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Rise of the Graphics Processor
Programmable graphics processors can be used for applications such as image

and signal processing, linear algebra, engineering analysis, physical simulation,

database management, financial services, and molecular biology.

By David Blythe, Member IEEE

ABSTRACT | The modern graphics processing unit (GPU) is the

result of 40 years of evolution of hardware to accelerate

graphics processing operations. It represents the convergence

of support for multiple market segments: computer-aided

design, medical imaging, digital content creation, document

and presentation applications, and entertainment applications.

The exceptional performance characteristics of the GPU make

it an attractive target for other application domains. We

examine some of this evolution, look at the structure of a

modern GPU, and discuss how graphics processing exploits this

structure and how nongraphical applications can take advan-

tage of this capability. We discuss some of the technical and

market issues around broader adoption of this technology.
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I . INTRODUCTION

Over the past 40 years, dedicated graphics processors have

made their way from research labs and flight simulators to

commercial workstations and medical devices and later to

personal computers and entertainment consoles. The most

recent wave has been to cell phones and automobiles. As

the number of transistors in the devices has begun to

exceed those found in CPUs, attention has focused on
applying the processing power to computationally inten-

sive problems beyond traditional graphics rendering.

In this paper, we look at the evolution of the

architecture and programming model for these devices.

We discuss how the architectures are effective at solving

the graphics rendering problem, how they can be exploited

for other types of problems, and what enhancements may

be necessary to broaden their applicability without
compromising their effectiveness.

A. Graphics Processing
Graphics processors are employed to accelerate a

variety of tasks ranging from drawing the text and graphics

in an internet web browser to more sophisticated synthesis

of three-dimensional (3-D) imagery in computer games.

We will briefly describe the nature of processing necessary

for the 3-D image synthesis fundamental to many of the
application areas. Other applications of graphics proces-

sing use a subset of this 3-D processing capability. For

brevity, we use a simplified description of a contemporary

image synthesis pipeline that provides enough detail to

inform a discussion about the processing characteristics of

graphics accelerators. More detailed descriptions of the

image synthesis process can be found in Haines [1] and

Montrym [2].
An image, such as shown in Fig. 1, is synthesized from a

model consisting of geometric shape and appearance

descriptions (color, surface texture, etc.) for each object in

the scene, and environment descriptions such as lighting,

atmospheric properties, vantage point, etc. The result of

the synthesis is an image represented as a two-dimensional
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Fig. 1. A synthesized image of a scene composed of lighted,

shaded objects.
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(2-D) rectangular array of picture elements (pixels), where
each pixel represents a discrete color sample of the image.

To synthesize the image, each object in the scene is
rendered using a four-step sequence (or four-stage pipe-

line): geometry processing, rasterization, fragment proces-

sing, and frame buffer processing, as shown in Fig. 2.

Geometry processing transforms a 3-D polygonal (trian-

gle) representation of the object’s surface through various

coordinate spaces to ultimately produce a 2-D projection of

the object triangles. The transformations operate on the

vertices of the incoming triangle representation and apply
operations such as translations and rotations to position the

object and to compute additional parameters that are used

during later shading calculations. Only the vertices need be

projected and the results reconnected with straight lines to

reproduce the projected boundary, since the surface of

projection is assumed to be planar. For a nonplanar

projection such as dome or head-mounted displays, all

points on each triangle must be projected.
Rasterization converts each resulting 2-D triangle to a

collection of pixel fragments corresponding to a discrete

sampling of the triangle over a uniform grid (e.g., at the

center of each grid cell). During rasterization, a parametric

description of the triangle is also computed allowing

additional parameters (such as color) to be interpolated at

each sample point from values associated with vertices of

the original triangle. These interpolated values become
part of the pixel fragment.

Each pixel fragment is subsequently processed to

compute a final color value. The computation of this color

value (termed shading) can range from simply using the

interpolated color value to computing complex equations

incorporating the geometric and appearance descriptions

of the object and the environment description. These

computations include texture mapping operations that use
the parametric coordinates of the fragment to sample an

associated image (texture map) to generate a color value or

other shading parameter. A single fragment may use

several texture maps to compute surface material proper-

ties and lighting properties and combine these together to

produce a final color for the pixel fragment (as in Fig. 1).

The resulting shaded pixel fragments are written to a

color buffer (traditionally called a framebuffer) that holds a
single fragment for each pixel in the final image. As part of

this operation, depth buffering is used to resolve fragment

visibility, that is, to determine whether one fragment at a

particular pixel location is closer to the viewer than

another. This is done by computing a depth value

corresponding to the distance to the viewer for each

fragment (during rasterization) and tracking the current

version of this value for each fragment in the color buffer.
As new fragments are written to the color buffer, their

depth values are compared against the current depth value

and fragments with a lesser depth value (closer to the

viewer) replace the current fragment color and depth

value.

II . EVOLUTION

A brief survey of the evolution of graphics hardware is

instructive in understanding the current state of graphics

processing.

A. 1960sVOrigins
The earliest applications driving the development of

computer graphics were computer-aided design (CAD) [3]

and flight simulation [4]. Following close behind were
entertainment applications such as computer games [5]

and content creation for film [6]. Early graphics processing

focused on controlling an analog vector display (e.g., an

oscilloscope) to stroke a line or wireframe representation of
an object by tracing the object’s shape with the electron

beam [3]. Displays supporting animated drawing required

periodic refresh by redrawing the object, whereas a static

figure could be drawn once on a long-persistence storage
display.

Concurrently, research led to development of algorithms

to project a 3-D object representation on to a 2-D plane and

simulate linear perspective [7], as well as methods for doing

hidden-line [7], [8] and hidden-surface [9], [10] elimination.

By the mid-1960s, the first graphics terminals with

autonomous display processing and hardware-computed

(accelerated) line-drawing commands were introduced
commercially [11]. These are likely the earliest ancestors of

the modern graphics processor.

B. 1970sVUncovering Fundamentals
With the introduction of semiconductor memory,

vector display techniques gave way to raster techniques

using a discretely sampled (pixel) representation of an

Fig. 2. Three-dimensional processing pipeline.
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image [12], [13]. This was combined with a television-like
display device that scanned an electron beam from left to

right and top to bottom to display the imageVthe modern-

day computer monitor. While the raster representation

was costly in terms of storage, it simplified the transition

from wireframe images to solid images. The cost of

semiconductor memory limited both the spatial and color

resolution of early raster displays, for example,

640� 480� 8 bits [14]. Today it is common to see
devices that can produce HDTV resolution images at

1920 � 1080 pixels and 24 bits per pixel (approximately

6 million bytes).

The use of raster representations also inspired research

into a variety of areas, including the underlying signal

processing theory behind the representation and genera-

tion of raster images [15], new image synthesis algorithms

such as texture mapping for complex color shading [16],
environment mapping for reflections [17], bump mapping

for surface roughness [18], and various lighting models for

diffuse and specular illumination [17], [19]. There was also

considerable interest in algorithms for rapid generation of

images, including those amenable to dedicated accelera-

tion hardware, in the pursuit of interactive generation of

complex images.

During this time period, a unification of traditional text
processing and graphics processing was led by Xerox

PARC. Early text display systems used raster techniques in

the display terminals but stored only the text data and

converted the lines of text to a raster image on-the-fly as

part of the display process. A high-resolution monochrome

image (606 � 808) could be represented with less than

100 Kbytes of memory [20], allowing the intermixing of

text and graphics. This bitmap display is an early example
of a transition from fixed-function support (dedicated text

support in the terminal) to a more flexible system. This is

one of the central patterns in the evolution of graphics

systems: early use of fixed-function hardware acceleration

to produce a cost-effective solution, followed by replace-

ment with a more flexible interface to broaden applicabil-

ity and improve quality. To avoid an unmanageable

explosion of operating Bmodes,[ the interface frequently
evolves to a programmable implementation.

