
ACM Reference Format
Foley, T., Hanrahan, P. 2011. Spark: Modular, Composable Shaders for Graphics Hardware.
ACM Trans. Graph. 30, 4, Article 107 (July 2011), 12 pages. DOI = 10.1145/1964921.1965002
http://doi.acm.org/10.1145/1964921.1965002.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2011 ACM 0730-0301/2011/07-ART107 $10.00 DOI 10.1145/1964921.1965002
http://doi.acm.org/10.1145/1964921.1965002

Spark: Modular, Composable Shaders for Graphics Hardware

Tim Foley∗

Intel Corporation
Stanford University

Pat Hanrahan
Stanford University

Animation

Tessellation

Render to Cube

Vertex Colors

Displacement

Texture Mapping

VS HS DS GS PS

Figure 1: A complex shading effect decomposed into user-defined modules in Spark. The dashed boxes show the programmable stages of the
Direct3D 11 pipeline; the colored boxes show different concerns in the program. Some logical concerns cross-cut multiple pipeline stages.

Abstract

In creating complex real-time shaders, programmers should be able
to decompose code into independent, localized modules of their
choosing. Current real-time shading languages, however, enforce
a fixed decomposition into per-pipeline-stage procedures. Program
concerns at other scales – including those that cross-cut multiple
pipeline stages – cannot be expressed as reusable modules.

We present a shading language, Spark, and its implementation for
modern graphics hardware that improves support for separation of
concerns into modules. A Spark shader class can encapsulate code
that maps to more than one pipeline stage, and can be extended and
composed using object-oriented inheritance. In our tests, shaders
written in Spark achieve performance within 2% of HLSL.

Keywords: shading language, graphics hardware, modularity

Links: DL PDF WEB

1 Introduction

Authoring compelling real-time graphical effects is challenging.
Where once shaders comprised tens of lines of code targeting two
programmable stages in a primarily fixed-function pipeline, in-
creasing hardware capabilities have enabled rapid growth in com-
plexity. Achieving a particular effect requires coordination of
shaders, fixed-function hardware settings, and application code.

In light of the increasing scope and complexity of this program-
ming task, the time is right to re-evaluate the design criteria for
real-time shading languages. A modern shading language should
support good software engineering practices, so that diligent pro-
grammers can create maintainable code. Our work focuses on the

∗e-mail: tim.foley@intel.com, tfoley@graphics.stanford.edu

problem of separation of concerns: the factoring of logically dis-
tinct program features into localized and independent modules.

Figure 1 shows a complex rendering effect that uses every stage of
the Direct3D 11 (hereafter D3D11) pipeline. In a single pass, an an-
imated, tessellated and displaced model is rendered simultaneously
to all six faces of a cube map. The dashed boxes represent the pro-
grammable stages of the D3D11 pipeline. The colored boxes rep-
resent logically distinct features or concerns in the program. Some
concerns (such as tessellation) intersect multiple stages of the ren-
dering pipeline. These are cross-cutting concerns in the terminol-
ogy of aspect-oriented programming [Kiczales et al. 1997].

Ideally, a shading language would allow each logical concern to be
defined as a separate, reusable module. Modularity and reusabil-
ity are increasingly important as more complex algorithms are ex-
pressed in shader code. For example, tessellation of approximate
subdivision surfaces on the D3D11 pipeline requires a non-trivial
programming effort. A programmer should expend that effort once,
and re-use the resulting module many times.

Modern shaders comprise two kinds of code, which we will call
pointwise and groupwise. Early programmable graphics hard-
ware exposes vertex and fragment processing with a simple mental
model: a user-defined kernel is mapped over a stream of input. This
ensures that individual vertices and fragments may be processed in-
dependently (or in parallel), and so shading algorithms are defined
pointwise for a single stream element. In contrast, groupwise oper-
ations, such as primitive assembly or rasterization, apply to an ag-
gregated group of stream elements. Where historically groupwise
operations have been enshrined in fixed-function stages, current
rasterization pipelines such as Direct3D [Blythe 2006; Microsoft
2010a] and OpenGL [Segal et al. 2010] include user-programmable
stages that can perform groupwise operations: e.g., basis change,
interpolation, and geometry synthesis.

Today, the most widely used GPU shading languages are HLSL
[Microsoft 2002], GLSL [Kessinich et al. 2003], and Cg [Mark
et al. 2003]. These are shader-per-stage languages: a user con-
figures the rendering architecture with one shader procedure for
each programmable stage of the pipeline. Figure 2 shows a possible
mapping of the effect in Figure 1 to a shader-per-stage language. To
meet the constraints of the programming model, cross-cutting con-
cerns have been decomposed across multiple per-stage procedures.

More importantly, some pointwise and groupwise concerns are cou-
pled in Figure 2. Each per-vertex attribute (color, texture coordi-
nate, etc.) that is subsequently used in per-fragment computations
requires code to plumb it through each intermediate stage. When
tessellating a coarse mesh into a fine mesh, for example, we must

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

http://doi.acm.org/10.1145/1964921.1965002
http://portal.acm.org/ft_gateway.cfm?id=1965002&type=pdf
http://software.intel.com/en-us/articles/spark-shading-language/

Animation

Tessellation

Render to Cube

Vertex Colors

Displacement

Texture Mapping

VS HS DS GS PS

Figure 2: The rendering effect in Figure 1, adapted to the constraints of shader-per-stage languages. The labeled boxes represent the
procedures for the Direct3D 11 Vertex, Hull, Domain, Geometry, and Pixel Shader respectively. The colored boxes represent subsets of the
program pertaining to different features. Some logically coherent program features must be divided, and some orthogonal ones merged, to
meet the constraints of shader-per-stage programming.

interpolate the values of each attribute for each new vertex; this
plumbing code couples the implementation of the tessellation and
texture-mapping concerns. The amount of plumbing code required
increases with the number of attributes, and with the number of
stages in the pipeline.

In contrast to shader-per-stage languages, a pipeline-shader lan-
guage allows a single shader to target a programmable pipeline in
its entirety. The idea of pipeline shaders originates in the Stanford
Real-Time Shading Language (RTSL) [Proudfoot et al. 2001]. In
our work, we set out to explore whether a pipeline-shader language
might yield better tools for separation of concerns. We sought to
take the key ideas of RTSL, and extend it to support the capabilities
of modern rendering pipelines: most notably dynamic control flow
and user-defined groupwise operations.

In this paper we describe a shading language, Spark, and its im-
plementation for the D3D11 pipeline. Spark allows us to achieve
the modularization depicted in Figure 1. A Spark programmer may
define independent shader classes, each encapsulating a logical fea-
ture – even features that cut across the inter-stage boundaries of a
rendering pipeline. Shader classes can be extended and composed,
using techniques from object-oriented programming. When group-
wise and pointwise features are composed, the Spark compiler au-
tomatically generates any required plumbing code by instantiating
user-defined plumbing operators. In order to achieve good per-
formance, we perform global (that is, inter-stage) optimization on
composite shaders. We have found that shaders written in Spark
achieve performance within 2% of HLSL shaders.

2 Background

2.1 Declarative and Procedural Shaders

Modern shading languages derive from Cook’s shade trees [1984]
and Perlin’s image synthesizer [1985]. It is telling, then, that these
two works differ on a key design decision: Cook’s language is
declarative, while Perlin’s is procedural.

Shade trees represent a shader in terms of its dataflow graph. The
graphs are authored using a declarative “little language.” Surface,
light, atmosphere, and displacement shaders may be specified as
separate, modular graphs. The rendering engine then composes
these modules by “grafting” one shade tree onto another. Note,
however, that a shade tree cannot represent algorithms with looping
or conditional control flow, nor can it represent access to read/write
memory (e.g., mutable local variables).

