual patches can be assigned on 
the fly to any actual patch of the display screen. The system achieves 
considerable speedup by simultaneously processing graphics primi- 
tives that fall entirely within different patches on the screen. 

The principal cost of this screen-space subdivision scheme is that the 
primitives handled in the transformation engine must be sorted into 
"bins" corresponding to each patch-sized region of the screen space. 
Primitives that fall into more than one region are placed into the bins 
for all such regions. The simplest (though expensive) way to support 
these bins is to provide additional storage in the transformation 
engine for the entire, sorted list of output primitives. Once trans- 
formed, sorted, and stored, a new scene is rendered by assigning all 
available Renderers to patches on the screen and dispatching to these 
Renderers primitives from their corresponding bins. When a Ren- 
derer completes a patch, it can discard its z-buffer and all other pixel 
values besides colors; pixel color values are transferred from on-chip 
pixel memory to the secondary storage system, or "backing store", 
described below. The Renderer is then assigned to the next patch to 
be processed. This process is illustrated in Figure 1 for a system 
configured with only four Renderers. 

The general idea of  multiple independent groups ofpixel processors 
operating on disjoint parts of the display screen was described in 
several of our earlier publications as "buffered" Pixel-Planes. What 
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Rendering process for a Pxpl5 system with 4 
Renderers. 1280x1024 screen is divided into 80 128x128 
patches. Patches are processed in raster order. Renderers 
a-d are assigned initially to the first four patches. Renderer 
a completes first, and is assigned to the next available 
patch. Next Renderer d completes its first patch and is 
assigned to the next available patch, and so forth. 

is new about this implementation is the idea of flexibly mapping 
small virtual pixel spaces onto the screen space. It allows useful 
systems to be built with any number of small rendering units, permits 
cost/performance to be traded nearly linearly, and can render into a 
window of arbitrary size with only linear time penalty. 

The virtual pixel approach is supported in the Pxpl5 implementation 
by a memory hierarchy, whose elements are: (I) 208 bits of fast 
SRAM associated on-chip with each pixel processor; (2) a "backing 
store" built from VRAMs, tightly linked to the custom logic-en- 
hanced memory chips; (3) a conventional VRAM frame buffer. The 
backing store consists •f an array of VRAMs, each connected via its 
video port to one of our custom memory chips; IMB VRAMs 
provide 4Kbits of storage per pixel. The backing store memory is 
available through the VRAM random I/O port to the rest of the 
system, which can read and write pixel values in the conventional 
way. A Renderer uses this memory to save and retrieve pixel values, 
effectively allowing "context switches" when the Renderer ceases 
operations on one patch and moves to another. A typical context 
switch takes about 0.4 msec, the time to render a hundred or so 
primitives, and can be fully overlapped with pixel processing. 

In the simple multi-Renderer scheme described above, the backing 
store is used to store pixel color values for patches of the screen as the 
Renderer completes them. When the entire image has been rendered, 
each of these regions is transferred in a t~lock to the (double-buffered) 
display memory in the Frame Buffer, from which the display is 
refreshed. 

5. Architectural Overview 

The major elements of  Pxpl5 are: 

• Graphics Processors (GPs), floating point engines, each with 
considerable local code and data storage. 

• Renderers ,  each a small SIMD array of pixel processors with 
its own controller. 

• Frame Buffer, double-buffered, built from conventional Video 
RAMs, from which the video display is refreshed. 
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Network Workstation 

5.2 Graphics Processors 

The performance goals we have set require sustained computation 
rates in the "front end" of several hundred MFlops, feasible today 
only in parallel or vector architectures. We elected to build a M1MD 
transformation unit; this organization handles PH1GS+ -like variable 
data structures better than would a vector unit, and supports the 
"bins" needed for our screen subdivision multi-Renderer. 

Much of the system's complexity is hidden by ROS; the program- 
ming model is therefore relatively simple. Load sharing is accom- 
plished by dividing a database across the GPs, generally with each 
GP running the same code. Since the GPs are programmable in the 
C language, users have access to the machine's full capability 
without needing to write microcode. 

5.3 Renderer 

Figure 2 :Pxp l5  block diagram. 