An important development from this evolution of text

processing was the ability to display the output from

multiple applications simultaneously in different regions

of the display, termed windows [21], [22]. This was the

beginning of the graphics equivalent of CPU multipro-

gramming where multiple applications could not only

time-share the CPU and space-share system memory but
also time-share the graphics processor and space-share the

display output. At the time this capability was rather

unique, as many application areas (simulation, mechanical

design, etc.) used a single, dedicated application at a time.

Another division in graphics processing is interactive
versus noninteractive processing. The former places strin-

gent constraints on processing time to produce a new

images at regular intervals (e.g., 60 times per second),
whereas the latter is free to use more sophisticated and

time-consuming algorithms (ranging from seconds to

hours) to produce higher quality images. Traditionally,

noninteractive (or offline) processing has used complex,

CPU-based algorithms, whereas interactive processing

systems (such as the Evans and Sutherland Picture System

[23]) used a combination of simple CPU-based algorithms

and fixed algorithms with dedicated hardware accelera-
tion. Flexible hardware acceleration capable of interactive

execution of a broader set of evolving algorithms remained

a distant goal.

C. 1980sVHardware Acceleration
By the early 1980s, raster systems had largely replaced

vector systems and commercial companies were combining

microcomputers with raster display systems to produce
Bsmart[ terminals and workstations targeted at CAD and

word-processing applications. The graphics requirements

of interactive word-processing system were largely met by

the CPU, though there were cases where some operations

had the right mixture of commonality, simplicity, and

frequency that dedicated hardware acceleration was built.

A simple example of this is the bit-block transfer (BITBLT)

operations for copying a rectangular region from one area
to another [20], [24]. This can be used to accelerate screen

updates for operations such as panning or scrolling the

image on the display. They can be further generalized to

allow a logical operation (and, or, not, xor, etc.) to be

computed between the source and destination pixel to

produce the final pixel. These are part of the ancestry of the

framebuffer operations in the modern processing pipeline.

The economics of the personal computer enabled rapid
capture of the market for modestly demanding document-

processing applications. This was partially facilitated by

add-in 2-D raster graphics cards, such as IBM’s Color

Graphics Adapter [25], that allowed greater configurability

for end users. This is a familiar recurring pattern in the

evolution of graphics hardware, where technology im-

provements allow low-cost hardware to meet the perfor-

mance and quality requirements of formerly high-end
applications, moving the market to lower cost platforms

(see Fig. 3). The add-in technology allowed personal

computers to incrementally provide the capabilities for the

Blow end[ of other applications areas such as electronic

CAD (predominantly 2-D graphics). The add-in approach

provided both configuration flexibility and the ability to

upgrade the graphics capability independent of the rest of

the system. The success of PC add-in graphics cards gave
rise to the term Bvideo card[ to describe them.

Other applications, such as mechanical design, re-

quired more intense computations. These included matrix

and vector operations involving four-element floating-

point vectors for vertex processing, additional floating-

point operations for rasterization initialization, and a

substantial amount of fixed-point operations for fragment

Blythe: Rise of the Graphics Processor
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processing. To satisfy these requirements, hardware

acceleration targeted at these types of computations was

incorporated using dedicated logic for each part of the

pipeline [26], [27]. These accelerators provided a fixed

pipeline of operations. The geometry operations applied a

positioning/orienting transform and a projection trans-

form. The rasterization operation generated a set of

fragments, and a simple fragment processor generated a
color and depth value. Later in the 1980s, this pipeline

underwent substantial enhancement in which algorithm

development and empirical experience led to more robust

and faster implementations with greater functionality:

simplified polygonal representation (triangles), depth

buffering, simple lighting models, point-sampled geome-

try, and texture mapping [28], [29].

Both the workstation and PC systems continued to
develop more powerful virtualization solutions that

allowed the display screen to be space-shared through

window systems [30], [31] and graphical user interfaces,

and for the acceleration hardware to be time-shared using

hardware virtualization techniques [32].

Concurrently, specialized systems (without the space/

time sharing requirement) continued to be developed and

enhanced for dedicated simulation applications (e.g., GE
Compu-Scene IV [4] and Evans and Sutherland CT-5 [33]).

These systems had additional requirements around image

realism and led to substantial work on accelerated

implementation of texture mapping, anti-aliasing, and

hidden surface elimination.

New application areas arose around scientific and

medical visualization and digital content creation (DCC)

for film. These applications used a mixture of workstation
(e.g., from Apollo, Sun Microsystems, or Silicon Graphics)

and dedicated systems (e.g., Quantel’s Harry for film

editing [34]) depending on the details of the applications.

During the early part of the 1980s, arcade and home

entertainment consoles transitioned to raster-based gra-

phics systems such as the Atari 2600 or the Nintendo NES

and SNES. These systems were often sprite based, using

raster acceleration to copy small precomputed 2-D images

(e.g., scene objects) to the display.

During the 1980s, alternative rendering technologies,

such as ray-tracing [35] and REYES [36], were explored,
demonstrating visual quality benefits in reflections, sha-

dows, and reduction of jagged-edge artifacts over what was

becoming the de facto 3-D rasterization pipeline. Howev-

er, by the end of the 1980s, the 3-D rasterization pipeline

had become the pragmatic choice for hardware accelera-

tion for interactive systems, providing hardware vendors

with flexible tradeoffs in cost, performance, and quality.

D. 1990sVStandardization, Consolidation
In the early 1990s, workstation accelerators ex-

panded from the requirements of computer-aided design/

manufacturing applications to incorporate many of the

features found in specialized simulation systems. This

resulted in a transition to commercial off-the-shelf (COTS)

systems for simulation for all but the most specialized

programs. At roughly the same time, dedicated game
consoles moved from traditional 2-D raster pipelines to

include (crude) texture-mapping 3-D pipelines (such as the

Sony PlayStation and Nintendo 64), and 3-D acceleration

add-in cards became available for personal computers.

Also during this time, there was renewed effort to

standardize the processing pipeline to allow portable

applications to be written. This standardization was

expressed in terms of the logical pipeline expressed by
the OpenGL application programming interface (API) [37]

and later by the Direct3D API [38]. These matched similar

efforts around 2-D drawing APIs (X Window System 1

Fig. 3. Graphics accelerator evolutionary timeline (approximate). Accelerator implementations are divided into four segments defined by

price with independent timelines. Over time, many capabilities (but not all) were introduced in the most expensive segment first and

migrated to the other segments, but not necessarily in the introduction order depending on market demands. Accelerated geometry (vertex)

processing and 24-bit color were not essential in the more price-sensitive markets, whereas texture mapping was an early requirement for

games. By the early 2000s, the source of most features was the PC card segment (flowing up and down).

Blythe: Rise of the Graphics Processor

764 Proceedings of the IEEE | Vol. 96, No. 5, May 2008



[30], GDI [39], SVG [40]), and page or document
description languages (PostScript [41], PDF [42]) that

had occurred during the late 1980s and early 1990s. These

efforts proved more successful than earlier standards such

as the Core Graphics System [43] and PHIGS [44].

Two new application segments became prominent in

the 1990s. The first was real-time video playback and

editing. Originally video was supported by dedicated

systems, but in the 1990s workstations started to encroach
on that market using the high-performance texturing and

framebuffer systems to operate on video frames [45].

Around this time, the concept of unifying image processing

and fragment processing took hold. In the latter part of the

decade, PC add-in cards also began to include support for

decoding compressed MPEG2 video (subsuming this

functionality from dedicated decoding cards). Even more

significantly, the Internet and the popularity of the World
Wide Web increased the demand for displaying text and

images and helped raise the bar for color and spatial

resolution for low-cost PC systems, for example, moving

from 8 bits/pixel to 16 or 24 bits/pixel and from 640� 480

to 800 � 600 or 1024 � 768 display sizes.

Later in the 1990s, just as workstation technology

eroded the dedicated simulator market earlier in the

decade, the increasing capabilities of the personal com-
puter eroded the market for workstations for CAD and

content-creation applications.

