Shading Language

RenderMan Shading Lan-

This chapter provides a refresher on the
owever, it is not a tutorial on programmin
for The RenderMan Companion or the

guage. H g in general, nor
is it intended to be a substitute

RenderMan Interface Specification. But rather it is meant to serve as a

handy quick reference guide to Shading Language itself.

Shading Language is loosely based on the C programming language.

We will use this to our advantage in this chapter by assuming that (1)
ut gcncrdi programming concepts such a
u are reasonably [ amiliar with C; (3) your

to allow casual discussion of

you already know abo s vari-
ables, loops, and so on; (2) yo

mathematical background is sufficient

trigonometry and vector algebra; (4) you have sufficient background

raphics 1o understand intermediate-level co
utations. If you are lacking in any of these

in computer g ncepts re-

lated to illumination comp
erial in Chapter 2 and its references.

159

areas, you should review the mat




160

7.1

7 Introduction to Shading Language

Shader Philosophy

erers have a fixed shading modcl.
rance of surfaces and the way that

rers use simple Phong illumination,

This means that a single equation is
they respond to

Many rend
which looks like

used to determine the appea
light. For example, many rende
this:
nlights
Coutput = KaCamb + Z (chdiit(N CLCli KSCSpEL'(R SL)™
=1

where
ly, of light number i

meters to the equation.
objects look as if they

ction and color, respective
and Cspec arc user-specified para
the user can make different

@ L;and Cl; are the dire

2 Kur Kd- KS' n, Cambs C’diﬂ"
By changing these parameters,
are made of different materials

@ N is the surface pormal and R is the mirror reflection direction from the point
of view of the camera

@ Coutput I8 the resulting color of the surface

objects appear as

common and tends to make
like metal if both

This particular equation is especially
is white and somewhat

though they are made of plastic if Cspec
Cspec and Cayir are set 1o the same color.

Because a world made of flat-colored plastic would hardly be interesting, a com-

mon extension to this scheme is to allow the use of stored image files to determine
the value of Cgigr as it varies across the surface (this is called "texture mapping") or
1o modulate the surface normal N ("bump mapping”)- gomewhat more sophisticated
renderers may allow an image file to modulate any of the user-supplied parameters,
but this still does not change the fundamental form of the shading equation, and
therefore the resultling materials have a rather narrow range of appearances. Fur-
thermore, even when using stored images 1o modulate the surface parameters, you
are limited to the few kinds of modulations allowed by the renderer, and stored tex-
tures have a variety of limitations including limited resolution, obvious tiling and
repetition artifacts, storage Costs, and the problem of how the image textures get

created in the first place.

Shading Language Overview
me, RenderMan-compliant rende
shading equation. Rather, @ programming Janguage is used to describe the int
actions of lights and surfaces. This idea was pioneered by Rob Cook (Cook, 198
and further elaborated by Pat Hanrahan in the RenderMan Specification itself (Pixar
1989; Hanrahan and Lawson, 1980) and by the PRMan product. The programs de-
scribing the output of light sources, and how the light is attenuated by surfaces @

In contrast to this sche rers do not use a si




Shader Philosophy 161

volumes, are called shaders, and the programming language that we use is known

as Shading Language.
The RenderMan Interface Specification describes several types of shaders, distin-

guished by what quantities they compute and at what point they are invoked in the
rendering pipeline:

surface shaders describe the appearance of surfaces and how they react to the
lights that shine on them.

Displacement shaders describe how surfaces wrinkle or bump.

Light shaders describe the directions, amounts, and colors of illumination dis-

tributed by a light source in the scene.
Volume shaders describe how light is affocted as it passes through a participating
medium such as smoke or haze.
Imager shaders describe color transformations made
they are output. (Programmable imager shaders are sup

by PRMan.)

to final pixel values before
ported by BMRT, but not

All shaders answer the question “What is going on at this spot?” The execution
model of the shader is that you (the programmer) are only concerned with a single
point on the surface and are supplying information about that point. This is known
as an implicit model, as compared to an explicit model, which would be more of the
flavor “draw feature X at position Y." The job of a surface shader is 1o calculate the
color and opacity at a particular point on some surface. To do this, it may calculate
any function, do texture map lookups, gather light, and so on. The shader starts out
with a variety of data about the poinl being shaded but cannot find out about any
other points.