Host Interface, which supports communications to/from a 
UNIX workstation. 

Ring Network to interconnect the various processors in a 
flexible way. 

5.1 Ring Network 

Pxpl5's multi-processor architecture, motivated by the desire to 
support a variety of graphics tasks, requires a capable communica- 
tions network. Rather than build several specialized communica- 
tions busses to support different types of traffic between system 
elements, we instead provide a single, flexible, very high perform- 
ance network connecting all parts of the system. 

At rendering rates of IM primitives per second, moving object 
descriptions from the GPs to the Renderers requires up to 40 million 
32-bit words/second (40 MW/sec), even for relatively simple render- 
ing algorithms. Simultaneously, pixel values must be moved from 
the Renderers to the Frame Buffer at rates up to 40 MW/sec, for real- 
time interactive applications. At the suggestion of J. William 
Poduska of Stellar Computer, Inc., we explored technology and 
protocols for fast ring networks, and eventually settled on a multi- 
channel token ring. Ring networks have many advantages over 
busses in high-speed digital systems. They require only point-to- 
point communication, thus reducing signal propagation and power 
consumption problems, while allowing a relatively simple commu- 
nication protocol. Their major disadvantage, long latency, is not 
acceptable for many computing systems, but is okay here. 

Our network can support eight simultaneous messages, each at 20 
MW/sec for a total bandwidth of 160 MW/sec. To avoid deadlock, 
each transmitting device gains exclusive access first to its intended 
receiver, then to one of the 8 data channels, before it transmits its data 
packet. Each Ring Node is a circuit composed of commercial MSI 
bus-oriented data parts and field-programmable controllers. (At the 
expense of an expensive development cycle, the Ring Network could 
be reduced to one or a few ASICs.) The controllers operate at 
20MHz, while data is moved at 40MHz (to save wires). Each client 
processor in the system has one or more of these Nodes, which 
provides to the client a 20 MW/sec port onto the Ring network. 

We have developed a low-level message-passing operating system 
for the ring devices called the Ring Operating System (ROS). It 
provides device control routines as well as hardware independent 
communication. In addition, ROS controls the loading and initializa- 
tion of programs and data. 

Section 4 describes the essentials of the Renderer design, whose 
block diagram is shown in Figure 3. It is based on a logic-enhanced 
memory chip built using 1.6 micron CMOS technology and operat- 
ing at 40MHz bit-serial instruction rates. In addition to 256 pixel 
processing elements, each with 208 bits of static memory, the chip 
contains a quadratic expression evaluator (QEE) that produces the 
value Ax+By+C+DxZ+Exy+Fy 2 simultaneously at each pixel x,y 
from global inputs A,B,C,D,E,F [Goldfeather 86]. Quadratic expres- 
sions, while not essential for polygon rendering, are very useful for 
rendering curved surfaces and for computing a spherical radiosity 
lighting model (see Section 7.6). 

A major design issue for the Renderer was choosing the size of the 
processor array. The effectiveness of the screen-space subdivision 
scheme for parallel rendering is determined in part by the frequency 
with which primitives must be processed in more than one region, 
and this in turn depends on the size of the Renderer's patch. On one 
band, economy of use of the fairly expensive custom chips of the 
processor array and the need to leverage performance by dividing the 
rendering work across as many processors as possible argue for 
smaller Renderer patches. A large Renderer patch, on the other hand, 
reduces the likelihood that primitives wilt need to be processed more 
than once. We elected a 128x128 Renderer size; it is fairly efficient 
for small primitives, and its hardware conveniently fits on a reason- 
able size printed circuit board. 

Custom Memory Chips ' 

m ~. ~ lx2280~i~r?:]] i \ Renderer Board 

"-,,q-,r-t~ II ] ~ Backing Store Controller [ 

pnnnnnnq Back ng 
] G e~n~ ~ n  __LJ ~ 8 ! ~  P~ixAe~ray ] ~ S t o r e  
. , on,;ii:;I Pro<essors JI B 
/ L___~ .._.___J [ M ~ [ ~ [ ~ [ ~ t ~ 2  ~ (4K bits/pixel) 