E. 2000sVProgrammability, Ubiquity
A large part of the 1990s saw cost reductions in

hardware acceleration, with a small number of enhance-

ments to the fixed-function pipeline (multiple textures per

fragment, additional texture mapping algorithms). By the
end of the decade, PC add-in accelerators, such as

NVIDIA’s GeForce 256 [46] or ATI’s Radeon 7200 [47],

incorporated acceleration for fixed-function geometry

processing, rasterization, texture-mapped fragment proces-

sing, and depth-buffered pixel processing. These accel-

erators could do a credible job of supporting large portions

of the major application domains: CAD, medical imaging,

visual simulation, entertainment content creation, and
document processing. Game consoles made use of the same

technology that was available in personal computers

(Nintendo 64, Sega Dreamcast). Around this time, the term

graphics processing unit (GPU) arose to refer to this

hardware used for graphics acceleration.

In the early 2000s, the ongoing process of adding more

capability to the logical pipeline took a new turn.

Traditionally, there has always been demand for new
capabilities in the pipeline. At this time, the demand

largely came from the entertainment space with a desire to

produce more realistic or more stylized images, with

increased flexibility allowing greater expression. In the

late 1990s, this was partially achieved using Bmultipass[
techniques in which an object is drawn multiple times

(passes) with the same geometric transformations but

with different shading in each pass. The results are
combined together, for example, summing them using

framebuffer operations to produce the final result [48].

As a simple example, the use of multiple textures to

affect the surface of an object could be simulated with a

single texture system by drawing the object once for

each texture to be applied and then combining the

results. Multipass methods are powerful but can be

cumbersome to implement and consume a lot of extra
bandwidth as intermediate pass results are written to

and read from memory. In addition to multipass, the

logical pipeline continued to be extended with additional

vertex and fragment processing operations, requiring

what were becoming untenably complex mode settings

to configure the sequence of operations applied to a

vertex or pixel fragment [49].

The alternative (or complementary) mechanism to
fulfill the demand for flexibility was answered by providing

application-developer–accessible programmability in some

of the pipeline stages to describe the sequencing of

operations. This enabled programmers to create custom

geometry and fragment processing programs, allowing

more sophisticated animation, surface shading, and

illumination effects. We should note that, in the past,

most graphics accelerators were implemented using
programmable technology using a combination of custom

and off-the-shelf processing technologies. However, the

specific implementation of the programmability varied

from platform to platform and was used by the accelerator

vendor solely to create firmware that implemented the

fixed-function pipeline. Only in rare cases (for example,

the Adage Ikonas [50]) would the underlying programma-

bility be exposed to the application programmer [50]–[54].
However, by 2001, the popularity of game applications

combined with market consolidation, reducing the num-

ber of hardware manufacturers and providing a favorable

environment for hardware manufacturers to expose

programmability [55].

This new programmability allowed the programmer to

create a small custom program (similar to a subroutine)

that is invoked on each vertex and another program that is
invoked on each pixel fragment. These programs, referred

to as Bshaders,[ have access to a fixed set of inputs (for

example, the vertex coordinates) and produce a set of

outputs for the next stage of the pipeline as shown in

Fig. 4. Programmable shading technology is rooted in

CPU-based film-rendering systems where there is a need to

allow programmers (and artists) to customize the proces-

sing for different scene objects without having to
continually modify the rendering system [56]. Shaders

work as an extension mechanism for flexibly augmenting

the behavior of the rendering pipeline. To make this

technology successful for hardware accelerators, hardware

vendors had to support a machine-independent shader

representation so that portable applications could be

created.

Blythe: Rise of the Graphics Processor
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The first half of the decade has seen an increase in the

raw capabilities of vertex and pixel shading programs.

These capabilities included an increase in range and

precision of data types, longer shading programs, dynamic

flow control, and additional resources (e.g., larger
numbers of textures that can be applied to a pixel

fragment) [57]. This increasing sophistication also led to

concurrent evolution of programming language support in

the form of shading languages that provide programming

constructs similar to CPU programming languages like

BC.[ These traditional constructs are augmented with

specialized support for graphics constructs such as vertices

and fragments and the interfaces to the rest of the
processing pipeline (HLSL [58], Cg [59], GLSL [60]).

These improvements in general have occurred in

parallel with steady performance increases. The technol-

ogy has also pushed downward from workstations,

personal computers, and game consoles to set-top boxes,

portable digital assistants, and mobile phones.

III . THE MODERN GPU

Today a moderately priced ($200) PC add-in card is capable

of supporting a wide range of graphics applications from

simple document processing and Web browser graphics to

complex mechanical CAD, DVD video playback, and 3-D

games with rapidly approaching cinematic realism. The

same fundamental technology is also in use for dedicated

systems, such as entertainment consoles, medical imaging
stations, and high-end flight simulators. Furthermore, the

same technology has been scaled down to support low-cost

and low-power devices such as mobile phones. To a large

extent, all of these applications make use of the same or a

subset of the same processing components used to

implement the logical 3-D processing pipeline.

This logical 3-D rasterization pipeline has retained a

similar structure over the last 20 years. In some ways, this

has also been out of necessity to provide consistency to
application programmers, with this same application

portability (or conceptual portability) allowing the tech-

nology to migrate down to other devices (e.g., cell phones).

Many of the characteristics of the physical implementa-

tions in today’s systems have survived intact from systems

20 years ago or more. Modern GPU design is structured

around four ideas:

• exploit parallelism;
• organize for coherence;

• hide memory latency;

• judiciously mixed programmable and fixed-

function elements.

The ideas are in turn combined with a programming

model that provides a simple and efficient match to these

features.

A. Exploiting Parallelism
Fundamental to graphics processing is the idea of

parallel processing. That is, primitives, vertices, pixel

fragments, and pixels are largely independent, and a

collection of any one of these entities can therefore be

processed in parallel. Parallelism can be exploited at each

stage of the pipeline. For example, the three vertices of a

triangle can be processed in parallel, two triangles can be
rasterized in parallel, a set of pixel fragments from

rasterizing a triangle can be shaded in parallel, and the

depth buffer comparisons of the shaded fragments can also

be processed in parallel. Furthermore, using pipelining all

of these operations can also proceed concurrently, for

example, processing the vertices of the next triangle while

the previous triangle is being rasterized.

There are also a very large number of these entities to
process: a scene might be composed of 1 million triangles

averaging 25 pixel fragments per triangle. That corre-

sponds to 3 million vertices and 25 million pixel fragments

that can be processed in parallel. This data parallelism has

remained an attractive target from the earliest hardware

accelerators. Combining this with processing vertices,

pixel fragments, and whole pixels in a pipelined fashion

exploits additional task parallelism.
One constraint that complicates the use of parallelism

is that the logical pipeline requires that primitives be

processed in the order they are submitted to the graphics

pipeline, or rather, the net result must be the same as one

where primitives are rendered in the order they are

submitted. This adds some necessary determinism to the

result and allows order-dependent algorithms, such as the

Bpainter’s algorithm,[ in which each new object is painted
on top of the previous object, to produce the correct image.

This constraint means that if two overlapping triangles T1

and T2 are submitted in the order T1 followed by T2, then

where the pixels overlap, the pixels of T1 must be written

to the framebuffer before the pixels of T2. Applications

also interleave state-mutating commands, such as switch-

ing texture maps, with primitive-drawing commands, and

Fig. 4. Abstract shading processor operates on a single input and

produces a single output. During execution, the program has access

to a small number of on-chip scratch registers and constant

parameters and to larger off-chip texture maps.
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they too must be processed in the order they are
submitted. This allows the processing result to be well

defined for any mixture of rendering commands.

Fig. 5 shows a block diagram of a commercially available

NVIDIA GeForce 8800GTX GPU [61]. At the heart of the

system is a parallel processing unit that operates on n
entities at a time (vertices, pixel fragments, etc.). This unit

is further replicated m times to allowm sets of entities to be

processed in parallel. A processing unit can process
multiple vertices or pixel fragments in parallel (data

parallelism) with different processing units concurrently

operating on vertices and fragments (task parallelism).