The RenderMan Shading Language is a C-like language you can use to program
the behavior of lights and surfaces. Shading Language gives you

m basic types useful for manipulating points, veclors, oT colors

@ mathematical, geometric, and string functions
@ access to the geometric state at the point being shaded, including the position,

normal, surface parameters, and amount of incoming light
@ parameters supplied to the shader, as specified in the declaration of the shader
or alternatively attached to the geometry itsell

with this information, the goal of the surface shader is to compute the resulting
color, opacity, and possibly the surface normal and/or position ata particular point.

The remainder of this chapter will give a quick introduction to the RenderMan
Shading Language, with an emphasis on the basic functionality you will need to
write surface and displacement shaders. The vast majority of shaders written for
production are surface shaders. Although volume and light shaders are also im-
portant, they are more esoteric and less frequently written and so will be covered

separately elsewhere in this book.




7 Introduction to Shading Language

Listing 7.1 pl astic.si: The standard plastic shader. Note that we have

modified the shader slightly from the RI spec in order to reflect more modern

SI. syntax and idioms. The line numbers are for reference only and are not
part of the shader!

i e ———

surface
plastic ( float Ka=1, Kd=1, Ks=0.5, roughness = 0.1;
color specularcolor = 1;
)

/* Simple plastic-like reflection model */

1

2

3

4

5

6

7 normal Nf = faceforward(normaﬁze(u),I);

8 vector V = -normalize(I);

9 Ci =0Cs * (Ka*ambient() + Kd*diffuse(Nf))
10 + Ks*specu1arco'lor*specu'lar(Nf,V.roughness);
11 0i = 0s; Ci *= 0i;

12

Quick Tour of a Shader

Listing 7.1 is an example surface shader that roughly corresponds to the single
built-in shading equation of many renderers. 1f you are an experienced C program-
mer, you will immediately pick out soveral familiar concepts. shaders look rather
like C functions.

Lines 1 and 2 specify the type and name of the shader. By convention, the source
code for this shader will probably be stored in a disk file pnamed plastic.sl, which
is simply the shader name with the extension .s1. Lines 2-4 list the parameters 10
the shader and their default values. These defaults may be overridden by values
passed in from the RIB stream. Lines 5-12 are the body of the shader. In lines
7-8, we calculate a forward-facing normal and a normalized “view" vector, which
will be needed as arguments to the lighting functions. Lines 9-10 call several built-
in functions that return the amount of ambient, diffuse, and specular reflection,
scaling each by different weights, and summing them to give the final surface color
Ci. Because surface shaders must set associated colors and opacities, line 11 sets
the final opacity 0i simply to the default opacity of the geometric primitive, 0s,
and then multiplies Ci by 01, in order 10 ensure that it represents associated color
and opacity. Note that several undeclared variables such as N, I, and Cs are used
the shader. Thesc are so-called global variables that the renderer precomputes &
makes available to the shader.

Most surface shaders end with code identical to lines 7-11 of the example. The
main enhancement is the specialized computations they perform to select & b
surface color, rather than simply using the default surface color, Cs. Shaders mk
additionally change the weights of the various lighting functions and might mod
N and/or P for bump or displacement effects.




float Sealar floating-point data (numbers)
point Three-dimensional positions, directions, and surface orientations
vector
. normal
color Spectral reflectivities and light cnergy values
matrix 4 x4 transformation matrices
string Character strings (such as filenames)

shading Language Data Types

Shading Language provides several built-in data types for performing computations
inside your shader as shown in Table 7.1. Although Shading Language is superfi-
cially similar to the C programming language, these data types are not the same as
those found in C. Several types are provided that are not found in C because they
make it more convenient to manipulate the graphical data that you need to ma-
nipulate when writing shaders. Although float will be familiar to C programmers,
Shading Language has no double or int types. In addition, SL does not support
user-defined structures or pointers of any kind.