Figure 3: Block diagram of a Pxpl5 Renderer. Pixel 
processor array implemented in 64 custom chips, each 
with 2 columns of 128 pixel processors-with-memory and 
a quadratic expression evaluator. 
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5.4 Frame Buffer and Host Interface 

The Frame Buffer is built in a fairly conventional way using Video 
RAMs. It supports a 1280x1024-pixel, 72Hz refresh-rate display, 
24-bit true color and a color lookup table. Display modes include 
stereo (alternating frames) and a hardware 2x zoom. The Frame 
Buffer is accessed through two Ring Nodes, to provide an aggregate 
bandwidth of 40 MW/sec into the buffer, allowing up to 24Hz 
updates for full-size images. Pxpl5 is hosted by a Sun 4 workstation. 
Host communication is via programmed I/O, providing up to 4 
MBytes/sec bandwidth between Pxpl5 and its host. 

5.5 Performance 

Since the transformation engine in Pxpl5 is based on the same 
processor used in Pxpl4, we estimate, based on the earlier machine's 
performance, that a GP can process on the order of 30,000 Phong- 
shaded triangles per second; 32 GPs are therefore required to meet 
our performance goal. A single Renderer has a raw performance of 
about 150,000 Phong-shaded triangles per second; actual perform- 
ance is reduced somewhat by inefficiencies resulting from primitives 
that must be processed in more than one patch. Simulations predict 
an actual performance of around 100,000 triangles/sec, so a configu- 
ration to meet the performance goals will require 8-10 Renderers. 

6. PPHIGS Graphics Library 

Pxpl5 may be programmed at various levels. We anticipate users 
ranging from application programmers, who simply desire a fast 
rendering platform with a PHIGS+ -style interface [van Dam 88], to 
algorithm prototypers, who need access to the Renderer 's low-level 
pixel operations and may depart from the PHIGS+ paradigm. To 
meet these disparate needs, several layers of  support software are 
required. Program initialization and message passing between 
processors are handled by the Ring Operating System (ROS). A local 
variation of  PHIGS+ (PixeI-Planes PHIGS or PPHIGS) provides a 
high-level interface for users desiring portable code. This section 
describes PPHIGS. 

PPHIGS makes the hardware appear to the "high-level" graphics 
programmer very much like any other graphics system: the 
programmer's code (running on the host) makes calls to the graphics 
system to build and modify a hierarchical data structure. This 
structure is traversed by the PPHIGS system to create the image on 
the screen. 

6.1 Database Distribution 

Since the applications programming library is based on PHIGS, it 
allows the programmer to create a display list that is a directed acyclic 
graph of structures. These structures contain elements that are either 
graphics primitives, state-changing commands, or calls to execute 
other structures. To take advantage of the multiple graphics proces- 
sors in Pxpl5, we must distribute the database structure graph across 
the graphics processors in a way that balances the computational 
load, even in the presence of editing and changes in view. In order 
to achieve this we must balance the load across GPs for each 
structure. When a structure is created, some of the primitives are 
placed on each GP. If the object goes out of view or a new instance 
is created, the load will remain balanced. 

In PHIGS, as in most structured display list systems, child structures 
inherit information from their parents such as transformation matri- 
ces and colors. These state-changing commands as well as structure 
execution calls must be replicated on each GP since each structure is 
distributed across multiple GPs. This replication should not be a 
problem, since we expect the majority of  structure elements to be 

graphics primitives and not state-changing ones. We have devised 
other distribution schemes for applications that violate this assump- 
tion. 

6.2 The Rendering Process 

The rendering process is controlled by a designated graphics proces- 
sor, the master GP, or MGP. By exchanging messages with other GPs 
and sending commands to other modules when necessary, the MGP 
synchronizes operations throughout the system. 

Before discussing the steps in the rendering process, we first want to 
emphasize the distinction between pixel operations that take place on 
a per primitive basis, such as z comparison and storage, and those that 
can be deferred until the end of all primitive processing or end-of- 
frame. Shading calculations from intermediate values stored at the 
pixels, for instance, need only be performed once per pixel, rather 
than once per primitive (assuming there is sufficient pixel storage to 
hold the intermediate values until end-of-frame). During end-of- 
frame the final colors can be computed in parallel from the stored 
values of the visible portions of every polygon that falls within the 
128x128 pixel region. For expensive lighting and shading models, 
such as Phong shading and textures, this speedup is dramatic. 