In Perlin’s image synthesizer, shaders are procedures: sequences
of imperative statements. A shader procedure may perform almost
arbitrary operations, including looping and conditional control flow,
to compute its result. Support for modularity, however, is limited to
procedural abstraction: simpler procedures may be used to define
more complex ones. In particular, the image synthesizer does not

support the modular specification and composition of surface and
light shaders. Ultimately, the entire shading process for a pixel must
be described by a single procedure.

This is a classic tradeoff: a procedural representation gives more
power to the user (it can express any computation), but as a conse-
quence a shader is effectively a black box. In contrast, a declara-
tive, graph-based representation exposes more structure to the im-
plementation, and is thus more amenable to analysis and transfor-
mation (e.g., Cook’s grafting operation).

2.2 RenderMan Shading Language

Hanrahan and Lawson [1990] describe the RenderMan Shading
Language (RSL) as incorporating features of both Cook’s and Per-
lin’s work. RSL is a procedural language, but still separates the
definition of surfaces and lights. In place of grafting, the interface
between shaders is provided by specialized control-flow constructs
(e.g., illuminance loops and illuminate statements).

RSL introduces two ideas that are relevant to our design. First is
the idea of treating a shader program as an object-oriented class,
from which shader objects are instantiated at run-time. Represent-
ing shaders as classes allows the renderer to control the lifetime of
shader instances, and in particular when (and how often) expensive
operations like specialization and optimization are performed.

Second is the introduction of computation rates in the form of the
uniform and varying qualifiers. RSL allows a single shader
to include computations at two different rates: per-batch and per-
sample. The expectation of the user is that uniform computations
occur at a lower rate, and may thus be less costly.

2.3 Real-Time Shading Language

The Stanford Real-Time Shading Language (RTSL) [Proudfoot
et al. 2001] extends the concept of uniform and varying compu-
tation to a richer set of rate qualifiers, including vertex and
fragment. These qualifiers allow a single pipeline shader to tar-
get both the vertex and fragment processors on early programmable
GPUs, as well as a host CPU.

RTSL is syntactically similar to RSL, and superficially looks like a
procedural language. The language is, however, declarative: suffi-
cient restrictions are placed on shaders, such that they can be repre-
sented as DAGs. Like shade trees, RTSL allows graphs representing
surface and light shaders to be defined separately and composed by
the rendering system. Subsequently, these composed shader graphs
are partitioned into sub-graphs according to computation rates, to
generate executable code for each programmable pipeline stage.

The DAG representation in RTSL cannot express data-dependent
control flow. This restriction is a good match for early pro-
grammable GPUs which do not support data-dependent control
flow in vertex or fragment processors. Similarly, an RTSL shader

107:2 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

OMPSRSGSDSTSHSVSIA

Figure 3: Nominal structure of the Direct3D 11 rendering pipeline. Programmable stages are shown in gray. In practice, fixed-function
primitive-assembly stages precede the HS and GS, but these are not included in the nominal pipeline.

can express only pointwise operations, as the only groupwise oper-
ations on early GPUs are performed by fixed-function hardware.

One important decision in RTSL is that results computed at a low
rate of computation can be implicitly converted to any higher rate,
even if this might involve plumbing values through intermediate
pipeline stages. For example, a per-vertex color may be used in per-
fragment computations; the RTSL compiler automatically exploits
the rasterizer to perform interpolation and plumb the data through.

The SMASH API [McCool 2000] supports rate-qualified sub-
shaders, with a DAG-based representation similar to RTSL. Re-
naissance [Austin and Reiners 2005] combines ideas from RTSL
with a purely functional programming language in the style of
Haskell. Data-dependent control flow is supported through higher-
order functions like sum . Like RTSL, neither SMASH nor Renais-
sance supports the creation of user-defined groupwise operations.

2.4 Cg, HLSL, GLSL

Cg, HLSL, and GLSL share a common history and many design
goals; we focus on the design of Cg as given by Mark et al. [2003].
Cg consciously eschews any domain-specific factorization of shad-
ing into surface and light shaders, in favor of a general-purpose
C-like procedural language. This decision means that Cg can ex-
press almost any algorithm, and is constrained only by hardware
capabilities rather than any particular domain model.

For our discussion, the most important decision made in Cg was
the choice of a shader-per-stage approach, rather than RTSL-like
pipeline shaders. Several motivations are given for this decision.
For example, with appropriate factoring of shader code – e.g., all
geometric computations in vertex shaders and all material and light-
ing computations in fragment shaders – an application might reuse
a single vertex shader across a variety of materials.

Mark et al. further observe a problematic interaction between data-
dependent control flow and RTSL’s rate qualifiers. For example, it
is unclear what semantics, if any, could be ascribed to a shader that
modifies a per-vertex variable inside a per-fragment loop (or vice
versa). Mark et al. comment that auxiliary language rules could be
used to ban such problematic cases, but the resulting programming
model might be “unreasonably confusing.”

Programmers may layer more flexible abstractions on shader-
per-stage languages by metaprogramming. An über-shader, a
shader implementing the sum of all desired features, may be pre-
processed to generate specialized shaders on demand. Effect sys-
tems [NVIDIA 2010; Microsoft 2010b; Lalonde and Schenk 2002]
allow a set of per-stage shaders to be encapsulated, but do not ad-
dress program concerns at other scales. Shader metaprogramming
frameworks [McCool et al. 2002; Lejdfors and Ohlsson 2004; Kuck
and Wesche 2009] apply host-language abstractions to shaders.

Pixel Bender 3D [Adobe 2011] separates shader code into transfor-
mation and material concerns. A material shader uses separate pro-
cedures to target vertex- and fragment-processing stages. The sys-
tem does not target other programmable stages, nor allow shaders
to be decomposed into arbitrary user-defined concerns.

2.5 Direct3D 11

Figure 3 depicts the nominal structure of the D3D11 rendering
pipeline. Each pipeline stage is represented as a box, and user-
programmable stages are shown in gray. We will briefly discuss the
names and responsibilities of these stages, for the benefit of read-
ers who may be unfamiliar with D3D11. Several stages manipulate
vertices of one kind or another; as such, we will also define names
for the different kinds of vertices to aid in disambiguation.

The Input Assembler (IA) gathers attributes (such as positions, nor-
mals, or colors) from buffers in memory to create assembled ver-
tices. The Vertex Shader (VS) maps a kernel over the assembled
vertices to produce a stream of coarse vertices, representing a base
mesh. These coarse vertices are then assembled into primitives be-
fore being processed by the Hull Shader (HS).

The HS can perform a basis transformation: e.g., it may convert
each face of an input subdivision-surface mesh into control points
for a bicubic Bézier patch. As such, the HS outputs control points
as well as attributes for each patch, such as edge tessellation rates.

The control point and patch data flow past a fixed-function Tes-
sellator (TS) stage, which augments them with a set of parametric
locations for new vertices in the tessellation domain. For example,
for a quadrilateral domain, these would be parametric (u,v) values.

The Domain Shader (DS) is responsible for interpolating the at-
tributes of a patch and its control points at a parametric location –
for example, by performing bicubic interpolation of positions, and
bilinear interpolation of colors – to produce fine vertices. The DS
may also perform pointwise operations like displacement mapping.

Fine vertices are assembled into primitives that are then processed
by the Geometry Shader (GS). The GS applies a procedural kernel
to each primitive, that may perform almost arbitrary computation
to generate a stream of raster vertices that describe zero or more
output primitives. For example, the GS may duplicate each input
primitive six times, projecting each copy into a different face of a
cube-map render target. These primitives are clipped, set up and
rasterized into fragments by the fixed-function Rasterizer (RS).