Floats

The basic type for scalar numeric values in Shading Language is the float. Because
SL does not have a separate type for integers, floatis used in SL in circumstances
in which you might use an int if you were programming in C. Floating-point con-
stants are constructed the same way as in C. The following are examples of float
constants: 1, 2.48, -4.3e2,

Colors

Colors are represented internally by three floating-point components.! The com-
ponents of colors are referent to a particular color space. Colors are by default
represented as RGB triples ("rgb" space). You can assemble a color out of three

e e e

1 §trictly speaking, colors may be represented by mare than three components, But since all known
RenderMan-compliant renderers use a three-component color model, we won't pretend that you must be
general, It's highly unlikely that you'll ever get into trouble by assuming three color components.




7 InuoducﬁontoShadingLanguage

Table 7.2: Names of color spaces.
B R e e — s =
*rgb* The coordinate system that all colors start out in and in which the
renderer expects to find colors that are sct by your shader (such as
Ci, 0, and C1.
npev"  hue, saturation, and value
"hel"  hue, saturatior, and hightness
vision standard.

wyiq* The color space used for the NTSC tele

nxyz" CIE NY7Z coordinates
nxyY"  CIE xyY coordinates

r representing an RGB triple or some other color space known to the

e some examples:

/* black L
/% pinkish ®f
/% specify in

flpats, cithe
renderer. Following ar

color (0, O, 0)

color "rgb" (.75, .5, .5)
color "hsv" (.2, .5, .63)
regsions return colors in "rgb" space. Even the third example
ce—specifically, the RGB value of the color that is equiv-
0.3, and value 0.63.1In other words, when assembling a
fic color space in this manner, there
t uscful color spaces that the

"hev" space */

All three of these exp
returns a color in " rgb" spa
alent to hue 0.2, saturarion
color from components given relative to a speci
is an implied transformation to " rgb" space. The mos
renderer knows about are listed in Table 7.2.

Colors can have their individual components ¢
and setcomp functions, respectively. Some color calculations are easier 1o express

in some color space other than "rgb”. For example, desaturating a color is more
casily done in "hsv" spacc. Colors can be explicitly wransformed from one color
space 10 another color space using ctransform (sec Section 7.5 for more details).
Note, however, that Shading Language docs not keep track of which color variables
are in which color spaces. It is the responsibility of the SL. programmer L0 track this
and ensure that by the end of the shader, C4i and 0i arcin the standard "rgb" space.

xamined and set using the comp

Points, Vectors, Normals

Points, vectors, and normals are similar data typ
subtly different semantics. We will frequently re
“point-like” data types when making statements th

A point is a position in 3D space. A vector
does not exist in @ particular location. A normal
is perpendicular 10 & surface and thus describes
perpendicular vector uses different transformation r
we will discuss in this section. These three types are i

os with identical structures but
fer to them collectively as the
at apply to all three types. :
has a length and direction but
is a special type of vector that
he surface's orientation. Such @
ules from ordinary vectors, as
Nustrated in Figure g




shading Language Data Types 165

® normal n
point P veglor v

all comprised of three

Figure 7.1 Points, vectors, and normals are
directions, and

floats but represent different entitics —positions,
surface orientations.

ol
camera
object

world

Figure 7.2 A poinl may be measured relative Lo avariety of coordinate systems.

internally represented by three floating-point

All of these point-like types are
lative to the three axes of

numbers that uniquely describe a position or direction re
some coordinate system.

As shown in Figure 7.2, there may he many different coordinate systems that the

renderer knows about (*world” space and a local “object” space, for example, were
discussed in Chapter 3; others will be detailed later). Obviously, a particular point
in 3D can be represented by many different sets of three floating-point numbers —
one for each coordinate system. o which one of these spaces is the one against
which your points and vectors are measu red?

All points, vectors, and normals are described relative to some coordinate sys-
tem. All data provided to & shader (surface information, graphics state, paramcters,
and vertex data) are relative to one particular coordinate system that we call the
"current” coordinate systen. The "current” coordinate system is one that is con-

venient for the renderer’s shading calculat
You can “assemble” a point-like type ou

ions.
t of three floats using a constructor:

point (0, 2.3, 1)
vector (a, b, ©
normal (0, 0, 1)



166

7 lIntroduction to Shading Language

These expressions are in terpreted as a point, vector, and normal whose three com- 3
ponents are the floats given, relative to "current” space. For those times when 1
you really need to access or set these three numbers, SL provides the routines :
xcomp, ycomp, zCcomp, comp, setxcomp, setycomp, setzcomp, setcomp (see Sec-
tion 7.5).

