Hlumination Models
and Lights

In the past two chapters we have glossed over exactly how shaders re-

spond to light, as well as how light sources themselves operate, which

of course are important aspects of the overall appearance of materi-

addressed by this chapter. n

als. These are the issues that will be
tines that implement

doing so, we will build up a variety of library rou

different material appearances.

9.1 Built-in Local lllumination Models

In earlier chapicrs. all of our shaders have ended with the same three lines:
Ci = Ct * (Ka*ambi ent() + Kd¥diffuse (NF)) +
specularcolor * Ks*specular (Nf,-normalize (I),roughness);

0i = 0s; Ci *= 013

Three functions are used here that have not been previously described:

"

]
¥

e

b

by 206 g 1llumination Models and Lights
%
j' _ color diffuse(vector N)

e Calculates light widely and uniformly scattered as it bounces from a light
ook source off of the surface. Diffuse reflectivity is generally approximated by

Lambert's law:

if nlights
S climax(0,N - Li)

i=1

where for each of the i light sources, 1, is the unit vector pointing toward the
light, Cl; is the light color, and N is the unit normal of the surface. The max
function ensures that lights with N - L; <0 (i.e., those behind the surface) do
not contribute to the calculation.

colar specular(vector N, v: float roughness)

Computes so-called specular lighting, which refers to the way that glossier
surfaces have noticeable bright spots or highlights resulting from the nar-
rower (in angle) scattering of light off the surface. A typical formula for such
scattering might be the Blinn-Phong model:

nlights
Z Cl; max(0, N - I_nl,-‘mughm.-ss

=1

where H is the vector halfway between the viewing direction and the direc-
tion of the light source (i.e., normalize(normal 'ize(-I)+norma'l1‘ze(L))). The
cquation above is for the Blinn-Phong reflection model, which is what is dic-
tated by the RenderMan Inte rface Specification. PRMan actually uses a slightly
different, proprictary formula for specular(). BMRT also uses a slightly non-
standard formulation of specular() in order to more closely match PRMan.
$o beware—though the spec dictates Blinn-Phong, individual implementations
can and do substitute other reflection models for specular().

color ambient()

Returns the contribution of so-called ambient light, which comes from no
specific location but rather represents the low level of scattered light in a
scene after bouncing from object to object.!

i |n most renderers, ambient hght is typically approximated by a low-level, constant, nondirectional light
contribution set by the user ina rather ad hoe manner. When renderers try to accurately calculate this
interreflected light in a principled manner, it is known as global illumination, of, depending on the exact
method used, as radiosity, path tracing, Monte Curlo integration, and others.

Built-in Local llumination Models

Listing 9.1 MaterialPlastic compufes a local illumination model

_____a_pprm_ci_m;_iii_l]g the appearance 0
/* Compute the color of the surface using a simple plastic-1ike BRDF.
= Typical values are Ka=1, Kd=0.8, Ks=0.5, roughness=0.1.

)

color MaterialPlastic (normal Nf; color basecolor;

float Ka, Kd, Ks, roughness;)

{ ordinary plastic.

{

extern vector I
return basecolor * (Ka*ambient() + kd+diffuse(Nf))

+ Ks*specul ar(Nf,-normalize (1) ,roughnes 5);

Therefore, those three lines we had at the end of our shaders calculate a weighted
sum of ambient, diffuse, and specular lighting components. Typically, the diffuse
and ambient light is filtered by the base color of the object, but the specular
contribution is not (or is filtered by a separate specularcolor).

we usually assign 01, the opacity of the surface, to simply he the default sur-
face opacity Os. Finally, we¢ scale the output color by the output opacity, because
RenderMan requires shaders to compute premultiplied opacity values.

When specularcolor is 1 (i.c., white), these calculations yield an appearance
closely resembling plastic. Let us then formalize it with the Shading language
function MaterialPl astic (in Listing 9.1). with this function in our library, we could

replace the usual ending lines of our shader with:
Ci = MaterialPlastic (NF, Vv, Cs, Ka, Kd, Ks, roughness) ;
0i = 0s; Ci *= 0i;

For the remainder of this chapter, functions that compute completed material
appearances will be named with the prefix Material, followed by a description of
the material family. Arguments passed will generally include a base color, surface
normal, viewing dircction, and a variety of weights and other knobs that select
individual appearances from the tfamily of materials.

The implementation of the Material functions will typically be to compute a
weighted sum of several primitive local illumination functions. Before long, it will be
pecessary to move beyond ambient(), diffuse(),and specular() to other, more
snphisticate'd local illumination functions. When we start writing our own local il-
lumination functions, we will use the convention of naming them with the prefix
LocI11um and will typically name them after their inventors (e.g., LocT1TumCook-

Torrance).
But first, let us see what effects we

diffuse() functions.

can get with just the built-in specular(3 and

208

9.1.1

9.1.2

color MaterialMatte (normal Nf; color

S —

g f(llumination Models and Lights

Listing 9.2 MaterialMatte computes the color of the surface using a simple

Lambertian BRDF.
Lambertiant BRF: e IS =
asecolor; float Ka, Kd;)

S R e o

r¥ (Ka*ambient(} + Kd*diffuse(NF)D;
e ———_—

e e e it e

return bas ecolo

Matte Surfaces

The typical combination of the built-in di ffuse() and specular() functions, for-
malized in Materi alplastic(), is great at aking materials that look like manufac-
tured plastic (such as toys). But many objects that you model will not be made from
materials that featurc a prominent specular highlight. You could, of course, simply
call Material plastic() passing Ks = 0. However, that secms wasteful to call the
potentially expensive specular() function only to multiply it by zero. Our solution
is to create a separate, simpler Materi alMatte that only calculates the ambient and
Lambertian (via di Ffuse()) contributions without a specular highlight, as shown in

Listing 9.2.

Rough Metallic surfaces
1l modeled by the Mate rialPlastic function is that
{ section metals that are polished to the point that
rounding objects, wt will concentrate for now on
oherent reflections.

Another class of surfaces notwe
of metals. Deferring until the nex
they have visible reflections of sur

roughened metallic surfaces without ¢
Cook and Torrance (1981,1982) realized that an important difference between

plastics and metals is the effect of the base color of the material on the specular
component. Many materials, including paint and colored plastic, are composed of a
{ransparent substrate with embedded pigment particles (see Figure 9.1). The outer,
clear surface poundary both reflects light gpecularly (without affecting its color)
and transmits light into the media that is pe rmeated by pigment deposits. Some of
the transmitted light is scattered back diff usely after being tiltered by the pigment
color. This white highlight contributes greatly o the perception of the material as
plastic.

Homogeneous materials, including meta
would specularly reflect light without atte
materials, all reflected light (including gpecular) is scaled by
color. This largely contributes to the metallic appearance. We imple

in Material RoughMetal (Listing 9.3).

ls, lack a transparent outer layer that
nuating its color. ‘Therefore, in these
the material's base
ment this look

9.1.3

i
| 1
i
'

Built-in Local Illumination Models

Figure 9.1 Cross section of a
surface.

plastic-like

Listing 9.3 Material RoughMetal calculates the color of the surface using a

simple metal-like BRDF.

: B e
e using a sim

ple metal -1ike BRDF.

/% Compute the coler of the surfac
both diffuse and specular

To give a metallic appearance,
components are scaled by the color of the met

recommended that Kd < 0.1, Ks > 0.5, and roug
to give a believable metallic appearance.

*/
rmal Nf: color basecolor;

al. It is
hness > 0.15

% % ¥ F

color MaterialRoughMetal (no
float Ka, Kd, Ks, roughness;)

extern vector I;

return basecolor * (Ka*ambient() + Kd*diffuse(NF) +

3 Ks*specul ar(Nf,-normal ize(I), roughness))
ﬁ_____._-——,_____.__...ﬁ__.__.________________,_;_.————-—
Backlighting

So far, the materials we have simulated have all been assumed to be of substantial
thickness. In other words, lights on the same side of the surface as the viewer reflect
off the surface and arc Scen by the camera, but lights “pehind” the surface (from
the point of view of the camera) do not scatter light around the corner s0 that it

contributes to the camera's View.
1t is not by accident that such backlighting is exclu

that the diffuse() function takes the surface normal

of its working will be revealed in Section 9.3 let us simp
parameter is used to exclude the contribution of light sources
same side of the surface as the viewer.