This implementation represents a transition from

previous generations, where separate processing units

were customized for and dedicated to either vertex or

pixel processing, to a single unified processor approach.

Unified processing allows for more sophisticated sched-
uling of processing units to tasks where the number of

units assigned to vertex or pixel processing can vary with

the workload. For example, a scene with a small number

of objects (vertices) that project to a large screen area

(fragments) will likely see performance benefits by

assigning more processors to fragment processing than

vertex processing.

Each processing unit is similar to a simple, traditional,
in-order (instruction issue) processor supporting arithmetic/

logical operations, memory loads (but not stores1), and flow

control operations. The arithmetic/logical operations use
conventional computer arithmetic implementations with an

emphasis on floating-point arithmetic. Significant floating-

point processing is required for vertex and pixel processing.

Akeley and Jermoluk describe the computations required to

do modest vertex processing resulting in 465 operations per

four-sided polygon [28]. This corresponds to gigaflop/

second processing requirements to support today’s more

than 100 million/s polygon rates. Aggregating across the
multiple processing units, current high-end GPUs ($500)

are capable of approximately 350–475 Gflops of program-

mable processing power (rapidly approaching 1 Tflop),

using 128–320 floating-point units operating at 0.75–

1.3 GHz2 [61], [62]. Supporting these processing rates also

requires huge amounts of data to be read from memory.

B. Exploiting Coherence
A processor operating on n entities at a time typically

uses a single-instruction multiple-data (SIMD) design,

meaning that a single stream of instructions is used to

control n computational units (where n is in the range of

8 to 32). Achieving maximum efficiency requires proces-

sing n entities with the identical instruction stream. With

programmable vertex and fragment processing, maximum

efficiency is achieved by executing groups of vertices or
groups of pixel fragments that have the identical shader

program where the groups are usually greater than the

SIMD width n. We call this grouping of like processing

computational coherence.

Fig. 5. Internal structure of a modern GPU with eight 16-wide SIMD processing units combined with six 64-bit

memory interfaces (courtesy of NVIDIA).

1Current processors do support store instructions, but their
implementations introduce nondeterminism and severe performance
degradation. They are not currently exposed as part of the logical graphics
pipeline.

2Assuming the floating-point unit performs a simultaneous multiply
and add operation.
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However, computational coherence can be more
challenging when the shader programs are allowed to

make use of conditional flow control (branching) con-

structs. Consider the case of a program for processing a

pixel fragment that uses the result of a load operation to

select between two algorithms to shade the pixel fragment.

This means that the algorithm chosen may vary for each

pixel in a group being processed in parallel. If processors

are given a static assignment to fragments, then the SIMD
processing structure necessitates that a fraction of the

SIMD-width n processors can execute one of the algo-

rithms at a time, and that fragments using the other

algorithm must wait until the fragments using the first

algorithm are processed. For each group of n fragments

executed on the SIMD processor, the total execution time

is t1þ t2 and the efficiency compared to the non-

branching case is maxðt1; t2Þ=ðt1þ t2Þ. This problem is
exacerbated as the SIMD width increases.

SIMD processors can perform some optimizations; for

example, detecting that all of the branches go in one

direction or another, achieving the optimal efficiency.

Ultimately, efficiency is left in the hands of the application

programmers since they are free to make choices regarding

when to use dynamic branching. It is possible to use other

hardware implementation strategies, for example, dynam-
ically reassigning pixel fragments to processors to group

like-branching fragments. However, these schemes add a

great deal of complexity to the implementation, making

scheduling and maintaining the drawing-order constraint

more difficult.

Coherence is also important for maximizing the

performance of the memory system. The 3 million vertex/

25 million fragment scene described above translates to
90 million vertices/s and 750 million fragments/s when

processed at an update rate of 30 frames/s. Consider only

the 750 M/s fragment rate: assuming that each fragment

reads four texture maps that each require reading 32 bytes,

this results in a read rate of 24 GB/s. Combining that with

the depth buffer comparisons and updates, and writing the

resulting image, may (conservatively) add another 3 GB/s

of memory bandwidth. In practice, high-end GPUs support
several times that rate using multiple memory devices and

very wide busses to support rates in excess of 100 GB/s. For

example, the configuration in Fig. 5 uses 12 memory

devices, each with a maximum data rate of 7.2 GB/s,

grouped in pairs to create 64-bit-wide data channels.

However, simply attaching multiple memory devices is

not sufficient to guarantee large bandwidths can be

realized. This is largely due to the nature of dynamic
random-access memory devices. They are organized as a

large 2-D matrix of individual cells (e.g., 4096 cells/row).

A memory transaction operates on a single row in the

matrix and transfers a small contiguous block of data,

typically 32 bytes (called column access granularity).

However, there can be wasted time while switching

between rows in the matrix or switching between writes

and reads [63]. These penalties can be minimized by

issuing a minimum number of transfers from the same

row, typically two transfers (called row access granularity).

Thus, to maintain maximum memory system efficiency

and achieve full bandwidth, reads and writes must transfer

multiple contiguous 32-byte blocks of data from a row before

switching to another row address. The computation must

also use the entire block of data in the computation;
otherwise the effective efficiency will drop (unused data are

wasted). To support these constraints, texture images, vertex

data, and output images are carefully organized, particularly

to map 2-D spatial access patterns to coherent linear

memory addresses. This careful organization is carried

through to other parts of the pipeline, such as rasterization,

to maintain fragment coherence, as shown in Fig. 6 [2].

Without this careful organization, only a small fraction
of the potential memory bandwidth would be utilized and

the processor would frequently become idle, waiting for

the data necessary to complete the computations.

Coherent memory access alone is not sufficient to

guarantee good processor utilization. Processor designers

have to both achieve high bandwidth and manage the

latency or response time of the memory system.

Fig. 6. Coherence-preserving rasterization pattern.

Fig. 7. Relative bandwidths in a personal computer using PCI Express

interconnect to a high-end GPU add-in card.
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C. Hiding Memory Latency
In a conventional in-order processor, execution will stall

when the result from amemory load operation is needed in a

subsequent instruction (e.g., source operand of an arithme-

tic instruction). This stall will last until the result of the load

operation is available. CPUs employ large, high-speed, on-

chip caches to reduce the latency of operations to external

memory with the assumption that there is both locality and
reuse in the data, such that the data being referenced

multiple times will likely be present in the cache. The sheer
volume of data referenced while rendering a scene (tens or

hundreds of megabytes of texture data) greatly reduces the

effectiveness of a cache and there is minimal reuse of the

data. GPUs do employ caches, but they are substantially

smaller and are used to aggregate SIMD memory requests to

optimize memory bandwidth. Apparent memory latency is

managed using a different strategy.

There is so much data parallelism available that the
processor can switch to executing another vertex or pixel

fragment while waiting for a load operation to complete.

To accomplish this, there must be storage for all of the

execution state for an additional pixel fragment (for an

SIMD processor, the state is actually for n fragments) so

that the processor can switch to this other fragment when

necessary. To be practical, the processor must be able to

switch between these pixel fragments (their stored state)
with zero or near zero cost. This is similar to the concept of

hyperthreading technology in CPUs (e.g., Sun’s Niagara

processor [64]). The technique, more generally referred to

as multithreading, has been utilized in several earlier

multiprocessor system designs [65].

To further complicate matters, the latency of a memory

read operation can be very large relative to the time it takes

to execute individual instructions, and a second fragment is
likely to also issue a load operation of its own before the

read from the first fragment has completed. Thus a larger

pool of pixel or vertex Bthreads[ must be available for

execution to cover the latency of a single read operation.
For example, if the ratio of memory and instruction

latencies is ten to one, then a pool of ten pixel threads must

be available to span the latency of a single read operation. In

practice, these ratios can easily exceed 100 to 1.