The major steps in the rendering process are: 

1. The application program running on the host edits the database 
using PPHIGS library routines and transmits these changes to 
the GPs. 

2. Application requests anew frame. Host sends this request to the 
MGP, which relays it to the other GPs. 

3. The GPs interpret the database, generating Renderer commands 
for each graphics primitive. These commands are placed into 
the local bins corresponding to the screen regions where the 
primitivelies. EachGPhas abin forevery 128x128pixelregion 
in the window being rendered. 

4. The GPs send bins containing commands to Renderers. The 
Renderers execute commands and compute intermediate re- 
suits. 

5. The GP sending the final bin to a Renderer also sends end-of- 
frame commands for the region. The Renderers execute these 
commands and compute final pixel values from the intermedi- 
ate results. 

6. The Renderers send computed pixels to the frame buffer. 
7. When all regions have been received, the frame buffer swaps 

banks and displays the newly-computed frame. 

The MGP assigns Renderers to screen regions while the frame is 
being rendered. It communicates a Renderer assignment to the GPs 
by sending a message to one GP, which sends its associated bin, and 
then forwards the message to the next GP, which does the same. At 
the end, the message is sent back to the MGP, indicating that all the 
bins have been processed. This method ensures that at most one GP 
attempts to transmit to a Renderer at a given time. This prevents 
blocked transmissions, which would slow throughput. 

The steps of the rendering process can be overlapped in several ways; 
at maximum throughput, several frames may bein progress at once. 
This requires that the bin memory be double buffered. If a GP runs 
out of bin memory it must send some of its bin data to a Renderer to 
free up memory. The MGP handles synchronization to keep the 
frames properly separated [Ellsworth 89]. 

7. Rendering Algorithms 

We now discuss various rendering algorithms in turn. Some of these 
have been published before, in which case, we review their applica- 
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bility to Pxpl5 and give performance estimates. We also report new 
techniques for efficiently displaying procedural textures and conic 
spline-defined fonts, for calculating radiosity form-factors, and for 
displaying volume-defined images at interactive rates. 

7.1 Phong Shading 

Since Pxpl5 can evaluate quadratic expressions directly, we can 
implement Phong shading using Bishop and Wiemer 's  Fast Phong 
Shading technique [Bishop 86]. However, the power of  the pixel 
processors allows us to compute the Phong lighting model [Phong 
73] directly. This means that the graphics processors do not have to 
do th_ extensive computation necessary to compute the quadratic 
coefficients. We feel that this approach will be faster and more 
general. 

As polygons and other primitives are processed, the x, y, and z 
components of  the surface normal are stored in all the pixels where 
the primitive is visible. For polygons this is done by simple linear 
interpolation of each component. When all the primitives for a region 
have been processed, the pixel-parallet end-of-frame operations are 
performed. First, the normal vector is normalized by dividing by the 
square root of its length, which is computed using a Newton iteration; 
then the color for each pixel is computed using the standard Phong 
lighting model. 

Simulation indicates that the end-of-frame computation for the 
Phong lighting model with a single light source consumes around 
23,000 Renderer cycles or .57 milliseconds. With full screen 
resolution of 1024 by 1280 and, a 16 Renderer system, the total end- 
of-frame time is .57msec • (80/16) or 2.85msec per frame. At 24 
frames per second this is 6.8 percent of the rendering time. 

'89, Boston, 31 July-4 August, 1989 

polygon's shadow volume will cross many screen regions, the 
speedup we would get from screen-space subdivision will be greatly 
reduced. A naive approach would be to send the plane equations for 
the shadow volume to every region. This would greatly increase both 
the amount of data that would be sent over the ring and the amount 
of computation that the Renderers would have to do. A simple 
optimization would be to have the graphics processors compute 
which regions could possibly be shadowed by a polygon. We have 
not yet explored these options in depth. Because of  the problems 
mentioned above, we anticipate increasing use of the fast radiosity 
technique described in Section 7.6. 