The Pixel Shader (PS) maps a kernel over the rasterized fragments
to produce shaded fragments. Shaded fragments are composited
onto render-target pixels by a fixed-function Output Merger (OM).

The VS and PS stages each perform a functional map over their in-
put stream. Thus, HLSL kernels for the VS and PS describe only
pointwise (one-to-one) operations. In contrast, the remaining pro-
grammable stages apply a kernel to an aggregated group of inputs,
and so HLSL allows for groupwise operations, both many-to-one
and many-to-many. For example, the HS must have access to all
the coarse vertices in the neighborhood of a primitive to transform
it into a Bézier basis. Similarly, the DS must have access to all of
the Bézier control points for a patch to perform many-to-one inter-
polation. Furthermore, the GS has the capability to emit zero or
more raster vertices. As such the GS can perform almost arbitrary
amplification, decimation, or synthesis of geometry.

Spark: Modular, Composable Shaders for Graphics Hardware • 107:3

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

Note, however, that the HS, DS, and GS need not exclusively per-
form groupwise operations. For example, displacement mapping of
fine vertices is often performed in the DS, and when rendering to a
cube map, projection of raster vertices into clip space is performed
in the GS. A single per-stage procedure for these languages, then,
may end up combining both pointwise and groupwise concerns.

3 Design Goals

Our design goals are largely similar to those of Cg, HLSL, and
GLSL, differing primarily in the introduction of three new goals:

Modularity Programmers should be able to define orthogonal pro-
gram features as separate modules. Changes to one module should
not require modification of unrelated modules. What constitutes an
“orthogonal feature” should be driven by the needs of the user (i.e.,
separation of concerns) and not those of the implementation.

Composability It should be possible to combine or extend thought-
fully designed modules to create new shaders, without resort to
copy-paste programming.

Automatic plumbing Attributes defined in pointwise code should
be plumbed automatically as required. For example, a module that
defines a per-vertex color and uses it in per-fragment computations
should not require code for unrelated pipeline stages. This is a con-
sequence of the preceding two goals, if we are to support separation
of pointwise and groupwise concerns.

In addition, once we decided that our work would build upon the
pipeline-shader approach of RTSL, we felt the need to enumerate
some additional design goals. These goals served to clarify our
mission to “modernize” the pipeline-shader approach and make it a
suitable alternative to Cg, HLSL, and GLSL:

Support modern graphics pipelines The shading language must
be able to expose the full capabilities of the D3D11 rendering
pipeline. Furthermore, the same language should be usable with
future extensions to the pipeline.

Domain-motivated rather than domain-specific Specialization
to the domain of real-time shading is acceptable (we do not aim
to build a general-purpose parallel programming language). It is
not acceptable to impose a particular domain model (e.g., a system-
defined interface for surfaces and lights).

Performance Shaders are effectively the inner-most loops of a
renderer. Benefits to abstraction or modularity must be weighed
against costs to performance. Our goal was to achieve performance
similar to hand-tuned shaders in existing high-level languages.

Phase separation Flexibility in the shading language and runtime
should not result in unexpected pauses for run-time compilation.
There should be a clear phase separation between code generation
and execution, and run-time parameter changes should not trigger
recompilation or other expensive operations.

4 Shader Programming Abstraction

In order to separate the specification of groupwise operations like
tessellation from attributes defined in pointwise shading code, we
must define an interface between them. For example, surface
and light shaders should determine which per-vertex attributes are
plumbed through the pipeline, but a tessellation scheme must define
how interpolation is used to achieve that plumbing.

Figure 4 illustrates how our shader programming abstraction de-
fines this interface. Pointwise shader code is expressed in a shader
graph, while groupwise operations are expressed as procedures that

run in the rendering pipeline. The interface between the shader
graph and the pipeline is provided by a family of data types we call
record types, which expose rates of computation to the pipeline, in
addition to plumbing operators, which are invoked by the shader
graph to plumb values between pipeline stages.

Spark is a shading language for programming a graphics pipeline; it
is not a system for constructing new pipelines (e.g., [Sugerman et al.
2009]). We assume in our work that shaders are authored against
a fixed pipeline model, that might be defined as part of a standard
library. The pipeline model defines the stages, record types, and
rates of computation for a particular pipeline (e.g., D3D11). It is
the role of the shading language, then, to expose the capabilities
and constraints of the pipeline model to the user.

4.1 Shader Graphs

In our abstraction, pointwise shading code is defined using shader
graphs: DAGs representing shading computations. The top of Fig-
ure 4 depicts a shader graph. Each node in the graph represents
either an input to the shader or a value it computes.

As in RTSL, every node is colored according to its rate of computa-
tion. For example, values that are computed for every fragment are
given the per-fragment rate. Black nodes in this graph correspond
to values with uniform rate: that is, uniform shader parameters. We
will sometimes refer to shader-graph nodes as attributes: e.g., a
per-fragment color attribute.

The graph in Figure 4 represents the following computations:

• Per coarse vertex, position and texture-coordinate data are
fetched from a buffer, using a system-provided vertex ID.

• Per fine vertex, a vector displacement map is sampled and
used to compute a displaced position.

• Per raster vertex, the position is projected into clip space.

• Per fragment, a color map is sampled.

Some shader-graph nodes are pre-defined for a particular rendering
system. For example, D3D11 defines a per-coarse-vertex sequence
number: this appears in our graph as the IA_VertexID input.
System-defined nodes may also represent shader outputs used by
the renderer: for example, RS_Position represents the projected
position consumed by the rasterizer.

4.2 Pipeline Model

The bottom of Figure 4 depicts the programmable stages of the
D3D11 rendering pipeline. The stages are connected by streams
that carry data in the form of records. Different stages and streams
will make use of different types of records. In the case of the D3D11
pipeline, the record types correspond to the terms introduced in Sec-
tion 2.5: coarse vertices, fragments, etc. For example, the stream
connecting the DS and GS carries FineVertex records.

Each programmable stage repeatedly reads one or more records
from its input stream, and applies a kernel to construct and emit
zero or more records on its output stream. The stages of the D3D11
pipeline fall into a few categories. The VS and PS stages always
read a single input record and construct one output record. The HS
and DS stages read an aggregate of records (e.g., all of the coarse
vertices in the neighborhood of a base-mesh primitive), and use this
aggregate to construct a number of independent output records.

In each of the above cases, the kernel of the stage is system- rather
than user-defined. The GS stage, however, takes a user-defined
kernel: a procedure which may construct and output zero or more
RasterVertex records.

107:4 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

PS

GS

for(...)

Emit(new RasterVertex(proj: ...));

Shader Graph:

Pipeline:

Record Types:

CoarseVertex

Patch

ControlPoint

FineVertex

RasterVertex

Fragment

define fields

construct instances
define plumbing operators

invoke plumbing operators

float3 RS_Position

input float4x4 proj

DS

RS_Position

color

colorMap

proj

P_disp

disp

dispMapbuffer

P_base

uv

IA_VertexID

HSVS

define constructor

Figure 4: Shader graphs are mapped to the rendering pipeline with the use of record types. Nodes in the shader graph are colored according
to their rate of computation: each node corresponds to a field in the associated record type. Procedural kernels running in the rendering
pipeline construct, manipulate and communicate records.

4.3 Rates and Record Types

A key property of our abstraction is that record types are in one-to-
one correspondence with rates of computation. That is, for every
record type there is a corresponding rate of computation, and vice
versa. For example we have both a type CoarseVertex, as well
as per-coarse-vertex computations in our shader graph.