One implementation of this technique might use a set

of k pixel threads (where each thread is SIMD-width n
fragments wide) arranged in a ring and, as each instruction

is issued, move to the next thread in the ring. This means
that a program of length x requires kx instruction cycles to

complete the processing of a given pixel fragment, but it

will complete k pixel fragments in total. That is, the

latency to process any pixel fragment may be quite large,

but the throughput (pixel fragments/unit time) is

optimal. Note that this technique has a multiplicative

effect on the effective width of an SIMD array, widening it

from n to kn. This in turn has implications on computa-
tional coherence.

In practice, GPU implementations use more sophisti-

cated variations on this idea, but the use of multiple

threads is an essential mechanism for maintaining

efficiency in the presence of large numbers of memory

read operations. These include data-dependent reads in

which the address of a later read operation is dependent on

the result of an earlier memory read operation and cannot
be scheduled until the earlier read has completed.

D. Fixed-Function Versus Programmable Elements
While there has been a steady increase in the

programmable processing power of GPUs, a significant

portion of an implementation continues to make use of

fixed-function hardware. The reasons are that a fixed-

function implementation is more cost effective and power
efficient, and there has not been a compelling application

need to convert it to a programmable element. Two

examples of this are texture filtering and rasterization.

Texture filtering implements a small set of filtering

algorithms: point sampling, bilinear filtering, trilinear

mipmap filtering, and anisotropic filtering, as well as

texture image decompression and color format conversion

operations. These operations benefit hugely from custom-
ized implementations taking advantage of constrained data

types (32-bit floating-point processing would be overkill).

Application programmers increasingly see benefit to

implementing their own customized filtering algorithms.

However, since the percentage of processing using these

algorithms is small, it is more cost effective to slightly

increase the programmable processing power for these

instances and leave the remainder using the fixed-function
processing. At some point in the future, this balance may

change in favor of moving all texture filtering to the

programmable processors. Rasterization, on the other

hand, serves a much more specialized purpose, and there

has been little interest in making it more programmable.

This allows the implementation to remain small and

efficient.

Fig. 8. Spectrogram using FFT.
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E. CPU–GPU Connection
The GPU executes independently from the CPU but is

controlled by the CPU. Application programs running on the

CPU use graphics API, runtime, and driver software

components to communicate with the GPU. Most of the

communication involves placing commands or data in

memory buffers and transmitting them to the GPU.

Graphical data that are accessed frequently (vertices,

textures, output images) by the GPU are often placed in a
high-bandwidth memory attached directly to the GPU, with

the CPU being used to set the initial state for these objects.

Even with the dedicated GPU memory, the CPU sends a

great deal of data to the GPU on behalf of the application.

Modern PCs use the PCI Express (PCIe) bus [66] to connect

the CPU and add-in graphics card. PCI Express is a scalable

bus, divided into serial, bidirectional lanes of 2.5 Gbits/s.3

A 16-lane bus is capable of a theoretical bandwidth of
4 GBytes/s in each direction, but current implementations

achieve closer to 2.8 GB/s and often provide even less

bandwidth in the direction from the device to the CPU.

Entertainment consoles or other dedicated devices use

their own interconnect strategy. In the case of consoles,

this may offer considerably higher bandwidth than is

available through PCI Express. In some implementations,

the GPU may be integrated into the memory controller
chip (e.g., north bridge) and CPU may share the same

memory rather than using dedicated memory for the GPU.

These integrated GPUs are a popular low-cost alternative

to add-in cards. These options provide interesting cost and

performance tradeoffs and also affect some of the

processing strategies used by the application developer.

However, the basic GPU architecture concepts remain

unaffected.

F. Scalability
One of the benefits of the parallel nature of graphics

processing is that the hardware implementations can

scale to different problem sizes. For example, if the target

application processes fewer triangles and pixel fragments,

then the number of processors and amount of memory

bandwidth can be reduced proportionately. GPU imple-
mentations contain some amount of fixed resources (e.g.,

for the display controllers, CPU interconnect, memory

controller, etc.) and a larger proportion of replicated

elements for processing. This scaling manifests itself in

different versions or stock keeping units (SKUs) for the

PC, ranging from high-end (enthusiast) implementations

to low-end (entry) systems. The parallel nature of the

problem also allows additional scaling up, by distributing
work either from within a frame (a single scene) or from

multiple frames across multiple instances of an imple-

mentation (e.g., AMD Crossfire, NVIDIA SLI).4 This may

be implemented transparently to the application or
explicitly programmed by the application developer.

However, to achieve the benefits of scalability, the appli-

cation programmer is left with the challenge of building

applications that can scale across the performance range.

This is typically achieved by changing the richness of the

content and varying the resolution of the output image.

Implementations may be further scaled down for

embedded or low-cost consumer devices, but more often,
these implementations use a slightly older (simpler)

processing pipeline with a design optimized for specific

platform constraints such as power consumption. How-

ever, the basic architecture ideas remain intact across a

large range of implementations.

IV. NEW APPLICATIONS

The combination of raw performance and programmability

has made the GPU an attractive vehicle for applications

beyond the normal document/presentation graphics,

gaming/simulation, and CAD/DCC realms. The target is

applications that exhibit significant data parallelism, that

is, where there are a large number of data elements that

can be operated on independently.

Development of nongraphical applications on graphics
accelerators also has a rich history with research projects

dating back to more than a decade using the multipass

methods with texture mapping and framebuffer operations.

However, the widespread availability of low-cost add-in

accelerator cards combined with greater programmability

through shaders has precipitated intense interest amongst

researchers. This class of research is referred to as general-

purpose programming on GPUs (GPGPU). Owens et al.
survey the history and state of the art in GPGPU in [67].

We provide a brief overview of the principles, some of the

current applications, and the limitations.

A. Data Parallel Processing
Rasterizing a polygon and processing pixel fragments

can be viewed as an operation on a domain where the

domain shape corresponds to the shape of the rasterized
geometry. For example, drawing a rectangle of size

n� m pixels corresponds to operating on a 2-D domain

of n� m domain points. A local operation on each of the

domain points amounts to executing a pixel shading

program at each of the corresponding fragments. The trick

is that the domain data are stored as a 2-D texture map and

the program must read the corresponding domain point

from memory before operating on it. Since the fragment
program has access to the entire texture map, it can also

perform region operations by reading a neighborhood of

domain points. The result of the domain operations is

written to the output image, which can be either used in a

subsequent computation (reusing the output image as a

texture map) or used in subsequent operations on the CPU,

e.g., writing the results to a file.

3PCI express version 1.1 is 2.5 Gb/s per lane; the recently announced
version 2.0 is 5.0 Gb/s per lane.

4See http://www.ati.amd.com/technology/crossfire/CrossFireWhite-
Paperweb2.pdf.
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Research in parallel programming has produced a set of
basic operators for data parallel processing. Parallel

algorithms are constructed from these operations. The

point-wise processing algorithm corresponds to the map
operator that applies a function to each element in a

domain. Other operators include reduce, gather, scatter,

scan, select, sort, and search [67].

GPU architecture is specifically tailored to rendering

tasks with no underlying intent to support more general
parallel programming. This makes mapping some of the

data parallel operators onto the GPU a challenge.

The reduce operator produces a single output value from

the input domain, for example, summing the values in the

domain. It is typically implemented as a multipass sequence

of partial reductions, for example, reducing the size of the

domain by 1/2 or 1/4 in each pass by summing two or four

adjacent values in a shader and outputting the result.
The gather operation performs an indirect memory

read ðv ¼ mem½x�Þ and maps well to reads from texture

maps. Conversely, scatter performs an indirect memory

write ðmem½x� ¼ vÞ and does not map well as the output

of a fragment shader goes to a fixed location in the output

image. Scatter can be implemented using vertex processing

to control the destination address by adjusting the 2-D

image coordinates of the vertex. Alternatively, programs
may transform the computation to an equivalent one using

gather when it is possible.