7.4 Texture Mapping 

We have previously reported a technique to compute the u,v texture 
coordinates for polygons in perspective [Fuchs 85]. The speed of this 
technique is limited by the time to broadcast the individual texture 
values to the pixels. While 64x64 image textures run at interactive 
rates on Pxpl4 (see Figure 4), a more efficient method for Pxpl5 is to 
calculate the texture values directly in each pixel. Broadcasting the 
texture values will be significantly faster on Pxpl5 than on Pxpl4, 
since texture values can be stored in bins and only broadcast when 
needed for one or more pixels of  a region. 

Image-based Textures. We have explored both summed area tables 
[Crow 84] and mip-maps [Williams 83] for anti-aliasing image 

7.2 Spheres 

Pxpl5 can render spheres using the same algorithm as on Pxpl4 
[Fuchs 85], but is both faster (taking advantage of the QEE), and can 
generate higher-quality images (Phong shading with 24-bit color). 
Phong shading is achieved as follows. The expressions for the 
coordinates of the surface normal for a sphere are: 

nx _ x  - a  
r 

y - b  
n y -  r 

~/r 2 - (x - a) 2 - (y - b) 2 
n z :  

r ' -  

The expression for nz can be approximated by a parabola: 

Figure 4: Mandrill mapped onto a plane and hoop on 
Pxpl4. Estimated rendering time on Pxpl5 is 31 msec. 

r 2 - ( x - a )  2-(y -b) 2 
n z =  

r2 

Then the normals are computed at each pixel by broadcasting two 
linear expressions and one quadratic expression. Results from simu- 
lation indicate that this approximation produces satisfactory shading 
including the specular highlights. Assuming one light source and 24 
frames per second, we estimate the system performance to be 1.8M 
spheres per second for 100 pixel area spheres and 900K spheres per 
second for 1600 pixel area spheres. 

7.3 Shadows 

Pxpl4 was able to generate images with shadows very rapidly - -  
nearly half as fast as images without shadows [Fuchs 85]. Unfortu- 
nately we will not achieve similar results with Pxpl5. Since a 

Figure 5: Procedural earth, water, sky, fire and stars 
textures (simulated). Estimated rendering time on Pxpl5 is 
5.5 milliseconds. 
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textures. We feel that mip-maps will work best on Pxpl5. During 
rendering the mip-map interpolation value can be linearly interpo- 
lated across the polygon. At end of  frame, the mip-map is broadcast 
to each pixel-processor, and each processor loads the texture ele- 
ments at its u,v coordinate along with neighboring values for inter- 
polation. 

Procedural Textures. We have begun to explore procedural tex- 
tures, as shown by Perlin [Perlin 85] :~d Gardner [Gardner 88], for 
use in Pxpl5. We have written a p~o~ am for Pxpl4 that allows one 
to explore in real-time the space of textures possible using Gardner's 
technique. This program and software written by Douglass Turner 
were used to create the textures shown in Figure 5. 

The two-dimensional Gardner spectral functions are calculated us- 
ing quadratic approximations for the cosine functions. This requires 
nine multiplies per term plus one multiply to combine the x and y 
directions. Different textures for different pixels can be computed 
simultaneously. The images shown in the figure contains five terms. 
On Pxpl5 they would require about 15,000 cycles or 360 microsec- 
onds using 10 bits of resolution. These procedural methods can be 
anti-aliased by eliminating high frequency portions of  the texture; 
terms whose wavelength spans less than one pixel are simply not 
computed [Norton 82]. 

7.5 Fonts 

Herve Tardif has been developing methods for rapidly rendering 
fonts. Conic splines, as advocated by several researchers [Pavlidis 
83, Pratt 85], are particularly well suited for rendering by Pxpl5; with 
the QEE in the processor-enhanced memories, Pxpl5 can directly 
scan convert conic section, from which characters are defined. 
Initially, a character is represented by a sequence of straight line 
segments and arcs of conics joined together in the plane. As 
suggested by Pratt, each arc of a conic is in turn represented by three 
points M, N, P and a scalar S which measures the departure of  the 
conic from a parabola (Figure 6). Hence, a letter can be represented 
either by a simple closed polygon or, for letters with holes, two or 
more polygons. The character is initially converted into the differ- 
ence between its unique convex hull and the discrepancy with that 
hull. (Holes are treated the same as other discrepancies.) The process 
is repeated if the discrepancy region(s) are concave. This process 
amounts to building a tree whose leaves are convex regions and 
nodes are set operators [Tor 84]. A character is rendered by 
traversing its corresponding tree, scan converting each convex 
region in turn. Since conic sections are invariant under projective 
maps, this technique can also be applied to the rendering of  planar 
characters embedded in a 3D environment. 