A record type may be thought of like a C++ struct type: it has
some number of fields, as well as a constructor. Continuing the
identification of rates of computation and record types, for every
node in the shader graph with a given rate, there is a field in the
corresponding record type. For example, our shader graph in Fig-
ure 4 defines a per-raster-vertex position RS_Position, and the
RasterVertex record type has a corresponding RS_Position
field.

The constructor for a record type is similarly defined by the shader-
graph nodes. For example, the per-coarse-vertex computations in
the shader graph define the body of the CoarseVertex construc-
tor. Input nodes in the graph (e.g., IA_VertexID) correspond
to constructor parameters – that is, values which must be provided
whenever a CoarseVertex record is created.

This identification of rates and record types is the key to mapping
a shader graph to the rendering pipeline. When the system-defined
kernel for the VS stage invokes the CoarseVertex constructor,
it has the effect of performing all the per-coarse-vertex computation
in the shader graph, and collecting the resulting values in a record.

Our approach here is a refinement of how rates are modeled in
RTSL. The RTSL system maps shader graphs to programmable
pipeline stages by identifying rates of computation with stages of
the pipeline. For example, RTSL computations with the vertex
rate map to instructions compiled for the vertex-processing stage
of the pipeline. While intuitive, this approach does not accurately
reflect some new pipeline stages. For example, the HS stage con-
structs both patches and control points, and so performs computa-
tions at two different rates.

The identification of rates and record types also allows for a clean
model of the GS stage. A user-defined GS kernel is written to
perform a particular groupwise operation – e.g., duplicating prim-
itives for rendering to a cube map – by constructing and emit-
ting new RasterVertex records. The groupwise code only
has to know about the input attributes of the shader graph: these
define the signature of the RasterVertex constructor. Addi-
tional pointwise computations (i.e., additional non-input nodes like
RS_Position) may be independently added to the shader graph
without conflict. The operations in the shader graph, in turn, re-
main oblivious to how many RasterVertex records the GS ker-
nel might construct, or in what order it might emit them.

4.4 Plumbing Operators

When a node with per-coarse-vertex rate (e.g., P_base) is used
as an input to a per-fine-vertex computation (P_disp), the value
must be plumbed from one rate to the other. We can recognize
plumbing in the shader graph in Figure 4 wherever an edge connects
nodes with different colors. We refer to the operations that perform
plumbing – that is, that create cross-rate edges – as plumbing op-
erators. Each cross-rate edge in the graph (e.g., from P_base to
P_disp) was created by invoking a plumbing operator.

The shader graph specifies where plumbing must be performed, but
does not define how plumbing operators perform this work. Some
plumbing operators are defined as part of the pipeline model: for
example, to expose interpolation from raster vertices to fragments
by a fixed-function rasterizer. Additional plumbing operators might
be defined by the shader programmer, as part of a shading effect like
tessellation. These user-defined operations may then be invoked,
perhaps implicitly, in pointwise shading code.

Plumbing might involve interpolation or more general resampling;
it constitutes groupwise rather than pointwise code. Like per-
stage kernels, plumbing operators are defined in terms of record
types. For example, an operator for plumbing values from coarse to
fine vertices might operate on an aggregation of CoarseVertex
records representing the neighborhood of an input primitive.

Spark: Modular, Composable Shaders for Graphics Hardware • 107:5

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

Different plumbing operators may apply to different types of at-
tributes. For example, in Figure 4, positions might be plumbed from
coarse to fine vertices using bicubic Bézier interpolation. Texture
coordinates, however, might be subjected to only bilinear interpo-
lation.

In the process of plumbing an attribute from one rate to another, it
might be resampled to intermediate rates. For example, to interpo-
late vertex positions from coarse to fine vertices, they might first
be converted to per-control-point positions in a Bézier basis, and
then interpolated. In this way, plumbing might introduce additional
intermediate shader-graph nodes not depicted in Figure 4.

5 Key Design Decisions

5.1 A language with declarative and procedural layers

We wanted programmers to be able to define and compose modules
that might intersect multiple stages of the rendering pipeline. RTSL
demonstrates that this is possible using declarative shader graphs.
As discussed, though, RTSL’s shader graphs cannot express shaders
with control flow, nor can they define the various kinds of group-
wise shading operations we wanted to support.

We decided to tackle this problem by building a shading language
with two layers. In the upper layer, the user defines declarative
shader graphs. That is, instead of writing a shader as a procedure
composed of statements, the user declares a set of shader-graph
nodes. Each node is either a shader input, or defines its value as
an expression of other nodes.

In the lower layer, the user defines procedural subroutines. Within
a subroutine, the programmer can make use of local variables, flow
control and other features of procedural shading languages. A sub-
routine can then be called in the definition of a new shader-graph
node. The new node may encapsulate a complex computation, but
will be assigned a single rate of computation. In this way we avoid
the problematic interactions between control flow and rate quali-
fiers that were discussed in Section 2.4.

An alternative would have been to introduce looping and condi-
tional constructs to the declarative language in the form of higher-
order functions or recursion, as is done in Renaissance [Austin and
Reiners 2005]. We were concerned, however, that a purely func-
tional approach would alienate programmers who are more familiar
with C-like procedural languages. Furthermore, while our original
motivation for including procedural subroutines was the ability to
express control flow, we soon discovered additional uses.

In particular, the procedural layer is also used to define groupwise
shading operations. The kernel that drives the GS, for example, is
modeled as a procedural subroutine that the user must define. The
user also defines new plumbing operators as subroutines.

A purely functional language could model the GS as yielding a
variable-length list, but implementing this efficiently might be a
challenge. Alternatively, the side-effects (emitting raster vertices)
could be explicitly ordered with, e.g., monads [Wadler 1990]

5.2 Shaders are classes

Shade trees and RTSL give shader graphs the appearance of pro-
cedures, even though the underlying shader-graph representation is
quite different. Users might be surprised to find out that they can-
not use data-dependent control flow in the body of a shader. We
wanted to avoid this confusion in Spark, particularly because we
also support subroutines in which control flow is allowed.

RSL shows that it can be valuable for an application to treat shaders
as classes rather than procedures. For Spark, we treat shaders as
classes both semantically and syntactically. This choice of repre-
sentation has been fortuitous, bringing benefits along multiple axes.

First, classes are a declarative rather than procedural construct: they
describe what something is. Users are familiar with the idea that a
class in C++ or Java directly contains declarations (of types, fields,
methods, etc.), but does not directly contain statements (e.g., a class
cannot directly contain a for loop, although a method in the class
may). Similarly, a Spark shader class contains declarations of types,
subroutines, and, most importantly, nodes in the shader graph. This
may reduce the learning curve for the language, and make confu-
sion between procedural and declarative code less likely.

Second, classes bring a rich set of mechanisms for modularity and
composition from the discipline of object-oriented programming
(OOP). Our formulation of OOP is heavily influenced by the Scala
language [Odersky et al. 2004]. Notable capabilities include:

• A shader class can extend another shader class, inheriting its
declarations (graph nodes, etc.), and adding new nodes of its
own – without changing the behavior of the original class.

• Multiple shader classes can be composed by using multiple
mixin inheritance (à la Scala’s traits). Mixins support a robust
form of multiple inheritance.

• By declaring some shader-graph nodes virtual, a shader
can allow parts of its behavior to be customized.

• Shader classes with abstract members can represent inter-
faces that a module either requires or provides.