But thinner materials-—paper, lampshades, blades of grass, thin sheets of
plastic—do have appearances that are affected by lights behind the object. These

ded from contributing. Note
as an argument. The details
ly note here that this normal
that do not lie on the

T Y S ——————

g9 f(llumination Models and Lights

210

Figure 9.2 The fnishes (left to right) Materi alPlastic, MaterialRoughMetal, and

MaterialMatte applied 10 a vase. See also color plate 9.2,

5o lights shine through the object, albeit usually at a lower

objects are translucent,
{ons of the lights in front of the object.? Therefore, since

intensity than the reflect

diffuse(Nf)
sums the Lambertian scattering of lights on the viewer's side of the surface, then
the lights from the back side should be described by

diffuse(-Nf)
In fact, this works exactly as we might hope. Thus, making a material translucent
is as easy as adding an additional contribution of diffuse() oriented in the back-
wards direction (and presurably with a different, and smaller, weight denoted by
Kt). This is exemplified by the MaterialThinPlastic function of Listing 9.4.

Reflections

we have covered materials that are linear combinations of Lambertian diffuse and

specular components. However, many surfaces arc polished 10 a sufficient degree
that you can see coherent reflections of the surrounding environment. This section
will discuss two ways of simulating this phenomenon and show several applica-
tions.

People often assume that mirror-like reflections require ray tracing. But not all
renderers support ray tracing {and, in fact, those renderers are typically much faster
than ray tracers). In addition, there are situations where even ray tracing does not
help. For example, if you are compositing a CG object into a live-action shot, you

T
2 Note the difference hetween trunstucericy, the diftuse

thickness of material, and franspareicy, which means you can se

Ordinary paper is transiucent, whercas glass is transparent.

rransmission of very scatiered light through &
¢ a coherent image through the object.

Reflections

Listing 9.4 MaterialThinPlastic implements & simple, thin, plastic-like
BRDF.
/* Compute the color of the surface using a simple, thin, plastic-like
+ BRDF. We call it _thin_ because it includes a transmission component
« to allow light from the _back_ of the surface to affect the appearance.
* Typical values are Ka=1, Kd=0.8, Kt=0.2, Ks=0.5, roughness=0.1.
E 3

color MaterialThi nPlastic (

normal Nf; vector V; color basecolor;
float Ka, Kd, Kt, Ks, roughness;)
r * (Ka*ambient() + Kd*diffuse(Nf) + Kt#diffuse(-NF))

return basecolo
Tar(Nf,V, roughness);

+ Ks*specu

nt. This is not possible even with ray
xist in the CG world. Of course, you
live-action scene, but this seems like

may want the ohject to reflect its environme
tracing because the environment does not €
could laboriously model all the objects in the
too much work for a few reflecrions.

Luckily, RenderMan Shading Language provides su pport for faking these effects
with texture maps, even for renderers that do not support any ray tracing. In this
case, we can take a multipass approach, first rendering the scene from the points
of view of the reflectors, then using these first passes as special texture maps when

rendering the final view from the main camera.

Environment Maps

Environment maps take images of six axis-aligned directions from a particular point

(like the six faces of a cube) and allow you to Jook up texture on those maps, indexed

by a direction vector, thus simulating reflection. An example of an “unwrapped”

environment map is shown in Figure 9.3.
Accessing an environment map from inside

the built-in environment function:

type environment (string filename, vector R;iwndd

gous to the texture() call in several RS

your shader is straightforward with

The environment function is quite analo
ways:
If you do not

{ly cast to cither float or color.
n type, which

a The return type can be explici
compiler will try to infer the retur

explicitly cast the results, the
could lead to ambiguous situations.
a A float in brackets immediately following the filename indicate
channel (default is to start with channel 0).
@ For environment maps, the texture coordinates consi
with texture(), derivatives of this vector will be use

s a starting

st of a direction vector. As
d for automatic filtering of

g (llumination Models and Lights

212

on Studios.}

3 Geri's Game—AD example environment map. (¢ Pixar Animati

lor plate 9.3.

Figure 9.
See also €O

the environment map lookup. Optionally, four vectors may be given to bound the

angle range, and in that case no derivatives will be taken.
m The environment function can take the optional arguments

w£41ter", which perform (he same functions as for texture().

“plur®, "width", and

¢ the mirror direction, as computed by the
flect(). For example,

Environment maps typically sampl

Shading Language built-in function re
(Faceforward (N, ID);

(reflect (I, N
onment (envmapname, R);
on only, not position. Thus, not
int of view of a single location
rnatively, you can think of
f infinite size. Either way,
he same direction in the

normal Nf = normalize
vector R = normalize
color Crefl = color envir

Note that the envi ronment () is indexed by directi
only is the environment map created from the po
but all lookups are also made from that point. Alte
the environment map as being a reflection of a cube 0
two points with identical mirror directions will look up t
environment map. This is most noticeable for flat surfaces, which tend to have all
of their points index the same spot on the environment map. This is an obvious and

objectionable artifact, especially for surfaces like floors, whose reflections are very =

sensitive to position.

9.2.2

Reflections

We can partially overcome this difficulty with the following strategy:
environment map exists on the interior of a sphere with a
ell as a known center. Example: if the environment
choose a sphere radius representative of the room
nt map from sixX rectangular
ity we can just as casily

1. We assumu that the
finite and known radius as w
map is of a room interior, we
gize. (Fven if we have assembled an environme
faces, hecause itis indexed by direcrion only, for simplic
think of it as a spherical map.}

. Instead of indexing the environment by direction only, we
the position and mirror direction of the point, then calculate the int

this ray with our aforementioned environment sphere.

3. The intersection with the environment sphere is then used

lookup direction.

define a ray using
ersection of

o

as the environment

Thus, if a simple envi ronment) lookup is like ray tracing against a sphere of
infinite radius, then the scheme above is simply ray tracing against a sphere of a
radius appropriate to the actual sgene in the environment map.

As a subproblem, we must be able to intersect an environment sphere with aray.
A genera! treatment of ray/object intersections can be found in (Glassner, 1989), but
the ray/sphere case is particularly simple, IF a ray it described by end point E and
unit direction vector I (expressed in the coordinate system ol a sphere centered at
its local origin and with radius ¥ then any point along the ray can be described as

E -+ It (for free parameter t). This ray intersccts the sphere anyplace that | E 4 Itt=r
Because the length of a vector is the squarce root of its dot

product with itself, then
(Eow B (B A IR e

and z components for the dot product calculation yields

Expanding the X, Y.

(Ex + Ix1)? + (Ex + Iyl % 5 tEs % BP0

f‘é + 2B It ff_r'..’ . }:'_%, + 2EyIvt + I_;)_.IE
2}':’3_1 + Ig[" = r:" =0
220

(-Nt2+2E-DE I e
solved using the quadratic equati
function, which in tur

5). Note that Environme
ywing us to composite multi

for which the valuels) of ¢ can be
is performed by the raysphere
Environment routine (see Listing 9.
value from the environment map, allc

maps together.

Environment Maps

nt maps is straightfo!
from the poin
y "world" space, §

Creating Cube Face
n of cube face environme
created by rendering the scene
ix orthogonal directions i1

The creatio
images are
object in ecach of s

on. This solution
n is used by our enhanced
nt also returns an al pha
ple environment

rward. First, six reflection
{ of view of the reflective
iven in Table 9.1

T I ——

214 9 lllumination Models and Lights

aces a simple environment call, giving
ainst an environment sphere of finite

e R

' Lis 9.5 Envi ronment function repl
o more accurate reflections by tracing ag
Coee s

intersection of ray (E,I) with a sphere

L /% raysphere - calculate th

» centered at the origin and with radius r. We return the number of
« intersections found (0, 1, or 2), and place the distances to the 3
* intersections in t0, tl (always with t0 <= t1). Ignore any hits o

WE %« closer than eps.
: i/
float
raysphere (point E; vector 1; /* Origin and unit direction of the ray ¥/
float r; /* radius of sphere */
epsilon - ignore closer hits */

float eps; Y i
output float t0, tl; /* distances to intersection */ '

)
{
/* Set up a quadratic equation -- note that a==1 if I 1
float b = 2 * ((vector B . I .
float ¢ = ((vector E) . (vector E)) - r¥r} £
float discrim = b*b - 4"c; s
float solutions;
if (discrim > 0) { /% Two solutions */
discrim = sqrt(discrim);
t0 = (-discrim - by 2
if (t0 > eps) {
1 = (discrim - b) L 7
solutions = 2;
} else {
t0 = (discrim - b) / 2§
solutions = (t0 > eps) 7 1 1 05

s normalized */

/* One solution on the edge! */

}
} else if (discrim == 0) {

t0 = -b/2;
solutions = (t0 > eps) T1:0;
} else { /* Imaginary solution -> no intersection */

solutions = 03

return solutions;

ironment() lookups, this
finite

) - A replacement for ordinary env

/* Environment(
nvironment sphere of known,

% fuynction ray traces against an e

#« padius. Inputs are:
envname - filename of environment map
envspace - name of space environment map was made in
envrad - approximate supposed radius of environment sphere
P, R - position and direction of traced ray

blur - amount of additional blur to add to environment map

Qutputs are:
return value - the color of incom

alpha - opacity of environment ma

ing environment Tlight
p lookup in the direction R.