Performance estimates have been obtained from a conic representa- 
tion of  a Times Roman font given to us courtesy of  Michael Shantz 
of Sun Microsystems. The average number of convex polygons per 
character in this set is 8.12, the average number of  straight edges per 
polygon is 4.13, and the average number of conics per character is 

• / . . . . . .  

M 

Q O O  

Figure 6: Conic font constructed by regions bounded by 
lines and conic sections. 

8.4. This indicates that the average character can be scan-converted 
with 36 linear coefficients and 8.4 quadratic coefficients. This 
suggests that each Renderer can scan-convert over 20,000 letters per 
second. Assuming each character falls into an average of 1.4 
rendering regions, 16 Renderers can draw over 225,000 letters per 
second. The GPs will have difficulty keeping up with this rendering 
rate, but they can cache coefficients in 2D applications. 

7.6 Fast Radiosity 

The realism of indoor scenes is greatly enhanced by the radiosity 
lighting model [Gora184, Cohen 85], where the lighting contribution 
due to diffuse interreflection is taken into account. We believe that 
Pixel-Planes 5 can be used to speed up the calculations neede~t to 
compute radiosity. Initial implementations of radiosity required the 
lighting of all polygons in a scene to be computed before an image is 
displayed, and this requires many minutes even for simple scenes. 
The progressive radiosity method [Cohen 88] allows images of 
progressively better quality to be displayed as light is being distrib- 
uted through the scene, thus making radiosity more attractive for 
interactive applications. The most time-consuming step of this 
process is in computing the form-factors of  a polygon patch, that is, 
how much a patch "sees" of other patches in the scene. This means 
that a separate visibility calculation must be performed from each 
patch in a scene. Two common methods used to compute form- 
factors are tracing rays from a patch and z-buffer rendering onto five 
image planes that form a hemi-cube at each patch. 

We could use PxplS's Renderers to compute the five z-buffer images 
needed for each hemi-cube and then bring this information back to 
the GPs where the rest of the radiosity calculation can be performed. 
The quadratic expression tree offers another possibility: one z- 
buffered image will suffice for the visibility calculation at a patch if 
the polygons are projected onto a hemisphere. Figure 8 illustrates 
how the edges of a polygon become sections of ellipses when 
projected onto a hemisphere and from there onto a plane. To compute 
such a projected image each edge of a polygon in the scene is scanned 
using the quadratic expression tree, and then a depth value is 
computed either by using an approximate depth or by storing special 
constants at each pixel [Goldfeather 89]. An identifying number for 
the polygon is stored at all pixels where the polygon is visible. A 
completed hemisphere image is sent to a GP which uses the image to 
compute the form-factors, and then this information is used to 
compute the colors at vertices of the patches in the scene. A radiosity- 
lit scene is then displayed by the regular scan conversion procedure 
and by interpolating the vertex colors across each polygon patch. 
Since the resolution within a single Renderer appears to be more than 
adequate for each projected image, multiple Renderers can be used 
independently. Each Renderer should be able to process about 
100,000 quadrilaterals per second. 

Projection Equations (x,y,z) 

x=ptl ~ i"""" 

/ ~  Projection Plane 

v 
Figure 7: Hemispherical projection of a triangle. 
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Figure 8: (a) Hemispherical projection of  Tebbs and Turk's office, generated on the Pxpl5 simulator. Estimated rendering time on 
Pxpl5 is 2.8 milliseconds. (b) Standard view of the same room as in (a), displayed on Pxpl4 (radiosity software described in [Airey 
89]). The viewpoint in (a) is from the light fixture near the door. 

would be assigned 64 voxels, so the time required to classify and 
7.7 Volume Render ing  shade the entire dataset would be about 64 msec. 