Other parallel operations (scan, select, sort, and

search) require an, often complex, multipass sequence of

operations to efficiently implement them. There are many

subtleties to providing optimal implementations, often

requiring detailed understanding of a specific GPU design.

Similar to dynamic branching, it is also important how
these operations are used. For example, gather and scatter

operations can quickly erode memory system efficiency if

they are directed to widely varying addresses.

Graphics applications typically manipulate simple data

types such as four-element vectors representing colors or

geometric coordinates. These data types are usually

organized into 1-, 2-, or 3-D arrays, which can be efficiently

manipulated on a GPU. More general programming
typically involves more complex data types and irregular

data structures such as linked lists, hash tables, and tree

structures. Implementing these data structures in shader

programs can be cumbersome, especially while trying to

maintain computation and memory coherence. To alleviate

these difficulties, efforts such as Glift [68] have been made

to create reusable GPU data structure libraries.

B. Parallel Languages
As GPUs are designed for running graphics applica-

tions, most of the development for programming languages

and APIs has been targeted at writing graphics applications.

This makes nongraphics programming more challenging as

the programmer must master idioms from the graphics

APIs and languages, such as drawing triangles to create a set

of domain points and trigger fragment processing across
that domain. Shading programs must be written to process

the domain points, using texture mapping operations to

read data associated with each domain point and writing

the computed result as a color value.

To simplify this programming task and hide the

underlying graphics idioms, several programming lan-

guages and runtimes have been created. These range from

systems from graphics vendors that expose low-level
details of the underlying graphics hardware implementa-

tion (CTM [69], CUDA [70]) to research and commercial

higher-level languages and systems intended to simplify

development of data parallel programs. These systems

cover a spectrum of approaches including more traditional

array processing style languages (Accelerator [71], Peak-

Stream [72]) to newer stream processing languages [73]

(derived from parallel processing research in specialized
stream processing hardware [74]). In many cases, the

language combines the parts of the code that execute on

the CPU and the parts that execute on the GPU in a single

program. This differs from many of the graphics APIs

(OpenGL, Direct3D) that deliberately make the boundary

between the CPU and GPU explicit.

One advantage of higher level languages is that they

preserve high-level information that can potentially be used
by the underlying runtime to manage execution and

memory coherence. In contrast, lower level systems leave

that largely up to the programmer, requiring the pro-

grammer to learn various architectural details to approach

peak efficiencies. Low-level systems may allow program-

mers to achieve better performance at the cost of por-

tability, but they also may allow access to newer, more

efficient processing constructs that are not currently
available in the graphics APIs. One example of this is

additional support for explicit scatter operations and

sharing on-chip memory available in NVIDIA’s CUDA

system. These may prove beneficial, though also at the cost

of portabilityVat least initially.

C. Application Areas
The significant interest in harnessing the processing

power at the GPU has led to investigations into a large

number of application areas. We describe a small set of

these areas. Owens et al. [67] provides a more compre-

hensive summary.

D. Image and Signal Processing
One of the more obvious application areas is general

image and signal processing on 1-, 2-, or 3-D data.
Graphics applications already make use of image-proces-

sing operations such as sampling and filtering in texture

mapping operations. Extensions for fixed-function imag-

ing operations, such as histogram and convolution, were

added as extensions to the OpenGL architecture in the

late 1990s [37], but they have effectively been subsumed

by the programmable pipeline. A number of projects have
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implemented convolution with various size kernels, fast
Fourier transforms (FFTs), segmentation, and histograms

[75], [76], [77]. Such signal-processing methods are often

critical in analysis applications. For example, GPU-

accelerated backprojection accelerates reconstruction from

sensor data sufficiently fast to allow interactive scanning

and visualization of tomograms. The reconstruction process

involves taking the multiple 2-D projections of 3-D data

captured by the sensors and applying an approximate
inverse Radon transform [78]. In geophysical analysis,

wavelet compression can significantly reduce (100x) the

size of raw seismic sensor data. Headwave has demonstrated

a 200x speedup over the CPU for their GPU-based wavelet

compression/decompression algorithm, allowing interactive

manipulation of much larger data sets [79].

E. Linear Algebra
A broad area that has shown promising results is linear

algebra. This includes both dense and sparse matrix

operations such as multiplying a vector by a matrix or

solving a system of equations. Multiplication can be

viewed as a series of dot products, where each dot product

is a reduction operation. For dense matrices, great care

must be taken to preserve memory coherence or the

processors will be memory starved [80], [81]. Sparse
matrices contain a large number of zero elements (e.g., a

banded matrix), which, if treated as a dense matrix, results

in many wasted calculations. Sparse representations

require more complex data structures to represent the

nonzero elements, typically using a separate index array to

map a sparse element back to the matrix. To ensure good

computational coherence, sparse computations may be

sorted on the CPU to process vectors with the same
number of nonzero elements together in groups [82]. With

access to efficient scan primitives, the sparse computations

can be done efficiently without CPU intervention [83].

F. Engineering Analysis and Physical Simulation
Computationally intensive physical simulations (fluids,

weather, crash analysis, etc.) have traditionally relied on

high-performance computing (HPC) systems (supercom-
puters). The processing power of GPUs is attractive in this

area for two reasons. One is the opportunity to provide

lower cost solutions for solving these research and

industrial problems, perhaps using the cost differential to

solve even larger problems. Secondly, physical simulations

are becoming an increasingly important way of adding new

types of behaviors to entertainment applications (e.g.,

better character animations; more complex, but not
necessarily realistic, interactions with the physical world).

There are many types of problems that fit in this

simulation category, but two important classes of problems

are solving ordinary and partial differential equations.

Ordinary differential equations are functions of a single

variable containing one or more derivatives with respect to

that variable. A simple example is Newton’s law of accel-

eration (force ¼ mass� acceleration). In computer gra-
phics, it is common to model objects as collections of

particles (smoke, fluids [84]) and to solve this equation for

each of the particles using an explicit integration method

[85]. Such a method computes the new value (e.g., position

at a new time step) using the computed values from previous

time steps. If the particles are independent and subject to

global forces, then each particle can be computed indepen-

dently and in parallel. If the particles also exert local forces
on one another then information about neighboring particles

must also be collected (from the previous time step) and used

in the computation. Several GPU-based simulators that

model the physics and render the results have been built,

showing speed improvements of 100 or more over CPU-

based algorithms [86], [87].

Partial differential equations are functions of multiple

independent variables and their partial derivatives. They
are frequently found in physical models for processes that

are distributed in space or space and time, such as

propagation of sound or fluid flow. A spatial domain is

sampled using finite differences (or finite elements) on

regular or irregular grids. The grid of finite elements forms

a system of (linear or nonlinear) equations that are solved

using a method optimized around the characteristics of the

equations. For example, a conjugate gradient solver is an
iterative solver for a symmetric positive definite (SPD)

sparse matrix and a Jacobi solver is an iterative method for a

linear system with a diagonally dominant matrix. These

solvers make heavy use of the sparse linear algebra methods

described earlier using optimized representations and

algorithms to exploit the particular sparse pattern. GPU

implementations have been applied to simulation problems

such as fluid flow [88] and reaction-diffusion [89].

G. Database Management
Another interesting area is data management problems

including database operations such as joins and sorting on

large amounts of data. The large memory bandwidth makes

the GPU very attractive, but maintaining coherence in

sorting algorithms is challenging. This has led to a

resurgence of interest in sorting networks such as the
bitonic sort [90], which can be mapped relatively

efficiently onto a GPU [91]. GPUs are particularly effective

in performing out of core sorting, that is, a sort where the
number of records is too large to fit in system memory and

must be read from disk. The GPUTeraSort [92] implements

a CPU–GPU hybrid system in which the CPU manages disk

transfers while the GPU performs the bandwidth-intensive

sorting task on large blocks of keys. The result is a system
that is more cost-effective at sorting a large collection of

records than a similarly priced system using only CPUs and

no GPU, as measured by the Penny Sort benchmark [93].