I‘?‘ﬁlﬁtﬁb

Reflections

wWarning - the environment call itself takes derivatives, causing
* trouble if called inside a Joop or varying conditional! Be cautious.
*
color Environment (string envname, envspace; uniform float envrad;
point P; vector R: float blur; output float alpha;)

{
/* Transform to the space of the environment map *f
point Psp = transform (envspace, P);
vector Rsp = normalize (vtransform (envspace, R
uniform float r2 = envrad * envrad;
/% Clamp the position to be *inside* the environment sphere *f
if ((vector Psp) . (vector Psp) > ra)
psp = point (envrad * normalize (vector Psp));
float t0, tl;
if (raysphere (Psp, Rsp, envrad, 1.0e-4, t0, t1) > 0)
Rsp = vector (Psp + +0 * Rsp);
alpha = float environment (envname[3], Rsp, “plur", blur, “E11, 1)
return color environment (envname, Rsp, “plurt, blurl);

__I@ﬂEQJ nanfnﬁnmanlmap

Face view Axts toward top Axis toward right

S S e e e ——

px (positive x) +V -z
nx (negative x) Ly +z
ny & o
ny 3 +X

L X
nz -X

Next, these six views {(which should be rendered using a square 90° field of view to
completely cover all directions) are combined into a single environment map. This
can be done from the RIB file:

MakeCubeFaceEnv*i ronment px nx py ny pz nz envfile

Here px, nx, and so on arc the names of the files containing the individual face im-
ages, and envfile is the name of the file where you would like the final environment
map to be placed.

Alternatively, most renderers will have a separate program that will assemble an
environment map from the six individual views. In the case of PRMan, this can be
done with the txmake program:

txmake -envcube pxnxpy ny pz nz envfile

216

g Illumination Models and Lights

Figure 9.4 Creating a mirrored scene lor generating a reflection map.
On the top left, a camera views a scenc that includes a mirror, Below
is the image it produces. On the top right, the camera instead views
the mirror scene. Notice that the image it produces (below) contains
the required reflection.

Flat Surface Reflection Maps

For the special case ol flat objects (such as floors or flat mirrors), there is an even
easier and more efficient method for producing reflections, which also solves the
problem of environment maps being inaccurate for flat objects.

For the example of a flat mirror, we can observe that the image in the reflection
would be identical to the image that you would get if you put another copy of the
room on the other side of the mirror, reflected about the plane of the mirror. This
geometric principle is illustrated in Figure 9.4. '

Once we create this reflection map, we can furn it into a texture and index it
from our shader. Because the pixels in the reflection map correspond exactly to the
reflected image in the same pixels of the main image, we access the texture map
by the texture’s pixel coordinates, not the s, t coordinates of the mirror. We can
do this by projecting P into "NDC" space. This is done in the Ref1Map function in

Listing 9.6.

General Reflections and Shiny Surfaces

We would prefer to write our shaders 50 that we may use either reflection or envi-
ronment maps. Therefore, we can combine both into a single routine, SampleEnvi-
ronment(), given in Listing 9.7.

Reflections

color ReflMap (string reflname; point P; float blur;
output float alpha;)~

{
/* Transform to the space of the environment map */
point Pndc = transform ("NDC", P);

float x = xcomp(Pndc), y = ycomp(Pndc) ;
alpha = float texture (reflname[3], x, y, "blur", blur, “Fi11", 1),
return color texture (reflname, x, Y, "blur", blur);

Listing 9.7 SampleEnvironment [unction makes calls to either or both of
EnvironmentorReFWMapﬂiijded

#define ENVPARAMS envname, envspace, envrad

#define_DECLARE_ENVPARAHS \
string envname, envspace; uniform float envrad

#define DECLARE_DEFAULTED_ENVPARAMS
string envname = "", envspace = "world":
uniform float envrad = 100

el

color
SampleEnvironment (point P; wvector R; float Kr, blur;
DECLARE_ENVPARAMS ;)

{
color C = 03
float alpha;
if Cenvname != "") {
if (envspace == "NDC™)
C = ReflMap (envname, P, blur, alpha);
else C = Environment (envname, envspace, envrad, P, R, blur,
alpha);

return Kr*C;

A few comments on the source code in Listing 9.7. To allow casy specification of
the many environment-related parameters, we define macros ENVPARAMS, DECLARE
i ENVPARAMS, and DECLARE_DEFAULTED_ENVPARANMS, which are macros containing the
S parameter names, declarations, and declarations with default values, respectively.
These macros allow us to succinctly include them in any shader, as we have done

r_ in shader shinymetal (Listing 9.8).

—————' .

9 1llumination models and Lights

218
Listing 9.8 MaterialShi “YM."’EL_‘E‘E.lhE shi nymetal shader.
e metal-like BRDF. To

surface using a simpl
ular components are

/* Compute the color of the
ce, both diffuse and spec
ded that Kd < 0.1,

+ give a metallic appearan
* scaled by the color of the metal. It is recommen _
* s » 0.5, and roughness > 0.15 to give a pelievable metallic appearance.
*/ o
color MaterialShinyMetal ¢ .

ik

normal Nf; color basecolor;:
float Ka, Kd, Ks, roughness,

Kr, blur;
DECLARE_ENVPARAMS;) B

extern point P

extern vector 1;

vector IN = normalize(I), V = -IN;

vector R = reflect (IN, NF);

return basecclor + (Karambient() + Kdrdiffuse(NF) +
Ks*specu'lar(Nf.V.roughness) + E. o 28
SampleEnvironment (P, R, Kr, blur, ENVPARAMS)) § - .

0.1, Ks = 1, roughness = 0.2

surface
r = 0; DECLARE_DEFAULTED_ENVPARAHS;)

4 shinymetal (float Ka = 1, Kd =

float Kr = 0.8, blu

rward (nnrmaHze(N). 1)
Metral (Nf, Cs, Ka, Kd, Ks, roughness, Kr, blur,

ENVPARAMS) |

normal Nf = facefo
Ci = MaterialShiny

0i = 0s; Ci *= 01}
:i________._.__-ﬂw___.__ﬂ_*______‘._____,_f___,_——
toolbox, we can make a straightforward shader that can
chrome, or copper (see Listing 9.8). If you
at reflection map, you need
t function

Wwith this routine in our
be used for shiny metals like mirrors,
arc using the shader for a flat object with a prepared f1
only pass "NDC" as the envspace parameter and the Samp1 eEnvironmen

will correctly access your reflection map.

Fresnel and Shiny Plastic
All materials are morc reflective at glancing angles than face-on (in fact, materi-
als approach 100% reflectivity at grazing angles). For polished metals, the face-on
reflectivity is so high that this difference in reflectivity with angle is notvery notice-
able. You can convince yourself of this by examining an ordinary mirror—it appears
nearly equally shiny when you view your reflection head-on versus when you looK
at the mirror at an angle. So we tend to ignore the angular effect on reflectivity, as
suming for simplicity that polished metals are equally reflective in all directions (as 5]

we have in the previous section).

Reflections

V N\~
VN N\

Figure 9.5 The ratio of reflected to transmitted
light at a material boundary changes with the
angle of the incident light ray.

ceramics, and glass are much less reflective than
hen viewed face-on. Therefore, their higher re-
significant visual detail (see Figure 9.5).
h materials are known as the

Dielectrics such as plastic,
metals overall, and especially so W
flectivity at grazing angles is a much more
The formulas that relate angle to reflectivity of suc

Fresnel equations.
A function that calculates the Fresnel terms is included in Shading Language:

rmal N; float eta;

void fresnel (vector I; no
Kr, Kt; output vector R, T);

output float

According to Snell's law
reflection and transmission direc
as the scaling factors for reflecte
parameter is the normalized incident ray,
and eta is the ratio of re fractive index of

the opposite side of the surface.

fresnel computes the
tion vectors R and T, respectively, as well
d and transmitted light, Kr and Kt. The I
N is the normalized surface normal,
the medium containing I to that on

and the Fresnel equations,

cnuate the relative contributions of environmental

and diffuse reflectances. This is demonstrated in the Mate rialShinyPlastic and
shinyplastic, both shown in Listing 9.9. Figure 9.6 compares the appearance of
MaterialShinyMetal and MaterialShinyP1 astic.