Every Spark shader class inherits (directly or indirectly) from a
base class that defines the particular graphics pipeline being tar-
geted (e.g., D3D11DrawPass for D3D11). From this base class,
the shader class inherits pipeline-specific types, subroutines, and
shader-graph nodes, which define the services that the graphics
pipeline provides and requires. All of the configuration for a render-
ing pass – both programmable and fixed-function – is encapsulated
in a shader class. Shaders targeting different pipelines will inherit
different capabilities and responsibilities.

The representation of shaders as classes in Spark also benefits our
run-time interface. For each Spark shader class, our compiler gener-
ates a C++ “wrapper” class. The interface of this class is generated
statically, but the implementation might be generated at run-time.
The wrapper is used to construct shader instances and set values for
parameters. The wrapper also exposes a Submit() method that
handles binding of shaders, resources and state. This is similar in
spirit to existing effect systems, but generating wrapper code allows
for a low-overhead, type-safe interface to shaders.

The object-oriented representation also helps us achieve a clear
phase separation. In the Spark run-time interface, creating a shader
instance is a heavy-weight operation: it may generate GPU code
or allocate other resources. Once a shader instance has been cre-
ated, however, setting its parameters and using it for rendering are
lightweight operations that should not trigger recompilation.

5.3 Model rates of computation in libraries, not the
compiler

Existing shading languages with rates of computation represent
them with keywords (e.g., varying in RSL or fragment in
RTSL). However, modeling each rate as a language keyword
wouldn’t mesh well with our goals for Spark: different rendering
pipelines will support different rates, and the introduction of a new
pipeline stage should not require changing the language syntax.

107:6 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

We decided that Spark should have an extensible set of rate-qualifier
names, rather than a fixed set of keywords. In particular, system
libraries that expose different pipelines should be able to expose
different rates. To distinguish them from other names in the lan-
guage, we require that the names of rate qualifiers start with an
@ sign. Where RTSL has fragment, then, an equivalent Spark
shader uses @Fragment. The intention is that @ can be read as
“per-,” so that a @Fragment Color is a “per-fragment color.”

The implementation of a rate of computation (e.g., translation of
computations to GPU code) might involve dedicated support in the
compiler. While a Spark shader programmer can define their own
rate qualifiers (e.g., a hypothetical @Light rate), they may not be
able to implement the desired semantics directly in Spark code.

As discussed in Section 4.3 every rate of computation in our ab-
straction is associated with a corresponding record type. In Spark,
the record type corresponding to a rate qualifier has the same name
without the @ prefix. So, for example, the record type associated
with the @ControlPoint rate is ControlPoint.

Simply allowing for an extensible set of rate-qualifier names is not
sufficient, however. One of our key design goals is to allow auto-
matic plumbing. For example, values with the @CoarseVertex
rate qualifier should be usable in @FineVertex computations.

The compiler performs plumbing by automatically inserting calls
to plumbing operators. This design was inspired by languages that
support user-defined implicit conversions. Both C++ and Scala al-
low users (and libraries) to define auxiliary functions that perform
type conversion. Calls to these functions can be inserted by the
type-checker as needed, according to well-defined rules.

In the case of Spark, plumbing operators take the form of subrou-
tines with explicitly rate-qualified inputs and outputs, e.g.:

implicit @FineVertex float coarseToFine(
@CoarseVertex float attr);

Invoking a plumbing operator – whether implicitly or explicitly –
causes an attribute (a node in the shader graph) to be plumbed from
one rate to another. When the compiler encounters a mismatch on
rate qualifiers, it may insert calls to implicit plumbing operators
to coerce a value from one rate to another.

In many cases, plumbing operators are defined as part of a rendering
pipeline. For example, the D3D11 pipeline exposes plumbing op-
erators to convert from @RasterVertex to @Fragment values.
Because plumbing operators are functions, the library can expose
different methods of interpolation, e.g.:

implicit @Fragment float perspectiveInterpolate(
@RasterVertex float attr);

@Fragment float centroidInterpolate(
@RasterVertex float attr);

Shader-graph code can opt in to centroid interpolation for a given
value by calling the appropriate operator explicitly, or rely on im-
plicit plumbing, which performs perspective-correct interpolation.

The signature of the plumbing operators above may be surprising.
How can a function like perspectiveInterpolate() pos-
sibly take a single input when interpolation requires at least three
values (for the three raster vertices that make up a triangle)?

These signatures, however, are correct from the point of view of
pointwise shading code: perspectiveInterpolate() takes
a per-raster-vertex value and converts it to a per-fragment value.
More fundamentally, this function does not operate on concrete val-
ues (e.g., 2.0f), but on attributes: nodes of the shader graph or,

implicit @FineVertex float baryInterpolate(
@ControlPoint float attr)

{
// project ’attr’ out of each control point
@FineVertex float a0 = attr @ DS_InputControlPoints(0);
@FineVertex float a1 = attr @ DS_InputControlPoints(1);
@FineVertex float a2 = attr @ DS_InputControlPoints(2);

// barycentric linear interpolation
return a0 * DS_DomainLocation.x

+ a1 * DS_DomainLocation.y
+ a2 * DS_DomainLocation.z;

}

Figure 5: Example Spark plumbing operator. The per-control-
point attribute attr is projected out of three particular control
points and then interpolated.

equivalently, fields of a record type. We can intuitively think of the
parameter attr as representing the name of a graph node.

When defining a module for a groupwise shading operation – e.g.,
a tessellation scheme – a programmer also defines plumbing opera-
tors that can interpolate per-coarse-vertex values to fine vertices. A
user-defined plumbing operator may apply only to values of a spe-
cific type (e.g., Points or Normals), or can be “templated” to ap-
ply to any attribute. A tessellation scheme can thus define special-
case interpolation for points, vectors, and normals, while also defin-
ing a templated operator to handle attributes of other types.

One important consideration when allowing libraries to define their
own rates of computation is portability. For example, if a Di-
rect3D 9 pipeline interface uses a @Vertex rate where D3D11
uses @CoarseVertex, then a single shader cannot trivially port
between the two. Allowing shaders to port between different ren-
dering pipelines will require conscientious library design.

5.4 Define plumbing operators using projection

We will illustrate how Spark can be used to implement plumbing
operators with a brief example. Suppose the user wishes to define
an operator to plumb values from control points to fine vertices,
using linear barycentric interpolation over triangles:

implicit @FineVertex float baryInterpolate(
@ControlPoint float attr);

To support such a definition, the system library for the D3D11
pipeline exposes two built-in attributes (shader-graph nodes):

@FineVertex Array[ControlPoint, ...]
DS_InputControlPoints;

@FineVertex float3 DS_DomainLocation;

The first declaration states that for every fine vertex (i.e., per-fine-
vertex) there is an array of control points (comprising an input
patch). The array size depends on the number of control points
given by the user: in this case, three. The second states that every
fine vertex knows its barycentric location in the tessellation domain.

Figure 5 shows how a user-defined plumbing operator takes ad-
vantage of these system-defined attributes to perform interpolation
across several control points. We fetch each control point from the
array – each of these values is a ControlPoint record. We then
project out the value of a particular field by using @ as an infix
operator. Note that this is projection in the sense of the relational
algebra [Codd 1970], rather than geometry.

Spark: Modular, Composable Shaders for Graphics Hardware • 107:7

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

Projection relies fundamentally on the interface between shader
graphs and record types defined in Section 4.3. In particular, if
attr represents a per-control-point attribute (that is, a shader-
graph node), then it also represents a field in the ControlPoint
type. If, as in Section 5.3, we think of attr as holding the name of
a particular field, then the projection attr @ cp fetches the field
with that name for a particular control point.

When performing projection, the @ character may be read as “at,”
so that, e.g., color @ vertex yields the value of a per-vertex
color at a particular vertex. The use of @ to both indicate rates
of computation and to perform projection is meant to be similar in
spirit to C, where * is used both when declaring pointer variables
and when dereferencing them.