One example of  Pxpl5's generality is its ability to perform volume 
rendering. Marc Levoy plans to implement a version of the algorithm 
described in [Levoy 89a, 89b], To briefly summarize the algorithm: 
We begin with a 3D array of scalar-valued voxels. We first classify 
and shade the array based on the function value and its gradient to 
yield a color and an opacity for each voxel. Parallel viewing rays are 
then traced into the array from an observer position. Each ray is 
divided into equally spaced sample intervals, and a color and opacity 
is computed at the center of each interval by tri-linearly interpolating 
from the colors and opacities of the nearest eight voxels. The 
resampled colors and opacities are then composited in front-to-back 
order to yield a color for the ray. 

For Pxpl5, we propose to store the function value and gradient for 
several voxels in the backing store of each pixel processor. The 
processor then performs classification and shading calculations for 
all voxels in its backing store. The time to apply a monochrome 
Phong shading model at a single voxel using a pixel processor is 
about I msec. For a 256x256x256 voxel dataset, each pixel processor 

The GPs perform the ray-tracing to generate the image. They are 
each assigned a set of rays and request sets of  voxels from the pixel 
processors as necessary~ The GPs perform the tri-linear interpolation 
and compositing operations, then transmit the resulting pixel colors 
to the frame buffer for display. Hierarchical subdivision techniques 
can be used to reduce the amount of data that must be sent to each 
graphics processor. 

The flame rate we expect from this system depends on which 
parameters change from frame to frame. Preliminary estimates 
suggest that for changes in observer position alone, we will be able 
to generate a sequence of slightly coarse images at 10 frames per 
second and a sequence of images of the quality of Figure 9 at 1 frame 
per second. 

7.8 Rendering CSG-defined Objects 

We and others have developed algorithms to directly render Con- 
structive Solid Geometry (CSG) defined objects on graphics systems 
with deep frame buffers [Jansen 87, Rossignac 86, Goldfeather 88]. 
On Pxpl4 we developed a CSG modeler that displays small datasets 
at interactive rates. 

Pxpl5 provides several opportunities to increase CSG rendering 
speed: the QEE on Pxpl5 renders curved-surfaced primitives without 
breaking them into polygonal facets; having more bits per pixel 
allows surfaces that are used multiple times to be stored and re-used, 
rather than being re-rendered, greatly increasing performance; fi- 
nally, the screen-subdivision technique advocated in [Jansen 87] 
provides a way to take advantage of Pxpl5"s multiple Renderers. 
Pxpl4 interactively renders CSG objects with dozens of  primitives 
(Figure 10). We expect Pxpl5 to interactively render objects with 
hundreds of primitives. 

7.9 Transparency 

Figure 9: Volume-rendered head from CT data, generated 
by Marc Levoy on a Sun 4. Estimated rendering time on 
Pxpl5 is 1 second. 

Several methods for rendering transparent surfaces are possible, 
given the generality and power of Pxpl5. The most promising is to 
enhance the bin sorting in each GP to generate twice as many bins, 
one for transparent and another for opaque primitives for each region. 
The transparent primitives are rendered after all the opaque ones. 
Since we expect relatively few transparent polygons, each of  the 
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Figure 10: CSG-modeled truck generated on Pxpl4. Es- 
timated rendering time on Pxpl5 is 40 milliseconds. 

"transparent" bins can be sorted from back to front and rendered by 
simple composition. For difficult cases, in which a cluster of 
transparent polygons cannot be sorted in z (as in a basket-weave of 
transparent strips), multiple z values can be stored at each pixel to 
control the compositing step. With this approach, difficult primitives 
may need to be sent to Renderers several times to ensure correct 
blending. 

8. Current Status of Pxpl5 (April 1989) 

Of the three custom CMOS VLSI chips being designed, the backing- 
store interface chip is being tested and the processor-enhanced 
memory chip is in fabrication. Layout of the third chip, the Renderer 
controller, is nearly complete. Detailed simulation of the board-level 
logic design is well along, and PCBs are being designed. A small 
version of the Ring Network with a pair of Graphics Processors is 
expected to become operational by late summer, with a complete 
system running by year's end. On the software front, a high-level 
language porting base is running simple code. The Renderer simu- 
lator is yielding useful images. 
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