As with colors, you may also specify the
coordinate system:

coordinates relative to some other

Q = point “object" (0, 0, 0);

This example assigns to Q the point at the origin of “object” space. However,
this statement does not set the components of Qto (0,0,0)! Rather, Q will contain the
wcurrent"” space coordinates of the point that is at the same location as the origin
of "object" space. In other words, the point constructor that specifies a space name
implicitly specifies a transformation to "current” space. This type of constructor
also can be used for vectors and normals.

The choice of "current” space s implementation dependent. For PRMan, "cur-
rent" space is the same as "camera” space; and in BMRT, vcurrent” space is the
same as "wor1d"” space. Other renderers may be different, s0 it's important not to
depend on "current” space being any particular coordinate system.

Some compulations may be easier in a coordinate system other than "current”
space. For example, it is much more convenient to apply a “solid texture” Lo a mov-
ing object in its "object" space than in "current” space. For these reasons, SL
provides built-in functions that allow you to transform points among different co-
ordinate systems. The built-in functions transform, vtransform, and ntransform
can be used to transform points, vectors, and normals, respectively, from one co-
ordinate system to another (see Section 7.5). Note, however, that Shading Language
does not keep track of which point variables are in which coordinate systems. It
is the responsibility of the SL programimer to keep track of this and ensure that,
for example, lighting computations are performed using quantities in "current"

space.

Be very caretul to usc the right transformation routines for the right point-like
types. As described in Chapter 2, points, direction vectors, and surface normals all
transform in subtly different ways. ‘Tra nsforming with the wrong matrix math will
introduce subtle and difficult-lo-fix errors in your code. Therefore, it is important
to always use transform for points, veransform for vectors, and ntransform for
normals. i

Several coordinate systerms arc predefined by
Language. Table 7.3 summarizes some of the mos
CoordinateSystem (or C APl RiCoordinateSystem) may
names to user-defined coordinate systems. These names ma
inside your shader to designate transformations.

name in the definition of Shading
t useful ones. The RIB statem

be used to give addition
y also be referenced




Shading Language Data Types

‘fable 7.3: Names of predeciared sECH50x

The coordinate system at all points s
< are carried out. Note that the

be different on each renderer.

tart out in and the onc

e graphics primitive (sphere,

(he time that the shader
cement, or LightSource

prigin at the center of the

_axis pointing right, y-axis pointing up, and

inate system of the camera’s

"current”
in which all lighting calculation
choice of "current” space may
"object™ The local coordinate system of tk
patch, etc.) that we are shading.
vchader”  The coordinate systcii active at
was declared (by the Surface, Displa
statement).
“world" The coordinate system active at worldBegin.
"camera" The coordinate sysiciil with its
camera lens, x
z-axis pointing into the screen,
"screen” The per.ﬁ'puL'ri\’e-mrrcn'[mf coord

image plane. Coordinate (0,0) 1r

along the z-axis of "camera" space.

The 2D projucted spacy of the |
of pixels, Coordinate (0,0 in"r
corner of the image,
down, respectively.
“NDC" Normalize

normalized so that x a

the whole image, with (0,
and (1,1) being at the lowe
aspect ratio).

“raster”

Matrices

Shading Language has a matrix ty
quired to transform points and vec
Matrices are represented
tion matrix). Beware if you de
to be a lot of data!

A matrix can be constructed from a single

matrix zero = 0; /% makes a matri

matrix ident = 13

/* Construct a matrix from 16
matrix m = matrix (m00, m0l,

m20, m21l, m22, m23, m3

Assigning a single floating-point number x

diagonal components all being x a

d device coordinates-
nd ¥ both run from 0 to 1 across

0) being at the upper left of the image,
r right (regardless of the actual

pe that represen
tors between one
internally by 16 floats (a 4x4
clare a matrix of storage ¢

nd other components being «

, "screen” space is looking

inal output image, with units
aster” space is the upper-left

with x and ¥ increasing to the right and

like raster space but

ts the transformation matrix re-
coordinate system and another.
homogeneous transforma-
lass varying. That's going

float or 16 floats, For example:

x with all 0 components */

/* makes the identity matrix */

floats */
m02, m03, mi0, mil, m12, ml3,

0, m31, m32, m33);

o a matrix will result in a matrix with
ero {i.c., x times the




2 Introduction to Shading Language

e
.