The index of refraction of air is very close to 1.0, water is 1.33, ordinary window
glass is approximately 1.5, and most plastics are close to this value. In computer
graphics, we typically assume that 1.5 is a reasonable refractive index for a very
wide range of plastics and glasses. Therefore, reasonable value for the eta param-
eter passed to fresnel () is 1/1.5. Nearly any optics textbook will list the indices
of refraction for a varicty of real materials, should you wish to be more physically

accurate.
of course, for real materials the refractiv
tend to ignore this effect, since we have such

pling and color spaces anyway. Although metals a

indices of refraction, Fresnel effects, and angle-de
they are much less visually notice

We can use fresnel() to att

e index is wavelength dependent. We
an ad hoc approach to spectral sam-
1so have wavelength-dependent
pendent spectral reflectivities,

able in most metals, so we usuaily just pretend

220

9 illumination Models and Lights 1
[

Listing 9.9 shinyplastic shader is tor highly polished plastic and uses
fFresnel () so that reflections are stronger al grazing angles.

3 el

color
Materia'lShinyP‘.astic (normal Nf: color basecolor;
§loat Ka, Kd, Ks, roughness, Kr, blur, ior; 3 ,
DECLARE_ENVPARAMS) e
{ = -
extern point P; i
)

extern vector 1;
vector IN = normalize(1), V = -ING

float fkr, fkt; vector g T
fresnel (IN, Nf, 1/ior, fkr, R, o -]
fkt = 1-fkr; -
return fkt * pasecolor * (Karambient() + KdwdiFfuse(Nf)D i
+ (Ks*fkr) ~ specular(Nf.V.roughness)
+ Samp\eEnvironment (P, R, fkr¥Kr, blur, ENVPARAMS))&

roughness = 0.1;

surface
shinyplastic (float Ka =

float Kr = 1,
DECLARE_DEFAULTED_EIWP

1, Kd = 0.5, Ks = .3,
blur = 0, for = 1.53
ARAMS;)

normal Nf = faceforward (normaﬂize(N), p 6
Ci = Ma.teria15hinyP1ast'ic (Nf, Cs, Ka, Kd, Ks, roughness, Kr,
blur, ior, ENVPARAMS)

07 = 0s; Ci 7= 0i;

yPlastic {right). See also color

and Material Shin

Figure 9.6 Mate rialShinydetal Uefl)
plate 9.6.

{lluminance Loops, orF How diffuse() and specular() Work 221
y. You are, of course, perfectly free to go to the
ngth and angle dependency of metals!

Important note: in MaterialShinyPlastic we et fkt=1-fkr, overriding the
value returned by fresnel (). The reasons for this are extremely subtle and well
beyond the scopt of this book. Suffice it to say that the value that fresnel() is
supposed to return for Kt assumes a mare rigorous simulation of light propagation
than either PRMan or BMRT provides. In light of these inaccuracies, the intuitive
notion that Kt and Kr ought to sum to 118 about as good an approximat ion as you
might hope for. We will therefore continue to use¢ this oversimplification.

that shiny metals reflect uniform!
extra effort of computing the wavele

9.3 Illuminance Loops, or How diffuse()
and specular() Work

We have seen classes of materials that can be described by various relative weight-
ings and uses of the built-in di ffuse() and specular() functions. In point of facy,
these are just examples of possible illumination models, and it is quite useful to
write alternative ones. In order to do that, however, the shader needs access 10 the
lights: how many are there, where are they, and how bright are they?

The key to such functionality is a special syntactic structure in Shading Language

called an i1luminance loop:

i1luminance (point position) {
statements;

}

vector axis; float angle) {

i1luminance (point position;
statements;

}

The i11uminance statement Joops over all light sources visible from a particular i
position. In the first form, all lights are considered, and in the second form, only fiti
those lights whose directions are within angle of axis (typically, angle=1t /2 and fy
axis=N, which indicates that all light sources in the visible hemisphere from P should i

be considered). For each light source, the statements are executed, during which two
additional variables are defined: L is the vector that points o the light source, and
1 is the color representing the incoming energy from that light source. -

perhaps the most straightforward example of the use of i1luminance loops is i

the implementation of the diffuse() function:

color diffuse (normal Nn)
{

extern point P;
color C = 03
i1luminance (P, Nn, PI/2) { §

222

9.4

9 Iljumination Models and Lights

C +=C1 * (Nn . normalize(L));

return C;

}
Briefly, this function is looping over all light sources. gach light's contribution is
computed using a Lambertian shading model; that is, the light reflected diffusely is
the light arriving from the source multiplied by the dot product of the normal with
the direction of the li ght. The contributions of all lights are summed and that sum

is returned as the result of diffuse().

identifying Lights with Special Properties

r light. The scattering function, or BRDF (which
stands for bidirectional reflection distribution function) may be quite complex.
Dividing the scattering function into diffuse versus specular, or considering the
BRDF to be a weighted sum of the two, is simply a convenient oversimplification.
Many other simplifications and abstractions are possible.
In the physical world, light scattering is a property of the surface material, not
a property of the light itself or of its source. Nonetheless, in computer graphics it
is often convenient and desirable to place light sources whose purpose is solely to
provide a highlight, or alternatively 1o provide a soft fill light where specular high-
lights would be undesirable. Therefore, we would like to construct our diffuse()
function so that it can ignore light sources that have been tagged as being “nondif-
fuse™ that is, the source itself should only contribute specular highlights. We can
do this by exploiting the message passing mechanism of Shading Language, wherein
the surface shader may peek at the parameters of the light shader.

In reality, surfaces simply scatte

float lightsource (string paramname; output type result)

n. which may only be called from within an i1lu-
rameler of the light source named paramname.
1f such a parameter is found and if its type matches that of the variable result,
then its value will be stored in the result and the 1ightsource() function
will return 1.0, If no such parameter is found, the variable result will be un-

changed and the return value of Tightsource will be zero.

The 1ightsource() functio
mi nance loop, searches for a pa

nism as follows. Let us assumc rather arbitrarily that
to specular highlights (and that there-
function) will contain in jts parameter

We can use this mecha
any light that we wish to contribute only
fore should be ignored by the diffuse()
list an output float parameter named __nondi ffuse. Similarly, we can use an
output float parameter named ___nonspecular Lo indicate that a particular ligh
should not contribute to specular highlights. Then implementations of diffuse()
and specular(), as shown in Listing 9.10, would respond properly 10 these con;-.ﬂg '

223

|dentifying Lights with Special Properties

Listing 9.10 The implementation of the built-in diffuse () and specular()
functions, inc_iu_dim._l1 _Cﬂ”“'“li to ignore :mndil_'_l_usc_zmg nonspecular lights.

color diffuse (normal Nn)

extern point P;

color C = 0;
i1luminance (P, Nn, PI/2) {
float nondiff = 03
lightsource (" __nondiffuse", nondi ;%

C += C1 * (l-nondiff) * (Nn . normalize(L));

1
return C;

1 Nn: vector V; float roughness)

color specular (norma

{

extern point P;
color C = 0;
i1luminance (P, Nn, P1/2) {
float nonspec = 0;
lightsource ("__nonspecular”, nonspec);
vector H = normalize (normalize(L) + V);
C += C1 * (l-nonspec) * pow (max (0, Nn.H), 1/roughness);

return C;

mplementations of diffuse() and specu-

nonspecular in this manner (although as
te what is in List-

trols. In both PRMan and BMRT, the i
1ar() respond to _nondi ffuse and _
we explained earlier, the implementation of specul ar() is not qui
ing 9.10).