In addition to bulk data processing, the graphics

processing ability of GPUs can also be leveraged for

specialized database queries such as spatial queries used in

mapping or geospatial processing.
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H. Financial Services
The financial services industry has produced increas-

ingly complex financial instruments requiring greater

computational power to evaluate and price. Two examples

are the use of Monte Carlo simulations to evaluate credit

derivatives and evaluation of Black–Scholes models for

option pricing. More sophisticated credit derivatives that

do not have a closed-form solution can use a Monte Carlo

(nondeterministic) simulation to perform numerical
integration over a large number of sample points.

PeakStream has demonstrated speed increases of a factor

of 16 over a CPU when using a high-end GPU to evaluate

the differential equation and integrate the result [94].

The Black–Scholes model prices a put or call option for a

stock assuming that the stock prices follow a geometric

Brownian motion with constant volatility. The resulting

partial differential equation is evaluated over a range of input
parameters (stock price, strike price, interest rate, expiration

time, volatility) where the pricing equation can be evaluated

in parallel for each set of input parameters. Executing these

equations on a GPU [95] for a large number of inputs

(15 million), the GPU approaches a factor of 30 faster than a

CPU using PeakStream’s software [94] and 197 times faster

using CUDA [97] (measured on different GPU types).

I. Molecular Biology
There have been several projects with promising results

in the area of molecular biology, in particular, with the

analysis of proteins. Molecular dynamics simulations are

used to simulate protein folding in order to better

understand diseases such as cancer and cystic fibrosis.

Stanford University’s folding@home project has created a

distributed computational grid using volunteer personal
computers [96]. The client program executes during idle

periods on the PC performing simulations. Normally, PC

clients execute the simulation entirely on the CPU, but a

version of the molecular dynamics program gromacs has

been written for the GPU using the Brook programming

language [73]. This implementation performs as much as

a factor of 20–30 faster than the CPU client alone [98].

Another example is protein sequence analysis using
mathematical models based on hidden Markov models

(HMMs). A model for a known program sequence (or set

of sequences) with a particular function on homology is

created. A parallel algorithm is used to search a large

database of proteins by computing a probability of each

search candidate being in the same family as the model

sequences. The probability calculation is complex, and

many HMMs may be used to model a single sequence, so
a large amount of processing is required. The GPU

version of the algorithm [99] uses data-parallel processing

to simultaneously evaluate a group of candidates from the

database. This makes effective use of the raw processing

capabilities and provides an order of magnitude or better

speedup compared to a highly tuned sequential version on

a fast CPU.

J. Results
Many of these new applications have required a

significant programming effort to map the algorithms

onto the graphics processor architecture. Some of these

efforts were on earlier, less-general graphics processors, so

the task is becoming somewhat less complex over time, but

it is far from simple to achieve the full performance of the

processors. Nevertheless, some of these applications are

generating significant commercial interest, particularly in
the area of technical computing. This is encouraging the

graphics processor vendors to experiment with product

variations targeted at these markets.

Programmer productivity will continue to be the

limiting factor in developing new applications. Some

productivity improvements may come from adding further

generalizations to the GPU, but the challenge will continue

to be in providing a programming model (language and
environment) that allows the programmer to realize a

significant percentage of the raw processing power without

painstakingly tuning the data layout and algorithms to

specific GPU architectures.

K. Limits of Parallelism
In our discussions thus far, we have focused principally

on data parallelism and, to a lesser extent, on task
parallelism. It is important to note that often, only some

parts of an algorithm can be computed in parallel and the

remaining parts must be computed sequentially due to

some interdependence in the data. This has the result of

limiting the benefits of parallel processing. The benefit is

often expressed as speedup of a parallelized implementa-

tion of an algorithm relative to the nonparallelized

algorithm. Amdahl’s law defines this as 1=½ð1� PÞ þ P=S],
where P is the proportion of the algorithm that is

parallelized with speedup S [100]. For a perfectly paralleliz-
able algorithm, P ¼ 1 and the total improvement is S. In
parallel systems, S is usually related to the number of

processors (or parallel computing elements) N.
A special case of Amdahl’s law can be expressed as

1=½Fþ ð1� FÞ=N�, where F is the fraction of the algorithm

that cannot be parallelized. An important consequence of
this formula is that as the number of computing elements

increases, the speedup approaches 1/F. This means that

algorithms with even small sequential parts will have

limited speedup even with large numbers of processors.

This is shown in Fig. 9, where speedup versus number of

processors is plotted for several different values of F. With

10% serial processing, the maximum speedup reaches a

factor of ten, and the effectiveness of adding more proces-
sors greatly diminishes after approximately 90 processors.

Even with only 1% sequential processing, that maximum

speedup reaches a factor of 100, with increases in speedup

rapidly diminishing after 300 processors. To mitigate this

effect, general-purpose parallel systems include fast

sequential (scalar) processors, but they remain the limiting

factor in improving performance. GPU programmable
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processing units are tuned for parallel processing. Sequen-

tial algorithms using a single slice of a single GPU SIMD

processing unit will make inefficient use of the available

processing resources. Targeting a more general mix of

parallel and sequential code may lead GPU designers to add

fast scalar processing capability.

V. THE FUTURE

Despite years of research, deployment of highly parallel

processing systems has, thus far, been a commercial failure

and is currently limited to the high-performance comput-

ing segment. The graphics accelerator appears to be an

exception, utilizing data-parallel techniques to construct
systems that scale from a 1/2 Tflop of floating-point

processing in consoles and PCs to fractions of that in

handheld devices, all using the same programming model.

Some of this success comes from focusing solely on the

graphics domain and careful exposure of a programming

model that preserves the parallelism. Another part comes

from broad commercial demand for graphics processing.

The topic on many people’s minds is whether this
technology can be successfully applied commercially to

other application spaces.

A. Market Forces
Today the GPU represents a device capable of supporting

a great deal of the (consolidated) market of graphics- and

media-processing applications. Tuning capabilities to serve

multiple markets has led to a pervasiveness measured by an
installed base of hundreds of millions of GPUs and growth of

several hundred million per year on the PC alone [101]. We

have grouped these markets into five major segments:

graphical user interface/document/presentation (including

internet browsing), CAD/DCC, medical imaging, games/

simulation, and multimedia. Fig. 10 shows a visualization of
these markets and the market addressed by current GPUs.

First, we note that GPUs do not fully address any of these

markets, as there may be more specialized or esoteric

requirements for some applications in those areas. This gap

between capabilities and requirements represents potential

opportunity. As is the case for any product development, the

market economics of addressing these opportunities are

considered carefully in new products. Some enhancements
are valuable for multiple segments, e.g., increasing screen

resolution. However, for features that are targeted to

specific segments, the segments that provide the greatest

return for additional investment are currently games and

multimedia.

Another important aspect of the market forces, partic-

ularly for commodity markets, is the significance of cost. The

more utilitarian parts of the markets, such as documents and
presentation or even high-definition (HD) media playback,

can be adequately served with lower cost GPUs. This skews

the installed base for high-volume markets such as consumer

and business devices towards low-cost parts that have just

enough performance to run the target applications. In the PC

market, this translates to a large installed base of integrated

GPUs that have a modest fraction (one-tenth) of the

performance of their high-end peers. In practice, the PC
GPU market is divided into multiple segments (e.g.,

enthusiast, performance, mainstream, and value) with

more demanding segments having smaller sales volumes

(albeit with higher sales margins) [101].

New applications represent a potentially disruptive force

in the market economicsVthat is, by finding the next Bkiller
app[ that translates to broad market demand for additional

GPUs or more capable GPUs. This could be in the form of a
new fixed-function appliance or a new application running

on a general-purpose platform such as a PC or cell phone.

Three-dimensional games in the mid-1990s and DVD

playback in the late 1990s are two examples of Bkiller apps[
that pushed demand for substantial new capabilities in PC

and console graphics accelerators.

Fig. 9. Speedup versus number of processors for applications with

various fractions of nonparallelizable code.