168

identity matrix). Constructing a matrix with 16 floats will create the matrix whosc
components are those floats, in row-major order.
Similar to point-like types, amatr ix may be cons

space:

tructed in reference to a named

/* Construct matrices relative to something other than "current” */

matrix g = matrix "shader" 1; . :
matrix m = matrix "world” (mDQ, mo1, mOZ, m03, w10, mil, ml2, mi3, 3
m20, m21, m22, m23, m30, wmil, m32, w33);

matrix that transforms points from "current" space to
by this matrix is identical to calling trans-
form("shader”,...). The second form prepends the current-to-world transtorma-
tion matrix onto the 4 » 4 matrix with components #too ... 133 Note that although
we have used "shader” and "world" space in our examples, any named space is
acceptable.

Matrix variables can be tested for equality and inequality with the == and !=
Boolean operators. Also, the # operator between matrices denotes matrix multipli-
cation, while m1 / m2 denotes multiplying m1 by the inverse of matrix m2. Thus, a
matrix can be inverted by writing 1/m. In addition, some functions will accept ma-
trix variables as arguments, ds described in Section 7.5.

The first form creates the
"shader" space. Transforming points

Strings
The string lype may hold character strings. The main application of strings is to
provide the names of files where textures may be found. Strings can be checked for
equality and can be manipulated with the format () and concat() functions. String
constants are denoted by surrounding the characters with double quotes, as in "I
am a string literal”. Strings in Shading Language may be uniform only. _3 ¢

Shading Language Variables

There are three kinds of variables in Shading Language: global variables, local vari-
ables, and shader parameters. These correspond pretty much exactly to the globals,
locals, and parameters of & subroutine in a language like C. The one ditference is
that variabies in Shading Language not only have a data type (float, point, etc.) but
also a designated storage class. The storage class can be either uniform or varying
(except for strings, which can only be uniform). Variables that are declared as uni=
form have the same value eve rywhere on the surface. (Note that you may assign 1o,
or change the value of, uni form variables. Do not confuse uniform with the concept
of “read-only.”) Variables that arc declared as varying may take on different values
at different surface positions.



169

shading Language Variables

Table 7.4: Global variabies & il inuide surface and displacement shaders.
variables are read-only except whe

b

Position of the point you arce shading. Changing this

variahle displaces the surlace,

normal N [he surface shadng sormal (orientation) at P,
Changing N yields bump apping.

al at P This can differ from &

us ways including bump

rtex normals, but Ng

1 of the facet you

point P

Ihe true surface notn
N can be overridden in vario
mapping and user-provided ve
is always the true surface norma
are shading.
vector L (he incident vecl nointing from the viewing
position 1o the shading position P.
olor and opacity, respectively.

normal Ng

color Cs, Os The default sartac
Float u, v fhe 2D parametric coordinates of P (on the
particular grometr primitive you are shadingh

caliies Can
Silin Cdil

The 21 texiur aordinates of P71 e
default 1o u, v, but a number of mechai
override the origina! values,

The partia) derivatives (LG,

tloat s, L

vector dPdu rangents) of the surface
vector dPdy

at e
Fhe Lie of the cuerenl shading sample.,

time

float du, dv Al Grate of the amount that the surface
paranieters u and v change from sampie sample.

vector L 1 hese variables contam the information coming

color C1 from the lights and may be accessed hrom nside

117uminance loops nniv,
color and opacity of the surface at
o variables is the primarn poal of

Wi

I'he final surface

Posetting these

color Ci, Of

a1 surface shader,

Global Variables

so-called global variables (sometim
T basic information that the rendere
B i as position, surface orientation. an
these variables; they are simply available
available in surface shaders are listed in Table 7.4,

tate variables) contain the
+ knows about the point being shaded, such
d default surface color. You need not declare
by default in your shader. Global variables

es called graphics $

7.3.2 Local Variables

e are those thar you, the shade
s 1o local variables in C or any Q

Local variabl ¢ writer, declare for your own usc. They
are analogou ther general-purpose programming

language.