If record types can be thought of like struct types, then it might
seem that we should instead use more conventional syntax like
cp.attr. The scoping rules for our projection operation, how-
ever, do not match the scoping rules for C’s “dot operator.” In par-
ticular, attr in Figure 5 is a function parameter in local scope.
Each time baryInterpolate() is invoked, this parameter may
refer to a different field of the ControlPoint type. As such, we
decided to use distinct syntax to reflect the distinct semantics.

5.5 Drive rate conversion by outputs, not inputs

An important design choice is where the compiler should insert im-
plicit conversions. For example, given a snippet of code like:

@CoarseVertex float3 N = ...;
@CoarseVertex float3 L = ...;
@Fragment float nDotL = dot(N, L);

is the dot product computed per-coarse-vertex or per-fragment?

RTSL derives the rate of an operation from the rates of its inputs:
the dot product is computed per-vertex. This rule has an appealing
simplicity, and a similar flavor to the rules for type promotion in C.

We initially applied this approach in Spark, but found that it had
unintuitive consequences. In cases where a programmer wants to
compute the above dot product per-fragment, they need to insert
an explicit conversion (cast). Such cases arise often, however, and
we found that with these rules even simple shaders required several
explicit casts to achieve the desired behavior. Of greater concern,
when we forgot to insert a cast, we would get no error messages
from the compiler. Instead, a shader would silently compute some
results at less than the desired rate, leading to visual artifacts.

Why didn’t the RTSL designers encounter this problem? We sus-
pect that the answer has to do with the limited capabilities of GPU
fragment processors at the time. Shader authors targeting early pro-
grammable GPUs would tend to compute intermediate results per-
vertex whenever possible. In this case, language rules which err on
the side of efficiency rather than quality were likely a good match.

For Spark, though, we found that users expected the dot product
above to be computed per-fragment. We eventually came to the
conclusion that the rate at which a computation is performed must
be driven by its output rather than its inputs. This decision was
made with reluctance, since it too has unexpected consequences.
Most notably, moving a sub-expression from one place to another
can change the rate at which it is evaluated. This choice also
means every user-declared node in the shader graph must have a rate
qualifier specified, whereas RTSL allows many qualifiers to be in-
ferred. We have still found, though, that this new rule more closely
matches programmer intuition, and eliminates many explicit casts
that would otherwise be needed.

5.6 Move computations when pipeline stages are dis-
abled

The D3D11 pipeline allows the HS, DS, and GS stages to be dis-
abled by binding a “null” kernel. In Spark, a shader class must
opt in to use of these pipeline stages by inheriting from system-
defined mixin shader classes D3D11Tessellation and/or
D3D11GeometryShader. If a class does not inherit from these,
directly or indirectly, the corresponding stages are disabled.

If the user disables, e.g., the GS, what should happen to
@RasterVertex computations in their shader graph? In our
interface to the D3D11 pipeline we take advantage of the fact
that record types and pipeline stages are decoupled. When the
GS is disabled, our D3D11 back-end moves the construction of
RasterVertex records to the DS stage instead. If the tessel-
lation (HS and DS) stages are also disabled, then all computation
on the different flavors of vertices will be executed in the VS stage.
This design has similar properties to the shader framework of Kuck
and Wesche [2009], where operations defined in the “Post Geome-
try” stage are executed in the VS if no GS effect is active.

Moving computations in this manner has the drawback that
the mapping from the shader-graph abstraction to the rendering
pipeline becomes more complicated. This complexity may make
it difficult for a shader writer to decide what rate to give to particu-
lar computations. An important benefit, however, is that it is possi-
ble to write pointwise shading operations that can be used both with
and without tessellation or GS effects. For example, a displacement
effect that operates at @FineVertex rate will work with both tes-
sellated and untessellated models.

6 Example Program

In order to impart the flavor of the Spark language, we present a
brief code example in Figure 6. The Base shader class fetches and
transforms vertices, while Displace and Shade extend Base
with displacement mapping and simple texture mapping, respec-
tively. This decomposition separates the concerns of displacement
and texturing: each can be defined and used independently. The
shader class Example composes the two concerns, and yields a
shader graph similar to that in Figure 4.

Each shader class is declared with the shader class keywords.
The Base class extends D3D11DrawPass, a shader class defined
as part of our Spark system library, and implemented with support
from the compiler. Inheriting from this class means that Base can
make use of types, operations, and rates of computation defined
by the D3D11 interface. This includes a number of types (e.g.,
float4x4) and operations (e.g., mul) that are familiar to users
of HLSL. In addition, Base inherits a number of rates of com-
putation, such as @CoarseVertex and @FineVertex. These
types, operations, and rates are defined by the D3D11DrawPass
class, rather than by the Spark language syntax.

Note that the VertexStream type is “templated” on a user-
defined struct type. Spark uses square brackets [] rather than
angle brackets <> to enclose type parameters. As a consequence in-
dexing operations, such as fetching values from vertexStream,
use ordinary function-call syntax.

The classes in Figure 6 define a number of shader-graph nodes.
The input @Uniform nodes represent shader parameters, while
the output @Pixel node represents a shader output that should
be captured in a render target. A shader class can override the
definition of an abstract or virtual node, whether user- or
system-defined (e.g., P_model and RS_Position respectively).

107:8 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

shader class Base extends D3D11DrawPass
{

input @Uniform float4x4 modelViewProjection;
input @Uniform uint vertexCount;
input @Uniform SamplerState linearSampler;

// Stream of vertices in memory
struct PNuv { float3 P; float3 N; float2 uv; }
input @Uniform VertexStream[PNuv] vertexStream;

// Bind number and type of primitives to draw
override IA_DrawSpan = TriangleList(vertexCount);

// Per-coarse-vertex - fetch from buffer
@CoarseVertex PNuv assembled =

vertexStream(IA_VertexID);
@CoarseVertex float3 P_base = assembled.P;
@CoarseVertex float2 uv = assembled.uv;

// Declare model-space position to be virtual
virtual @FineVertex float3 P_model = P_base;

// Bind clip-space position for rasterizer
override RS_Position = mul(float4(P_model, 1.0f),

modelViewProjection);
}

mixin shader class Displace extends Base
{

input @Uniform Texture2D[float3] displacementMap;

// Per-fine-vertex - displace
@FineVertex float3 disp =

SampleLevel(displacementMap, linearSampler,
uv, 0.0f);

override P_model = P_base + disp;
}

mixin shader class Shade extends Base
{

input @Uniform Texture2D[float4] colorMap;

// Per-fragment - sample color
@Fragment float4 color = Sample(colorMap,

linearSampler,
uv);

// Per-pixel - write to target
output @Pixel float4 target = color;

}

shader class Example extends Displace, Shade {}

Figure 6: Example Spark shader classes. The Example class cor-
responding approximately to the shader graph in Figure 4.

7 System Experience

7.1 Implementation

We have implemented a compiler and runtime for the Spark lan-
guage in a combination of C# and C++ code. Figure 7 shows the
structure of the Spark system. In order to compile a shader, the core
Spark compiler coordinates with a pipeline module for a particular
rendering architecture. The pipeline module defines the interface to
the rendering pipeline as one or more Spark shader classes. These
shader classes declare the types, operations, and rates of computa-
tions for the pipeline. A user-defined shader, then, is type-checked
against the interface declared in a particular pipeline module.

front end

.spark

.spark

LLVM

IR

shader

bytecode

pipeline-specific

back end
optimizer

.h / .cpp

application shader classes

Spark

compiler

pipeline

library

interface

pipeline module (D3D11)

C++ HLSL LLVM

.cpp

application

application

code

compile-time

run-time

Figure 7: System block diagram. Application shaders are type-
checked against a pipeline-specific standard library. Global opti-
mizations are applied to each shader class. Executable CPU and
GPU code are then generated by a pipeline-specific back end.