This message passing mec
sextra” information from the li
an output parameter giving its u
may respond to this parameter b

There is an additional means 0

light category specifier:

hanism may be used more generally to pass all sorts of
ghts to the surfaces. For example, a light may include
Itraviolet illumination, and special surface shaders
v exhibiting fluorescence.

f controlling i1luminance

loops with an optional

i1luminance (string caltegory; point position)
statements;

i1luminance (string category; point position;
vector axis; float angle)

e statements;

224 9 Iflumination Models and Lights

Ordinary i1luminance loops will execute their body for every nonambient light
source. The named category extension 0 the i1luminance syntax causcs the state-
ments to be executed only for a subset of light sources. 3

Light shaders can specify the categories 10 which they belong by declaring a - :
string parameter named __category (this name has two underscores), whose value .
is a comma-separated list of categories into which the light shader falls. When the
i1luminance statement contains a string parameter category, the loop will only
consider lights for which the category is among those listed in its comma-separated
__category list. If the i11uminance category begins with a - character, then only
lights not containing that category will be considered. For example,

float uvcontrib = 0;

i1luminance (‘uvlight”,
float uv = 0;
Tightsource ("uv", uvl);
uvcontrib += uv;

p, Nf, PI/2) {

)

Ci += uvcontrib * uvglowcolor;
ning the string "uvlight" in their _category
" putput parameter. An example

will look specifically for lights contai
list and will execute those lights, summing their uv
light shader that computes ultraviolet intensity might be

Tight
uvpointlight (float intensity = 1, uvintensity = 0.5;

color lightcolor = 1;
point from = point "shader" (0,0,0);
output varying float uv = 0;

string __category = “"uvlight”;)

illuminate (from) {
Cl = intensity * lightcolor / (L - L);

uv = uvintensity / (L . L);

}

Don't worry too much that you
chapter, this example will be crystal clear.

haven't seen light shaders yet: betore the end of this

Custom Material Descriptions

We have seen that the implementation of diffuse() is thatof a Lambertian shading
model that approximates a rough surface that scatters light equally in all directions.
Blinn-Phong scattering function (according 10 «

Similarly, specular () implements a
the RI spec). As we've seen, different weighted combinations of these two functions

225

Custom Material Descriptions

can yield materials that look like a variety of plastics and metals. Now that we under-
stand how they operate, we may use the i1luminance construct ourselves 10 create
custom primitive \ocal illumination maodels. Past ACM SIGGRAPH proceedings are a
treasure trove of ideas for more complex and realistic local illumination models. n
this section we will examine three local llumination models (two physically based
and one ad hot) and construct shader functions that implement them.

Rough Surfaces
Lambert's law models a perfectly smooth s
directions. This is very much an oversimplification of the behavior of materials.
In the proceedings of SIGGRAPH '94, Michael Oren and Shree K. Nayar described
a surface scattering model for rough surfaces. Their model (and others, including
Beckman, Blinn, and Cook/Torrance) considers rough surfaces 10 have microscopic
grooves and hills. This is modeled mathematically as a collection of microfacets
having a statistical distribution of relative directions. Their results indicated that
many real-world rough materials (like clay) could be more accurately modeled using

the following equation:

arface that reflects light equally in all

1,0y, 0ty — bi, 0) = %Eu cos (A + Bmax [0, cos(cpr — ¢y)] sin e tan B,

where

A=10-05575753
-

B = 0.43 (',r?- ” 0.09

o = max [8y, Or
B = min [0, O¢1,

and the terms mean

p is the reflectivity of the surtace (Kd*Cs).
Eq is the energy arriving at the surface from the light (C1).

0; is the angle between the surface normal and the direction of the light source.
0, is the angle between the surface normal and the vector in the direction the

R < light is reflected (.., toward the viewer).
S5 | ¢r-dils the angle (about the normal) between the incoming and reflected light

directions.
m o is the standard deviation of the angle

dians). Larger values represent more rougl
smoother surfaces. If o =0, the surface is perfectly $

tion reduces to & simple Lambertian reflectance model. We

1
¥ “roughness.”

distribution of the microfacets (in ra-
1 surfaces; smaller values represent
mooth, and this func-
"1l call this parameter

T N e —

226 9 Illumination Models and Lights

Listing 9.11 LocIll umOrenNayar implements a BRDF for diffuse, but rough,

: _surfaces. s A
/¥ 3
« Qren and Nayar's generalization of Lambert's reflection model. _ g
+ The roughness parameter gives the standard deviation of angle -
* grientations of the presumed surface grooves. when roughness=0, -
* the model is identical to Lambertian reflection. e 3
)
color i
LocI1lumOrenhayar (normal N; vector Vi float roughness;) :
{ k.
/* surface roughness coefficients for oren/Nayar's formula */
float sigma2 = roughness « roughness;
float A=1-0.57 sigma2 / (sigma2 + 0.33):
= float B = 0.45 ¥ sigma2 / (sigma2 + 0.09);
’ /* Useful precomputed quantities “/
3 float theta_r = acos (v . N)§ /% Angle between v and N ¥/ .
i vector V_perp_N = normaWize(V-N*(V.N)); /v part of ¥ perpendicular to N e i
=} wy
5

[Accumulate incoming radiance from lights in c*/ o
color C=0; 1
extern point P;
i11uminance (P, N, pi/2) 1
/% Must declare extern L & (1 because we're in a function ¥/
extern vector Lj extern color C13
float nondiff = 0; el
lightsource ("__nondiffuse”, nondiff); - .
if (nondiff < 1) { s
vector LN = normalize(l);
float cos_theta_i = EN @i N3
float cos_phi_diff = v_perp N . normalize(lN - N*cos_theta_i);
float theta_i = acos (cos_theta_i)i
float alpha = max (theta_i, theta_r):
float beta = min (theta_i, theta.r);
¢ += (1-nondiff) # €1 * cos_theta_i N
(A + B~ max(0,cos_phi_diff) = sin(alpha) * tan(beta));

A K R

}

return C;

These cquations are casily translated into an i11uminance loop, as shown in List-
ing 9.11.

Figure 9.7 shows a teapot with the Oren/Nayar reflectance model. The left teapot
uses a roughness coefficient of 0.5, while the right uses a roughness coefficient of
0, which has reflectance identical to Lambertian shading. Notice that as roughness

Custom Material Descriptions

Figure 9.7 When the light source is directly behind the viewer, the Oren/Nayar maodel
(left) acts much more as a retrorvetiector, compared to the pambertian model (right). See
also color plate 9.7.

increases, a strong packscatiering effect is present. The object begins to act as
a retroreflector, $O that light that comes from the same direction as the viewer
bounces back at a rate nearly independent of surface orientation.

It is this type of backscattering thal accou nts for the appearance of the full moon.
Everyone has noticed that a full moon (when the viewer and sun are nearly at the
same angle to the moon) looks like a flat disk, rather than like a ball. The moon is
not Lambertian—it is more closely modeled as a rough surface, and this reflection
model is a good approximation to the behavior of lunar dust.

Anisotropic Metal

The Materi alRoughMetal function described earlier does an adequate job of simu-
lating the appearance of a metal object that is vough enough that coherent reflec-
tions (from ray tracing or environment maps) are not necessary. However, it does
make the simplifying assumption that the metal scatters light only according to the
angular relationship between the surface normal, the eye, and the light source. it
specifically does not depend on the orientation of 1he surface as it spins around the
normal vector.
To help visualize the situation, consider the following diagram:

Imagine rolating the material around the normal vector. If the reflectivity in a
particular direction is independent of the surface orientation, then the material
is said to be isotropic. On the other hand, if the material reflects prcfcrc‘nlially
depending on gurlace orientation, then it is anisotropic.

228 9 illumination Models and Lights
arious manufacturing processes can
that are all aligned to 2 particular
half-cylinders oriented in

sotropic BRDFs. A number
n models, including Kajiya

{erials are nol uncommon. vV

o Anisotropic ma
\icroscopic grooves

produce materials with o
direction (picture the surface being covered with tiny

parallel or otherwise coherently)- This gives rise to ani
of papers have been written about anisotropic reflectio
(1985) and Poulin and Fournier (1990).

Greg Ward Larson described an anisotropic reflection m i
“Measuring and Modeling Anisotropic Reflection” (Ward, 1992). In this paper, i

eflection was given as

odel in his SIGGRAPH 92

paper,
anisotropic specular r

SN (R)

e e et ¢ g
Jcos 0; cos 0, 4oy 1+h-n
where 5 &
A @ 0;is the angle bewween the surface normal and the direction of the light source. i
urface normal and the vector in the direction the

s m 0, is the angle between the s

light is reflected (i.c., taward the viewer).
@ % and y are the two perpendicular tange
@ o and oy are the standard deviations of the slo

respectively. We will call these xroughness and yroughness.
m 71 is the unit surface normal (normalize(N)).
a R is the half-angle between the incident and

(normaHze(-I) + normalize(L)))

cI1lumWardAni sotropic,
f Larson's model.? This function can be used
call. It differs from specular() in that it takes
Jigned with surface tangent xdir, and
9.8 shows this model applied to a

nt directions on the surface.
pe in the X and ¥ directions,

reflection rays (e, H= normalize

Listing 9.12 lists the function Lo which implements the
anisotropic specular component 0
instead of an ordinary specular()
two roughness values: one¢ for the direction &
the other for the perpendicular direction. Figure

teapot.