7 introduction to shading Language

]Language is (items in brackets are

The syntax for declaring a variable in Shading
optional)

[class] type variablename [ = initializer]

where

@ the optional class gpecifie
defaults to varying for local variables.

m typeis oneof the basic data types, described earlier.

variablename is the name of the variable you ar¢ declaring.

@ if you wish 10 give your variable an initial value, you may do so by assigning an

initializer.
Recent rendere

s one of uniform or varying. If class is not specified, it

rs also support arrays, declared as follows:

ame [ arraylen 1 = { init0, initl . .+ }

ength; they may not be dynami-
han that, however, the syntax of
amples of variable

class type variablen

Arrays in Shading Language m
cally sized. Also, only 1D arrays are
array usage in Shading Language is largely
declarations are
float a; /* Declare; current value is undefined w/
uniform float b; /% Explicitly declare b as uniform */

float c = 1; /% Declare and assign ¥/
Another declaration and assignment */

float d = b*a; /*

float e[10]; /% The variable e is an array xf

when you declare les, you will generally want them to be varying.
But be on the lookout for variables that take on the same value everywhere on the
surface (for example, loop control variables) pecause declaring them as uniform
may allow some renderers to take shortcuts that aliow your shaders to exccute more
quickly and use less memory. (PRMan is a renderer for which uniform variables take

much less memory and experience much faster computation.)

ust have a constant 1

allowed. Other t
gimilar to C. Some ex

local variab

Shader Parameters
or allow you to write shaders th
ces. For example, if you are writing a shader for a wood
s to specify such {hings as the grain color
shard-coded” in the body of the shader.
ows you to reuse the shader for a differ- '
shader without knowing the value 0

at arc capable of simulating

parameters to your shad
a family of related surfa
surface, you may wish to use parameter
and ring spacing, rather than having them

pParameterizing your shader not only all

ent object later but also allows you to write the
the parameler. This is particulaﬂy useful if you are working in a production environs

ment where an art director is likely to change his or her mind about the details of @
object’s appearance after you have written the shader. In this case, it is much cagier
to change the parameter value of the shader than 10 return to the source code and
try to make deeper changes. For this reason, we strongly encourage parameterizing




shading Language Variables 171
your shader to the greatest degree possible, climinating nearly all hard-coded con-
stants from your shader code, if possible. Well-written shaders for “hero” objects
often have dozens or even hundreds of parameters.
Here is an example partial shader, showing several
curface pitted ( float Ka=l, Kd=1, Ks=0.5;
float angle = radians(30);
color spl otcolor = 03
color stripecolor = calor (.5, -5, TEA
string texturename = AN
string dispmapname = “mydisp.tx";
yector up = vector "shader” (0,0,1);
varying point pref = point (0,0,0);

parameters being declared:

}
Note the similarity to a function declaration in ¢. The syntax for parameter dec-
Jarations is like that for ordinary local variable declarations, except that shader
parameters must be declared with default values assigned to them. If a storage class
is not specifed, it defaults to uniform for shader parameters.

In the RIB file, you'll find something like

peclare "Kd" "float"
Declare “stripecoior” "color”

surface "pi rred" "Kd" {0.8] vgrripecol or"
Sphere 1 -1 1 360

e specifies that the given shader should become part of the attribute
ched to any subsequent geometric primitives. That line not
of the shader to usc but also overrides two of its parameter
r. Notice that prior to their use, those paramelers are

ill know their types.