Once the shader code has been type-checked, the Spark compiler
performs global optimizations on each shader class. The most im-
portant of these optimizations is dead-code elimination over the
shader graph. In order to make optimization more effective, we
“flatten” the inheritance hierarchy at this step. For each shader
class, we perform a deep copy of the code it inherits, and then
optimize this copy. The result of this approach is that use of in-
heritance and virtual members does not negatively impact the
performance of generated code. It may, however, lead to increased
compile times and memory usage.

Once a shader class has been optimized, it is passed to a back end
in the pipeline module for code generation. We have currently im-
plemented a pipeline module for the D3D11 rendering pipeline.
The back end in this module generates a combination of CPU code
(as either C++ source or LLVM IR [Lattner and Adve 2004]) and
shader bytecode (via translation to HLSL). The GPU shader byte-
code is embedded in the CPU code.

Application code is statically compiled against a header file gener-
ated by the Spark compiler. This header file defines the interface
to each shader class, as discussed in Section 5.2. The compiled
implementations of shader classes can either be linked into the ap-
plication as C++ code, or loaded at run-time as LLVM IR.

7.2 Limitations

While it is one of our design goals to support the full capabili-
ties of the D3D11 rendering pipeline, our current implementation
has some limitations. At present, the Spark compiler assigns all
@Uniform shader parameters to a single D3D constant buffer. In

Spark: Modular, Composable Shaders for Graphics Hardware • 107:9

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

Component Description
SkeletalAnimation Transformation by “bone” matrices
CubicGregoryQuads Tessellation of approximate subdi-

vision surfaces [Loop et al. 2009]
RenderToCubeMap Uses GS instancing
PhongMaterial Phong illumination [Phong 1973]
EnvMapMaterial Sample a reflection cube map
NormalMaterial Visualize normals

Table 1: Shader components used in Figure 8.

Model Components
Lizard SkeletalAnimation, PhongMaterial
Big Guy CubicGregoryQuads, EnvMapMaterial
Vortigaunt SkeletalAnimation,

CubicGregoryQuads,
NormalMaterial

Table 2: Models used in Figure 8, and the shader components they
use. For a given rendering pass, these may additionally be com-
posed with light-source shaders or RenderToCubeMap.

addition, we do not support the Stream Out (SO) pipeline stage, nor
the use of Unordered Access Views (UAVs). The use of UAVs to
express atomic read-modify-write operations (side effects) presents
an interesting question: is it possible to encapsulate typical uses of
UAVs into reusable and composable modules?

7.3 Results

In order to explore the value of Spark in modularizing shading ef-
fects, we developed a suite of shader classes that implement a vari-
ety of effects. Our goal was to demonstrate that Spark allows effects
to be written as localized, reusable modules. We then compose dif-
ferent subsets of those modules to render models under different
conditions, without writing additional code.

Table 1 summarizes the most important shader components in our
suite. Among the shader components, CubicGregoryQuads
and RenderToCubeMap implement groupwise operations; all the
others are pointwise. Table 2 shows which components are used by
each of our models. The shading code for each model is simply a
composition of existing shader classes: no additional shader code
was written per-model. Figure 8 shows a scene composed of these
models. Note that the Lizard and Vortigaunt models are both ren-
dered into the reflection cube map used by the Big Guy. Because
RenderToCubeMap defines suitable plumbing operators, it may
be combined with any of the other shader components to render a
model into a cube map in a single pass, without additional code.

For comparison, we also implemented an idiomatic HLSL über-
shader for the same set of effects and compared performance re-
sults. In the über-shader, each of our shader components corre-
sponds, approximately, to a preprocessor flag. For example, a pre-
processor flag is used to enable or disable rendering to a cube map.

When creating an über-shader, certain global optimizations can be
implemented using the preprocessor. For example, the material
used on the Vortigaunt does not make use of interpolated positions
or texture coordinates in the PS. Therefore, when this material is
used, some plumbing code in earlier pipeline stages is dead code,
and may be eliminated. In our HLSL über-shader, we perform
dead-code elimination by conditionally defining per-stage shader
outputs based on the needs of downstream stages.

Table 4 shows performance results for the rendering passes in Fig-
ure 8, using both HLSL and Spark. We give results for our HLSL

über-shader both with and without manual dead-code elimination.
The benefits of dead-code elimination are most notable when ren-
dering the Vortigaunt to our reflection cube map: performance is
improved by 33%. Rendering passes using Spark-compiled shaders
have similar performance to the HLSL über-shader with dead-code
elimination: between 2% slower and 2% faster. This is because, as
described in Section 7.1, the Spark system automatically performs
global dead-code elimination as part of compilation.

Table 4 also shows HLSL and Spark compile times for the com-
bination of features in each rendering pass. The per-combination
cost of the Spark compilation is between two and four times that
of HLSL. In the case of Spark, this cost includes global optimiza-
tion of the composed shader class, source-to-source translation to
HLSL, compilation of the generated HLSL, and generation of CPU
code for shader binding and @Uniform computation. In addition
to the per-combination cost, the Spark path also incurs a one-time
startup cost of 6.6 seconds to parse and type-check the Spark shader
suite. This startup cost could potentially be mitigated by perform-
ing type-checking at application compile time and instead loading
a serialized representation of the Spark shader suite.

Language Code Preprocessor Total
HLSL 478 260 738
Spark 501 0 501

Table 3: Comparison of lines of code (non-whitespace, non-
comment) in Spark and HLSL implementations of the shader suite.

Table 3 compares the number of non-comment lines of code in the
Spark and HLSL implementations of the shader suite. While both
the Spark and HLSL implementations use similar amounts of code
to express the shading algorithms themselves, the HLSL implemen-
tation also requires preprocessor directives to select between the
different über-shader code paths, and to implement dead code elim-
ination. In the case of Spark, components are defined as distinct
shader classes, and so preprocessor directives are not required to
enable or disable features. Considering both code and preprocessor
directives, the Spark implementation requires 32% fewer lines to
implement the same effects, with similar performance.

8 Discussion

Spark is a language for real-time shading that enables greater
modularity and composability than current procedural shader-per-
stage languages. It extends prior work on declarative, graph-based
shader representations by supporting algorithms that require con-
trol flow, enabling user-defined units of modularity, and supporting
programmable groupwise operations on modern pipelines.

While procedural shading languages achieve good performance by
directly exposing the topology of the rendering pipeline, our results
indicate that performance can still be achieved with higher levels of
abstraction, by performing global optimizations.

Our design is not, however, without limitations. Because global
optimizations are required to achieve good performance, composi-
tion in Spark is currently modeled as a static operation, in terms
of class inheritance. Each unique combination of shader classes
must be composed, compiled, and optimized separately, at a cost
in both space and time. This problem is already known to users of
über-shaders as the “shader combinatorics” or “permutation man-
agement” problem: a simple library of components may produce
an overwhelming number of compiled shaders. While Spark does
not eliminate this combinatorial explosion, it can still increase the
manageability of shader code by allowing components to be speci-
fied and type-checked independently.

107:10 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

Figure 8: Example models rendered with Spark shaders. From left to right the models are Lizard, Big Guy, and Vortigaunt. Lizard is a triangle
mesh with skeletal animation, diffuse/normal maps, and Phong illumination. Big Guy is an approximate subdivision surface rendered with a
dynamic reflection cube map (reflecting both the Lizard and Vortigaunt). Vortigaunt uses both skeletal animation and approximate subdivision
surfaces. Vortigaunt model data provided courtesy of Valve Corp. Uffizi Gallery light probe image courtesy of Paul Debevec.