Glossy Specular Highlights

sections listed Shading Language 1
Iy based gimulations of the way

The previous sub mplementations of two local
light reflects

illumination models that are physica

e

3 when comparing the original equation to our Shading Language implementation, you may wonder
where the factor of 1/7r went and why there appears 1o he an extra factor of L N. This is not an error!
Greg Ward Larson's paper describes the BRDE, which is only ht integral, whereas i

part of the kernel of the lig
shaders describe the result of that integral. This s something that must be kept in mind when coding
\raditional BRDFs in i1luminance loops.

Listing 9.12 LocI1lumWardAnis
specular illumination model.

/fr

#*
*
*
L3
i
[3
[

*
*
*
*
*
*
-
L 4
o
*
*

Custom Material Descriptions

Greg Ward Larson's anisotropic s

The derivation
"Measuring and
Graphics 26(2)

Notice that compa

and formulae can

otropic:

pecular local i
be found in:

Modeling Anisotropic Reflection,

(Proceedings of Siggraph '92), P
r, the implemen

to be missing a factor of 1/pi,

This is not an
BRDF, which is

error!
only part of the

shaders must compute the result

Inputs:
N - unit sur

face normal

red to the pape

It is because the paper
kernel of the 1ight

and to have an

Greg Ward Larson's anisotropic

1lumination model .
ward, Gregory J-

* ACM Computer

p. 265-272, July, 1992.
tation below appears

extra L.N term.

< formula is for the
integral, whereas

of the integral.

V - unit viewing direction (from P toward the camera)

xdir - a unit tangent of the s

direc
xroughness -
yroughness -

tion for the anisotropy.
the apparent roughness of the surface in xdir.

the roughness fo

tangent perpendicu}ar

xf
color

LocIllu

{

e

mwWardAnisotropic (normal N;
vector xdir;

r the direction
to xdir.

vector Vi

float sqr (fleat x) { return x*x; }

float cos_theta_r = cl

vector X = xdir / wroughness;
vector Y = (N A xdir) / yroughness;

color C = 0

extern point P

i1luminance
/* Must
extern v
float no

lightsource ("_.nonsp

® N, P/ |

amp (N.V, 0.0001, 1);

float xrough

urface defining the reference

of the surface

declare extern L & C) because we're in a functio

ector L;
nspec = 0}

if (nonspec < 1) {
vector LN = normalize
float cos_theta_i = LN . N

if (cos_theta_i > 0.

}

vector H = normal

float rho = exp (-2 * (sgr{X.H

extern color et

ecular”, nonspec);

(L

0 1

jze (V + LN

) + sqr(Y.H) / (1 + H.ND))

/ sart (cos_theta_i * cos_theta_r);

C += C1 * ((i-nonspec

return C / (4 * xroughness *

yroughness);

) * cos_theta.i *® rho);

b ———

ness, yroughnessi)

230 9 1llumination Models and Lights

AP i
e M

JUREE 2

Ay 7 T AR

e

rd anisotropic reflection model. Isotropic reflection
with xroughness=yroughness=0.3 (10p). Anisotropic reflection with xroughness=0.15,
yroughness=0.5 (bottom left). Anisotropic reflection with xroughness=0.5, yrough-
ness=0.13 {bottom right). In all cases, wdir=normalize(dPdu). See also color plate 9.8.

Figure 9.8 Examples of the Wa

. Many times, however, we want an effect that achieves
a particular look withoutl resorting to simulation. The look itself may or may not

match a real-world material, but the compulations are completely ad hoc. This

subsection presents a local ilumination model that achieves a useful look but that

is decidedly not based on the actual behavior of light. It works well for glossy

materials, such as finished ceramics, glass, or wet materials.

We note that specular highlights are a lot like mirror reflections of the light
source. The observation that they are big fuzzy circles on rough objects and small
sharp circles on smooth objects is a combination of the blurry reflection model and
the fact that the real light sources are not infinitesimal points as we often use in
computer graphics, but extended arca sources such as light bulbs, the sun, and so.

on

off certain material type

s, we would like to get a clear, distinct reflection of
{ there isn't a noticeable mirror reflection of the
aren't really using true area lights). we

For polished glossy surface
those bright area sources, even i
rest of the environment (and even if we

Custom Material Descriptions

9.13 LocI1lumGlossy function: nonphysical
ly bright specular

Listing
_ specular() that makes a uniforn

/\'«
LocI1lumGlossy - 2 possible repl
more uniformly bright core and a sharper falloff

specular function to useé for something made of g

Inputs:
roughness - re
sharpness - 1

lated to the
is infinitely sharp.

& % % * B % *

vector V;

(normal N;
sharpness;

color LocIllumGlossy
float roughness,

{

color C = 0;
float w = .18 * (1-sharpness);
extern point P}
41luminance (P, N,
/* Must declare ex
extern vector L;
£1oat nonspec = 0}
Jightsource ("__nonspec
if (nonspec < 1 {
vector H = norma1ize(ﬂorma1ize(L)+V);
g it) ((l-nonspec) *
cmoothstep (.72-w,
pow (max

PI/2) {
tern L & C1 because we'r

extern color C1:

ular", nonspec):

LT24W,
(0,N.H)

¢ could achieve this look by th

propose that w
a Blinn-Phong specula

other words, we modify T term

1 * pow (max (0, Nn.H), 1/roughness);

to the thresholded version:

C1 * smoothstep (e0, el, pow (max (0, Nn

With an appropriately chosen e0 and el the specu
smaller, have a sharp transition, and be fully
Listing 9.13 is a full implementation of this propos
chosen empirically by the authors). Fin
highlight to a standard plastic-
roughness=0.1, sharpness=0.5.

tﬂghhght

acement for specula

size of the highlight,
0 is very dull

resholding the specular highlight. In

bright inside the transition re

ally, Figure 9.9 compares this glossy specular
like specular() function. In t

replacement for

r(), having
. It's a nice
lass or liquid.

larger is bigger

p)

e in a function */

3 1/roughness)))

(c.f. Listing 9.10) from

JH), 1/roughness))

light will appear 10 be
gion.

h some magic constants

jar high
al (wit

hat example, we used

T

232 g lllumination Models and Lights

o bt

T

TR o

Figure 9.9 Comparing the glossy versus plastic specular illumination models. See also
color plate 9.9.

9.6 Light Sources

Previous sections discuss how surface shaders respond to the light energy that
arrives at the surface, reflecting in different ways to give the appearance of different
types of materials. Now it is time to move Lo light shaders, which allow the shader
author similarly detailed control over the operation of the light sources the mselves.

Nongeometric Light Shaders

Light source shaders are syntactically si milar 1o surface shaders. The primary differ-
ence is that the shader type is called 1ight rather than surface and thata somewhat
different set of built-in variables is available. The variables available inside light
shaders are listed in Table 9.2. The goal of a light shader 1s primarily to determine
the radiant energy C1 and light direction L of light impinging on Ps from this source.
In addition, the light may com pute additional quantities and store them in its out-
put variables, which can be read and acted upon by illuminance loops using the
lightsource statement.

The most basic type of light is an ambient source, which responds in a way that is
independent of position. Such a shader is shown in Listing 9.14. The ambi entlight
shader simply sets €1 1o a constant value, determined by its parameters. It also
explicitly sets L 0 Zero, indicating to the renderer that there is no directionality to
the light.

For directional light, although we could explicitly set L, there are some syntactic

structures for emitting light in light shaders that help us do the job efficiently. One
such syntactic construct is the solar statement

Light Sources

Tight
ambientlight (float intensity = 13

Table 9.2: Global variables available inside light shaders, Variables are
read-only except wherenoted. =
iface that requested data from the

point Ps Position of the pont on the su
light shader.

vector L The vector giving the direction of outgoing light from the source
to the point being shaded, Ps. I'his variable can be set explicitly
by the shader but is generally set implicitly by the i1luminate or

solar statements.
color €1 ‘The light color of the vty being emitted by the source. Setting
this variable is the primary purposc of a light shader.