.2 .3 .8]

The Surface lin
state and hence be attd
only specifies the name
values: Kd and stripecolo
declared so that the renderer w

7.3.4 Declarations and Scoping
It is worth noting that a local variable declaration is just an ordinary program state-
ment; a declaration may be placed anywhere that a statement would be allowed. In
particular, it is not necessary to sharply divide your shader such that all variables
are declared, then all statements are listed with no further variable declarations.
Rather, you may frecly mix variable declarations and other statements as long as
all variables are declared prior (textually) to their first use. This is largely a stylistic

choice, but many programmers feel that declaring variables near their first use can
make code more readable.




curly braces. For example,

float x = 2;

{
float x = 1;

printf ("%f/n", x

In this code fragment, the
printf will produce

hides the similarly na
scope.

The body of a shade

guage.

Expressions

The expressions available

the named constant PI

(1.2,3)
variable references
unary and binary oper

- expr

expr + expr
expr * expr
expr - expr
expr / expr
expr A expr
expr . expr

The operators +, -

Declarations may be scoped, as in ¢, by e

printf("%f\n", x);

2. In other words,
med but nevertheless separate

Statements and Control Fiow

ris ase
explains the major types of

conslants: floating point (¢

point, vector, normal, ©

the numeric types. For multicompon
operators combine their arguments on

7 Introduction to Shading Language

nclosing a group of statements inside

/* outer declaration */

/% inner declaration */

)

first printf statement will produce 1, but the second
the variable x declared in the inner scope

variable x declared in the outer

ents. This section briefly

quence of individual statem
patterns in Shading Lan-

statements and control-flow

in Shading Language include the tollowing:

L 1 B _35e4), string literals (e.g., “hello"), and

r matrix constructors, for example: point "world"

ators on other expressions, for example:
(negation)

{addition)

{multiplication)

{subtraction)

(division)

(vector €Cross product)

(vector dot product)

c used on any
matrices),
t basis.

« /, and the unary - (negation) may b
ent types (colors, veclors,
a component-by-componen



173

Statements and Control Flow

rs only work for vectors and normals and represent Cross

The A and . operalo

product and dot product, respectively.’
The only operators that may be applied to the matrix type are * and /, which
respectively denote matrix-matrix multiplication and matrix multiplication by

the inverse of another matrix.
® type casts, specified by simply having the ty

/% cast a point to a vector */

pe name in front of the value to cast

vector P
point f /* cast a float to a point */
color P /% cast a point to a color! */

The three-component types (point, vector, normal, color) may be cast to other
three-component types. A float may be cast to any of the three-component types
(by placing the float in all three components) or 10 a matrix (which makes a
matrix with all diagonal components being the float). Obviously, there are some

type casts that are not allowed because they make no sense, like casting a point

to a float or casting a string to a numerical type.
@ ternary operator, just like C: condition ? exprl : exprl

@ function calls

Assignments

Assignroents are nearly identical to those found in the € language:

variable = expression |

arrayvarfableiexpression] = expression

bine assignment and certain arithmetic operations
rators. Examples of declarations and assignments

Also, just as in C, you may com
using the +=, -=, "=, and /= ope

follow:
a=b; /% Assign b’s value to a */
d += 2 /*AddZtod*/’
el5] = a3 /* Store a's value in element 5 of ¢ */
c = e[2]; /* Reference an array element */

he following operators: inte-
1, A, &=, |=, A=), pre- and

Unlike C, Shading Language does not have any of
ger modulus (%), bit-wise operators or assignments (&
postincrement and decrement (++ and --).

e
(with point serving their purposes

o recent additions to SL
ed on points but will issue a

2 Because the vector and normal Type dr
operations to be perform

previously), most SL compilers will allow the vector
warning.




174 7 introduction to Shading Language

7.4.3 Decisions, Decisions
Conditionals in Shading Languagc work much as in C:

if ( condition )

truestatement
and
if ( condition ) :
truestatement
else
falsestatement
1 " The statements can also be entire blocks, surrounded by curly braces. For example,
if (s > 0.5) { i 1
0i = 1; ' T
4 } else { . ' 4
’ Ci = s+t; -
.' } &

In Shading Language, the condition may be one of the following Boolean opera-
tors: ==, = (equality and inequality); <, <=, >, >= (less-than, less-than or equal,
greater-than, greater-than or equal). Conditions may be combined using the logical

operalors; && (and), | | (o), ! (not).
Unlike C, Shading Language has no implied cast from float to Boolean. In other
words, the following is not legal:

float T = 5;
if (F) { /* Not legal */

}
A C programmer may instinctively write this code fragment, intending that the
conditional will evaluate to true il f is nonzero. But this is not the case in Shading