Fig. 10. Graphics acceleration markets.

Blythe: Rise of the Graphics Processor

774 Proceedings of the IEEE | Vol. 96, No. 5, May 2008



There are both low- and high-risk strategies for
developing such applications. The low-risk strategy is to

focus on applications that can be addressed with current

GPU capabilities and look for synergies with features being

added for other market segments. An advantage of this

strategy is that it can be pursued by application developers

independently of GPU manufacturers. A downside of the

strategy is that the Bkiller app[ may require features not

currently available. This leads to higher risk strategies
involving additional engineering and silicon cost to add

features specific to new markets. This strategy requires

participation from the GPU manufacturers as well as the

application developers, despite which, the Bkiller app[
may still be hindered by poor market acceptance.

B. Technical Challenges
Graphics accelerators are well positioned to absorb a

broader data-parallel workload in the future. Beyond the

challenge of effectively programming these systems,

several potential obstacles lay in the path: power con-

sumption, reliability, security, and availability.

The number of transistors on a GPU chip has followed

the exponential integration curve of Moore’s law [102],

resulting in devices that will soon surpass 1 billion tran-

sistors in a 400 mm2 die. Clock speed has also increased
aggressively, though peak GPU clock speeds are roughly

1/3 to 1/2 of those of CPUs (ranging from 1 to 1.5 GHz).

These increases have also resulted in increasing power

dissipation, and GPU devices are hindered by the same

power-consumption ceilings encountered by CPU manu-

facturers over the last several years. The ceiling for power

consumption for a chip remains at approximately 150 W,

and there are practical limits on total power consumption
for a consumer-oriented system, dictated by the power

available from a standard wall outlet. The net result is that

GPU manufacturers must look to a variety of technologies

to not only increase absolute performance but also improve

efficiency (performance per unit of power) through

architectural improvements. A significant architectural

dilemma is that fixed-function capability is usually more

efficient than more general-purpose functionality, so
increasing generality may come at an increasingly higher

total cost.

A related issue around increasing complexity of devices

concerns system reliability. Increasing clock speed and

levels of integration increases the likelihood of transmis-

sion errors on interconnects or transient errors in logic

and memory components. For graphics-related applica-

tions the results range from unnoticeable (a pixel is
transiently shaded with the wrong value) to a major

annoyance (the software encounters an unrecoverable

failure and either the application or the entire system must

be restarted). Recently, attention has focused on more

seamless application or system recovery after an error has

been detected, with only modest effort at improving ability

to transparently correct errors. In this respect, GPUs lag

behind CPUs, where greater resources are devoted to
detecting and correcting low-level errors before they are

seen by software. Large-scale success on a broader set of

computational tasks requires that GPUs provide the same

levels of computation reliability as CPUs.

A further challenge that accompanies broader GPU

usage is ensuring that not only are results trustable from

correctness perspective but also the GPU device does not

introduce new vectors for security attacks. This is already a
complicated problem for open systems such as consumer

and enterprise PCs. Auxiliary devices such as disk

controllers, network interfaces, and graphics accelerators

already have read/write access to various parts of the

system, including application memory, and the associated

controlling software (drivers) already serve as an attack

vector on systems. Allowing multiple applications to

directly execute code on the GPU requires that, at a
minimum, the GPU support hardware access protections

similar to those on CPUs used by the operating system to

isolate executing applications from one another and from

system software. These changes are expected to appear

over the next several years [103].

C. Hybrid Systems
One possible evolution is to extend or further

generalize GPU functionality and move more workloads

onto it. Another option is to take parts of the GPU

architecture and merge it with a CPU. The key architec-

tural characteristics of current GPUs are: high memory

bandwidth, use of SIMD (or vector) arithmetic, and
latency-hiding mechanisms on memory accesses. Many

CPUs already contain vector units as part of their

architectures. The change required is to extend the width

of these units and add enough latency tolerance to support

the large external memory access times. At the same time,

the memory bandwidth to the CPU must be increased to

sustain the computation rates for the wider vector units

(100 GB/s GPU versus 12 GB/s CPU bandwidth).5 The
economic issues around building such a CPU are perhaps

even more significant than the technical challenges, as

these additions increase the cost of the CPU and other

parts of the system, e.g., wider memory busses and

additional memory chips. CPU and system vendors (and

users) will demand compelling applications using these

capabilities before making these investments.

There are still other risks with hybrid architecture. The
graphics processing task is still comparatively constrained,

and GPU vendors provide extra fixed-function logic to

ensure that the logical pipeline is free of bottlenecks. Great

attention is placed on organizing data structures such as

texture maps for memory efficiency. Much of this is hidden

from graphics application developers through the use of

graphics API and runtimes that abstract the logical pipeline

and hide the implementation details. If it is necessary for

512.8 GB/s assuming dual-channel (128-bit) DDR2-800 memory. In
the future, dual-channel DDR3-1333 will be capable of 21.3 GB/s.
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developers of new applications to master these implemen-
tation details to achieve significant performance, broad

commercial success may remain elusive in the same way it

has for other parallel processing efforts.

While Intel has alluded to working on such a hybrid

CPU–GPU using multiple �86 processing cores [104],

[105], a more evolutionary approach is to integrate existing

CPU and GPU designs onto a single die or system on a chip

(SOC). This is a natural process of reducing cost through
higher levels of integration (multiple chips into a single

chip), but it also affords an opportunity to improve

performance and capability by exploiting the reduction in

communication latency and tightly coupling the operation

of the constituent parts. SOCs combining CPUs and

graphics and media acceleration are already commonplace

in handheld devices and are in the PC product plans of

AMD (Fusion [106]) and Intel (Nehalem [109]).

VI. CONCLUSION

Graphics processors have undergone a tremendous evolu-

tion over the last 40+ years, in terms of expansion of

capabilities and increases in raw performance. The

popularity of graphical user interfaces, presentation

graphics, and entertainment applications has made
graphics processing ubiquitous through an enormous

installed base of personal computers and cell phones.

Over the last several years, the addition of programma-

bility has made graphics processors an intriguing platform

for other types of data-parallel computations. It is still too

early to tell how commercially successful new GPU-based

applications will be. It is similarly difficult to suggest an

effective combination of architecture changes to capture
compelling new applications while retaining the essential

performance benefits of GPUs. GPU vendors are aggres-

sively pushing forward, releasing products, tailored for

computation, that target the enterprise and HPC markets

[107], [108]. The customizations include reducing the

physical footprint and even removing the display capability.

However, GPU designers are not alone, as CPU vendors

areVout of necessityVvigorously embracing parallel
processing. This includes adding multiple processing units

as multi- or many-core CPUs and other architectural
changes, such as transactional memory, to allow applica-

tions to exploit parallel processing [110]. Undoubtedly,

there will be a transfer of ideas between CPU and GPU

architects. Ultimately, we may end up with a new type of

device that has roots in both current CPU and GPU

designs. However, architectural virtuosity alone will not be

sufficient: we need a programming model and tools that

allow programmers to be productive while capturing a
significant amount of the raw performance available from

these processors. Broad success will require that the

programming environments be viable beyond experts in

research labs, to typical programmers developing real-

world applications.

Graphics accelerators will also continue evolving to

address the needs of the core graphics-processing market.

The quest for visual realism will certainly fuel interest in
incorporating ray-tracing and other rendering paradigms

into the traditional pipeline. These changes are more likely

to be evolutionary additions to the rasterization pipeline

rather than a revolutionary switch to a new pipeline. In

2006, application-programmability was added to the per-

primitive processing step (immediately before raster-

ization) in the Direct3D logical 3-D pipeline [57], and it

is conceivable that other programmable blocks could be
added in the future. Innovative developers, in market

segments such as game applications, will also encourage

looking beyond traditional graphics processing for more

sophisticated physical simulations, artificial intelligence,

and other computationally intensive parts of the applica-

tions. With so many possibilities and so many opportuni-

ties, an interesting path lies ahead for graphics processor

development. h
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