Lis@g_g._b} :_1_11hit:1_1T_ Ii}ili souTCe hh;l_r_h-_’__l_‘._______ -

color lightcolor = 1;)

doesn't depend on position “f

C1 = intensity * lightcolor; /¥
/* no light direction */

L = 0;

solar (vector axis; float spreadangle) {
statements;

}

The effect of the solar statement is to send light to every Ps from the same
direction, given by axis. The result is that rays from such a light are parallel, as
i the source were infinitely far away. An example of such a source would be the

sun.

Listing 9.15 is an example of the solar statement. The solar statement implicitly
sets the L variable to its first argument, there is no need to set L yourself. Further-
more, the solar statement will compare this direction to the light gathering cone of

ment in the surface shader. If the light's L di-

the corresponding i1luminance state
rection is outside the range of angles that the i17uminance statement is gathering,
the block of statements within the solar construct will not be executed.

The spreadangle parameter is usually set 10 Zero, indicating that the source

subtends an infinitesimal angle and that the rays arc truly parallel. Values for
spreadangle greater than zero indicate that a plethora of light rays arrive at each
ps from a range of directions, instead of a single ray from a particular direction.
Such lights are known as broad solar lights and arce analogous to very distant but
very large area lights. (For example, the sun actually subtends a 1/2 degree angle
when seen from Earth.) The cxact mechanism for handling these cases may be
implementation dependent, differing from renderer to renderer.

?—1

234 9 Illumination Models and Lights

Listing 9.15 distantlight, a light shader for infinitely distant light sources -
: with parallel rays. .

Tight

distantlight (float intensity = 1;
color lightcolor = 1;
point from = point "shader" (0,0,0)
point to = point “shader" (0,0,1);

solar (to-from, 0) {
C1 = intensity * lightcolor;
}

Listing 9.16 pointlight radiates light in all directions from a particular
point.

Tight
pointlight (float intensity = 1,
color lightcolor = 1;
point from = point “"shader" (0,0,0)3)

illuminate (from) {
C1 = intensity * lightcolor / (L . L);
}

For lights that have a definite, finitely close position, there is another construct
to use:
i1luminate (point from) {
statements;

}

This form of the i1Tuminate statement indicates that light is emitted from position
from and is radiated in all directions. As before, i1Tuminance implicitly sets L = Ps
- from. Listing 9.16 shows an example of a simple light shader that radiates light in
all directions from a point from (which defaults to the origin of light shader space?).
Dividing the intensity by L.L (which is the square of the length of L) results in what
is known as 1/r? falloff. In other words, the energy of light impinging on a surface
falls off with the square of the distance between the surface and the light source.

41n a light shader, "shader™ space is the coordinate system that was in effect al the point that the :
LightSource statement appeared in the RIB file.

Light Sources

Listing _E]:}? spotlight radiates a cone of light in a particular direction.
1ight
spotlight (float intensity = 1}
color lightcolor = 1
point from = point Yehader" (0,0,0);
point to = point "ghader" (0,0,1)%
float coneangle = radians(30);
float conedeltaangle = radians(5);
float peamdistribution = 23)

uniform vector A = normalize(to-from);

uniform float cosoutside = €05 (coneangle);
uniform float cosinside = COS (coneang'le-conede1taang‘le};

i1luminate (from, A, coneangle) {
)

float cosangle = (L . A) / length(L
float atten = pow (cosangle, beamdistr‘ibution) /(L. L)

atten *= smoothstep (cosoutside, cosinside, cosangle):
¢l = atten * intensity * lightcolor;

P T

A second form of i17luminate also specifies a particular cone of light emission,

given by an axis and angle:
i1luminate (point from; vector axis; float angle) {
statements;

}

¢ of this construct can be found in the standard spotlight shader,

17. The illuminate construct will prevent light from being
de the cone. In addition, the shader computes 1/r7
Jsine falloff to directions away from the central axis,
dges of the cone.

he corresponding i11uminance statement
axis and angle from which to gather
the body of statements inside
tion for lights whose

An example us
shown in Listing 9
emitted in directions outsi
distance falloff, applies a o
and smoothly fades the light out at the ¢
Both forms of i1luminate will check t
from the surface shader, which specified a cone
light. 1f the from position is outside this angle range,
A the i1luminate construct will be skipped, thus saving computa
3 results would be ignored.
The lights presented here are Very simple examples of light shaders, only meant
to illustrate the solar and i1luminate constructs. For high-quality image gencra-
tion, many more controls would be necessary, including more flexible controls over
the light's cross-sectional shape, directional and distance falloff, and so on. Such

: controls will be discussed in detail in Chapter 14.

—-—‘

o,

'

ot

- WL

R

it ko

236

g |llumination Models and Lights

Table 9.3: Global variables available inside area light shaders. Variables are

read-only except where noted.
__read-only €AAAER B e a
point Ps Position of the point on the surface that requested data
from the light shader.
point P Position of the point on the light.
normal N I'he surface normal of the light source geometry (at P).

float u, v, s, t The2D parametric coordinates of P (on the light source -
geomet ry).

vector dPdu The partial derivatives (i.c., tangents) of the light
vector dPdv source geometry at P.
vector L The vector giving the direction of outgoing light from

the source-1o the point being shaded, Ps. This variable
can be set explicitly by the shader but is generally set
implicitly by the i [Tuminate or solar statements.
color C1 The light color of the energy being emitted by the
source, Setting this variable is the primary purpose of
a light shader.

Area Light Sources

Areca light sources arc those that are associated with geometry (see Section 3.6).
Table 9.3 lists the variables available inside area light sources. Many of the variables
available to the area light shader describe a position on the light that has been
selected by the renderer as the point at which the light shader is sampled. You
need not worry about how this position is selected—the renderer will do it for you.

positions, normals, and parameters on the light only make sense if the light is
an area light source defined by a geometric primitive. If the light is an ordinary
point source rather than an arca light, these variables are undefined. Note that
PRMan does not support arca lights. Therefore, in that renderer the light geometry
variables are undefined and should not be trusted to contain any meaningful data.

An example light shader that could be used for a simple area light source is given
in Listing 9.18. Note the similarity to the pointlight shader—the main difference
is that, rather than using a from parameter as the light position, we illuminate from
the position P that the renderer chose for us by sampling the area light geometry.
This shader illuminates only points on the outside of the light source geometry. It
would also be fine to simply use poi ntlight, if you wanted the area light geometry
to illuminate in all directions.

Shadows

Notice that light shaders are strictly “do-it-yourself” projects. If you want color, -
you have to specify it. It you want falloff, you need to code it {(in the case of
distantlight we have no distance-based falloff; for spotlight and pointlight we

Light Sources

U%ﬂngglﬁjyf

Tight
arealight (float intensity = 1;

alight is a simple arealightshader.
color lightcolor = 1;)

i1luminate (P, N, PI/2) {
g C1 = (intensity / (L.L)) * 1ightcolor;

used 1/r2 falloff). Similarly, if you want the lights to be shadowed, that also needs

to be in the shader.

A number of shadowing algorithms have
relative merits depend greatly on the overall rendering architectures. So as not to

make undue demands on the renderer, the RenderMan standard provides for the
“lowest common denominator”™: shadow maps. Shadow maps are simple, relatively
cheap, very flexible, and can work with just about any rendering architecture.

The shadow map algorithm works in the following manner. Before rendering the
main image, we will render separate images from the vantage points of the lights.
Rather than render RGB color images, these light source views will record depth only
(hence the name, depth map). An example depth map can be seen in Figure 9.10.

Once these depth maps have heen created, we can render the main image from
the point of view of the camera. In this pass, the light shader can determine if a
particular surface point is in shadow by comparing its distance to the light against
that stored in the shadow map. If it matches the depth in the shadow map, it is the
closest surface to the light in that direction, so the object receives light. If the point
in question is farther than indicated by the shadow map, it indicates that some
other object was closer to the light when the shadow map was created. In such a

case, the point in question is known to be in shadow. Figure 9.10 shows a simple
scene with and without shadows, as well as the depth map that was used to produce

the shadows.
Shading Language gives us a handy

been developed over the years, and their

built-in function to access shadow maps:

float shadow (string shadowmapname; point Ptest; ... b |

The shadow() function tests the point Ptest (in wcurrent” space) against the
shadow map file specified by shadowmapname. The return value is 0.0 if Ptest is
unoccluded and 1.0 if Prest is occluded (in shadow according to the map). The
return value may also be between 0 and 1, indicating that the point is in partial
shadow (this is very handy for soft shadows).