Model Time HLSL (ms) Time Spark (ms) % Change Compile Time (ms)
no DCE DCE Spark vs. HLSL HLSL Spark

Render to Cube Map Lizard 0.507 0.506 0.507 0% 155 568 (3.7x)
(1024×1024×6) Vortigaunt 6.49 4.36 4.37 0% 230 631 (2.7x)

Render to Screen Lizard 0.093 0.093 0.091 -2% 117 374 (3.2x)
(1792×512) Big Guy 1.12 0.990 1.01 +2% 178 387 (2.2x)

Vortigaunt 0.974 0.851 0.867 +2% 207 511 (2.5x)

Table 4: Performance results comparing Spark and HLSL. We measure GPU execution time of each draw pass for the view shown in Figure 8,
rendered on an ATI Radeon HD 5870, as well as cumulative shader compilation times for each pass, measured on an Intel Core i7 975. For
the HLSL über-shader, we measure rendering performance without and with manual dead-code elimination (DCE). Spark-compiled shaders
perform similarly to HLSL with this global optimization applied.

A more flexible approach would be to express composition as a
dynamic operation, by aggregating shader instances at run-time.
Existing shader-per-stage languages allow dynamic composition
of separately-compiled per-stage shaders. Limited dynamic com-
position is possible within shader stages using the HLSL Shader
Model 5 interface feature. Allowing for dynamic composi-
tion of Spark-style components that cross-cut the pipeline structure,
while maintaining good performance, might require support from
the underlying rendering system. We are interested in the possibil-
ity of co-design of a rendering architecture and high-level shading
language to allow for more flexible on-the-fly shader composition,
while still maintaining high rendering performance.

We hope that our discussion of the design of Spark will be useful to
future language designers and rendering system architects. In par-
ticular, we believe that Spark can serve as an example of synthesis
between the modularity and composability of declarative program-
ming and the expressive power of procedural shading languages.

Acknowledgements

We thank the members of the Stanford Graphics Lab and Intel’s
Advanced Rendering Technology group who supported this project.
In particular, Bill Mark (Intel) and Solomon Boulos (Stanford) pro-
vided extensive feedback on the Spark system design and this paper.

The Vortigaunt model was provided to us by Jason Mitchell of
Valve Corp. The Uffizi Gallery light prove image was provided
by Paul Debevec. The Lizard and Big Guy models were obtained
from the Microsoft DirectX SDK.

This work was performed as part of the Stanford Pervasive Par-
allelism Laboratory affiliates program supported by NVIDIA, Or-
acle, AMD, and NEC. The authors acknowledge the support of
the Gigascale Systems Research Center, one of six research cen-
ters funded under the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation entity.

References

ADOBE, 2011. Pixel Bender 3D. http://labs.adobe.com/
technologies/pixelbender3d/.

AUSTIN, C., AND REINERS, D. 2005. Renaissance: A functional
shading language. In Proceedings of Graphics Hardware 2005,
ACM, New York, NY, USA, 1–8.

BLYTHE, D. 2006. The Direct3D 10 system. Transactions on
Graphics 25, 3, 724–734.

CODD, E. F. 1970. A relational model of data for large shared data
banks. Commun. ACM 13 (June), 377–387.

COOK, R. L. 1984. Shade trees. In Proceedings of SIGGRAPH
1984, ACM, New York, NY, USA, vol. 18, 223–231.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shading
and lighting calculations. In Proceedings of SIGGRAPH 1990,
ACM, New York, NY, USA, 289–298.

KESSINICH, J., BALDWIN, D., AND ROST, R., 2003. The
OpenGL R© shading language, version 1.05. http://www.
opengl.org, February.

Spark: Modular, Composable Shaders for Graphics Hardware • 107:11

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

http://labs.adobe.com/technologies/pixelbender3d/
http://labs.adobe.com/technologies/pixelbender3d/
http://www.opengl.org
http://www.opengl.org

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. 1997.
Aspect-oriented programming. In Proceedings of ECOOP 1997,
Springer-Verlag.

KUCK, R., AND WESCHE, G. 2009. A framework for object-
oriented shader design. In Proceedings of ISVC 2009: Interna-
tional Symposium on Advances in Visual Computing, Springer-
Verlag, Berlin, Heidelberg, 1019–1030.

LALONDE, P., AND SCHENK, E. 2002. Shader-driven compilation
of rendering assets. Transactions on Graphics 21, 3, 713–720.

LATTNER, C., AND ADVE, V. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Pro-
ceedings of CGO 2004: International Symposium on Code Gen-
eration and Optimization.

LEJDFORS, C., AND OHLSSON, L. 2004. PyFX – an active ef-
fect framework. In Proceedings of SIGRAD 2004, Linköping
University Electronic Press, Gävle, Sweden, 17–24.

LOOP, C., SCHAEFER, S., NI, T., AND CASTAÑO, I. 2009. Ap-
proximating subdivision surfaces with Gregory patches for hard-
ware tessellation. Transactions on Graphics 28, 151:1–151:9.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: A system for programming graphics hardware
in a C-like language. Transactions on Graphics 22, 896–907.

MCCOOL, M. D., QIN, Z., AND POPA, T. S. 2002. Shader
metaprogramming. In Proceedings of Graphics Hardware 2002,
Eurographics, Aire-la-Ville, Switzerland, Switzerland, 57–68.

MCCOOL, M. D. 2000. SMASH: A next-generation API for pro-
grammable graphics accelerators. Tech. Rep. CS-2000-14, Uni-
versity of Waterloo, August.

MICROSOFT, 2002. Shader model 1 (DirectX HLSL). http:
//msdn.microsoft.com.

MICROSOFT, 2010. Direct3D 11 reference. http://msdn.
microsoft.com.

MICROSOFT, 2010. Effect format (Direct3D 11). http://
msdn.microsoft.com.

NVIDIA, 2010. Introduction to CgFX. http://developer.
nvidia.com.

ODERSKY, M., ALTHERR, P., CREMET, V., EMIR, B., MANETH,
S., MICHELOUD, S., MIHAYLOV, N., SCHINZ, M., STEN-
MAN, E., AND ZENGER, M. 2004. An overview of the Scala
programming language. Tech. Rep. IC/2004/64, EPFL Lau-
sanne, Switzerland.

PERLIN, K. 1985. An image synthesizer. In Proceedings of SIG-
GRAPH 1985, ACM, New York, NY, USA, vol. 19, 287–296.

PHONG, B. T. 1973. Illumination for Computer-Generated Images.
PhD thesis.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRA-
HAN, P. 2001. A real-time procedural shading system for pro-
grammable graphics hardware. In Proceedings of SIGGRAPH
2001, ACM, New York, NY, USA, 159–170.

SEGAL, M., AKELEY, K., FRAZIER, C., LEECH, J.,
AND BROWN, P., 2010. The OpenGL R© graphics sys-
tem: A specification (version 4.0 (core profile) - march
11, 2010). http://www.opengl.org/registry/doc/
glspec40.core.20100311.pdf.

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. GRAMPS: A programming model
for graphics pipelines. Transactions on Graphics 28, 1, 1–11.

WADLER, P. 1990. Comprehending monads. In Proceeding of LFP
1990: ACM Conference on LISP and Functional Programming,
ACM, New York, NY, USA, 61–78.

107:12 • T. Foley et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 107, Publication date: July 2011.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://developer.nvidia.com
http://developer.nvidia.com
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