Like texture() and envi ronment (), the shadow() call has sev
arguments that can be specified as token/value pairs:

eral optional

—————'_

g {llumination models and Lights

Figure 9.10 Shadow depth maps. A simple scene with and without shadows (lefy). The
shadow map is just & depth image rendered from the point of view of the light source
(right). (To visualize the map, we assign white to near depths, black 1o far depths.)

f blurring at the shadow edges,

ontrols the amount ©
n area light source. (See Figure

@ "blur" takes a float and ¢
as if to simulate the penumbra resulting from a
9.11.) A value of 'b) ur=0" makes perfectly sharp shadows; larger values blur the
edges. It is strongly advised to add some blur, as perfectly sharp shadows look

unnatural and can also reveal the limited resolution of the shadow map.

s used to test the shadow

@ "samples” is a float specifying the number of sample
map. Shadow maps arc antialiased by supersampling, s0O although having larger
numbers of samples i1s more expensive, they can reduce the graininess in the
blurry regions. We recommend a minimum of 16 samples, and for blurry shad-
ows it may be quite reasonable to use 64 gsamples or more.
nhias" is a float that shifts the apparent depth of the objects from the light. The
<hadow map is just an approximation, and often not a very good one. Because of
numerical imprecisions in the rendering process and the limited resolution of the
shadow map, it is possible for the shadow map lookups to incorrectly indicate
that a surface is in partial shadow, even if the object is indeed the closest to the
light. The solution we use is 10 add a “fudge factor” to the lookup to make sure
that objects are pushed out of their own shadows. Selecting an appropriate bias
value can be tricky. Figure .12 shows what can go wrong if you select a value
that is either too small or too large.
rate of change of Ptest

w "width" is a float that multiplies the estimates of the
(used for antialiasing the shadow map lookup). This parameter functions anal-

ogously to the nwidth" parameter 10 texture() or envi ronment(). Its use is

Light Sources

Figure 9.11 Adding blur to shadow map lookups can give a penumbra effect.

Too small a bias value will result in incorrect self-
shadowing (left), Notice the darker, dirtier look compared o Tigures 0.11 or 9.10. Too
much bias can also introduce artifacts, such as the appearance of “floating objects” or
the detached shadow at the bottom of the cylinder {right).

Figure 9.12 Selecting shadow bias.

largely obsolete and we recommend using oplur” rather than "width” 0 make

soft shadow edges.

The Ptest parameter determines the pointat which to determine how much light

is shadowed, but how does the renderer know the point of origin of the light? When
the renderer creates a shadow map, it also stores in the shadow file the origin of the
camera at the time that the shadow map was made—in other words, the emitting
point. The shadow() function knows to look for this information in the shadow map
file. Notice that since the shadow origin comes from the shadow map file rather
o than the light shader, it's permissible (and often useful, see Section 14.2.3) for the

; shadows to be cast from an entirely different position than the point from which the

light shader illuminates. Listing 9.19 shows a modification of the spot1ight shader

that uses a shadow map. This light shader is still pretty simple, but the entirety of

Chapter 14 will discuss morc exotic features in light shaders.
Here are some tips to keep in mind when rendering shadow maps:

240 9 Itlumination Models and Lights

Listing 9.19 shadowspot is just like spotlight, but casts shadows using a
shadow depth map. o i

Tight
shadowspot (float intensity = 1;
color lightcolor = 1;
point from = point "shader” (0,0,0);
point to = point "shader" (0,Q,1);
float coneangle = radians(30);
float conedeltaangle = radians(5);
float beamdistribution = 2; y
string shadowname = ""; i
float samples = 16; E
e g float blur = 0.01;
i float bias = 0.01;)

uniform vector A = normalize(to-from);
uniform float cosoutside = cos (coneangle);
uniform float cosinside = cos (coneangle-conedeltaangle);

illuminate (from, A, coneangle) {

float cosangle = (L . A) / length(L);

float atten = pow (cosangle, beamdistribution) £k, .. LYz

atten *= smoothstep (cosoutside, cosinside, cosangle);

if (shadowname != "") {

atten *= 1 - shadow (shadowname, Ps, "samples”,

samples, "blur", blur, "bias",
bias); '

C1 = atten * intensity * lightcolor;

Select an appropriate shadow map resolution. It's not uncommon (o use 2k x 2k
or even higher-resolution shadow maps for film work.

View the scene through the "shadow camera” before making the map. Make sure
that the field of view is as small as possible, so as to maximize the effective
resolution of the objects in the shadow map. Try to avoid your objects being
small in the shadow map frame, surrounded by lots of empty unused pixels.
Remember that depth maps must be one unjittered depth sample per pixel. In
other words, the RIB file for the shadow map rendering ought to contain the
following options:

PixelSamples 1 1
PixelFilter "box" 1 1

Hider “hidden” "jitter" [0]
Display "shadow.z" “zfile" "z"
ShadingRate 4

Further Reading

m Some renderers may creatc shadow map files directl

In shadow maps, only depth is needed, not color. To save time rendering shadow
maps, remove all surface calls and increase the number given for ShadingRate
(for example, as above). If you have surface shaders that displace significantly
and those bumps need to sclf-shadow, you may be forced to run the surface
shaders anyway (though you can still remove the lights). Beware!

When rendering the shadow map, only include objects that will actually cast
shadows on themselves or other objects. Objects that only receive, but do not

cast, shadows (such as walls or floors) can be eliminated from the shadow map

pass entirely. This saves rendering time when creating the shadow map and also
bias will cause these objects to

climinates the possibility that poorly chosen

incorrectly self-shadow (since they aren’t in the maps anyway).
y. Others may create only

“depth maps” (or “z files”) that require an additional step to transform them
into full-ledged shadow maps (much as an extra step is often required to turn
ordinary image files into texture maps). For example, when using PRMan, z files

must be converted into shadow maps as follows:
txmake -shadow shadow.z shadow.sm

This command invokes the txmake program (PRMan's texture conversion util-
ity) to read the raw depth map file shadow.z and write the shadow map file
shadow. sm.

rs (including BMRT, but not PRMan) support
automatic ray-cast shadows that do not require shadow maps at all. In the case of
BMRT, the following RIB attribute causes subsequently declared LightSource and
ArealightSource lights 10 automatically be shadowed:

It is also possible that some rendere

Attribute "1ight" "shadows" [“"on"]

There are also controls that let you specify which geometric objects cast shadows
(consult the BMRT User's Manual for details). Chapter 17 also discusses extensions
to Shading Language that allow for ray-cast shadow checks in light shaders.

Further Reading
els for computer graphics used Lambertian

Early simple ‘local illumination mod

reflectance. Bui Tuong Phong (Phong, 1973) proposed using a specular illumination
model (L - R)™ and also noted that the appearance of faceted objects could be
improved by interpolating the vertex normals. Phong's reflection model is still
commonly used in simple renderers, particularly those implemented in hardware.
Blinn reformulated this model as (N -)™, with H defined as the angle halfway
between L and N. This gives superior results, but for some reason few renderers or

graphics boards bother to use this improved version.

242

9 Illumination Models and Lights

The fundamentals of environment mapping can be found in Greene (1986a,

1986b).
The anisotropic specular illumination model that we use came from ward (1992).

The reader is directed to that work for more information on the derivation, details,
and use of Greg Ward Larson's model. Additional anisotropic local illumination
models can be found in Kajiya (1983) and Poulin and Fournier (1990). Oren and
Nayar's generalization of Lambert's law can be found in Oren and Nayar (1994). A
similar reflection model for simulation of clouds and dusty and rough surfaces can
be found in Blinn (1982). Treatments of iridescence can be found in Smits and Meyer
(1989) and Gondek, Meyer, and Newman (1894).
An excellent overall discussion of surface physics, including refraction and the
Fresnel equations {derived in all their gory detail), can be found in Hall (1989).
This book contains equations and pseudocode for many of the more popular local
illumination models. Unfortunately, it has come to our attention that this book is
now out of print. Glassner's book (1993) also is an excellent reference on BRDFs.
Additional papers discussing local illumination models include Blinn and Newell
(1976), Blinn (1977), Cook and Torrance (1981), Whitted and Cook (1985, 1988),
Hall (1986), Nakamac, Kaneda, Okamoto, and Nishita (1990), He, Torrance, Sillion,
and Greenberg (1991), Westin, Arvo, and Torrance (1992), Schlick (1993), Hanrahan
and Krueger (1993), Lafortune, Foo, Torrance, and Greenberg (1997), and Goldman

(1997).
Shadow maps are discusse
(1987).

d in williams (1978) and Reeves, salesin, and Cook

et