Language. Rather, the shader programmer must write

float f = 5;
if (Fi=0) { /% OK =/

}

Lather, Rinse, Repeat

Two types of loop COnstructs w
Repeated execution of statements
awhile statement:

ork nearly identically to their equivalents in c
for as long as a condition is true is possible with -




simple Built-in Functions

while ( condition )
truesmtement

Also, C-like for loops are also allowed:

for ( init; condition; loopstatement )
body 15

Ag with if statements, loop conditions
C, you may use break and continue stat
or skip to the next iteration, respectively.
and continue statements may take an optional numeric cons

efficiently exit from nested loops. For example,

must be relations, not floats. As with
ements to terminate a loop altogether .‘

As an enhancement over C, the break
tant, allowing you to

for (i = 0; 1 < 10; i+=1 {
for (3 = 03 3 < 5i j+=1{
if (...some condition...)
continue 2;

}

In this example,
priate conditions, executio
i —that is, the outer loop. If no nu
sumed that 1 18 intended—that is,
advanced.

As discussed in Cha

virtual SIMD machine. This introduces extra over
points are executing inside the body of loops and conditionals that have varying

conditions. Be sure to declare your loop control variables (the counters controlling
the loop iteration, such as i and j in the example) as uniform whenever possible. 5
Care that the conditions controlling if, while, and for statements are uniform can
greatly speed up execution of your shaders. In addition, using varying variables
in the condition of a Joop or conditional is asking for trouble, because this can
lead to jaggies on your surface and can even produce incorrect results if derivatives
are calculated inside the body of the loop or conditional (sce Chapter 11 for more

details).

ue indicates that under the appro-
jteration in the loop involving
ting level is given, it is as-
hould be exited or

the numeral 2 after the contin
n should skip to the next
mber indicating a nes

that only the current loop S

pter 6, PRMan chades entire grids at a time by simulating a
head into keeping track of which

2.5 Simple Built-in Functions

Shading Language provides a variety of built-in functions. Many are described in
- this section. For brevity, functions that are identical to those found in the standard
C library are presented with minimal elaboration, as are simple functions that




176

7 introduction to shading Language

are adequately explained in both The RenderMan Companion and The RenderMan
Interface 3.1.

This section documents most of the everyday functions you will use for surface
shaders but is not intended to be comprehensive. Many built-in functions are cov-
ered elsewhere in this book. Functions used for patterns are covered in Chapter 10.
Derivatives (Qu(), pv(), area())are covered in Chapter 11. Lighting and environ-
ment mapping functions are covered in Chapter 9. ’

Note that some functions are polymorphic, that is, they can take arguments of
several different types. In somc cases we use the shorthand ptype to indicate a type
that could be any of the point-like types point, vector, or normal. (Note that there
is no actual type ptype—we arc just using this as shorthand!)

Angles and Trigonometry

float radians (float d
float degrees (float r)

float sin (float angle)
float cos (float angle)
float tan (float angle)

float asin (float )

float acos (float f)

float atan (floaty, x)
float atan (float y_over_x)

Angles, as in C, are assumed to be expressed in radians.

Exponentials, etc.

float pow (float x, float v)
£loat exp (float x)
float log (float x)

float log (float x, base)
Arbitrary base logarithm of x.

float sqrt (float x)

float inversesqgrt (float x)
Square rootl and 1/sgrt.

Miscellaneous Simple Scalar Functions

£loat abs (float x)

Absolute value of x.




simple Built-in Functions

float sign (float x)

Returns 1 if x > 0. -1ifx <0, nif x=0.

float floor (float x)

float ceil (float x)

float round (float x)
Return the highest i
than or equal to X, 0

n or equal to x, the lowest integer greater

nteger less tha
spectively.

r the closest integer 0 X, re

float mod (float a, b)
Just like the fmod function in C, returns a - b x floor{a/b).
float min (type a, b, «.-)
)

float max (type a, b, ..
minval, maxval)

float clamp (type X,
ctively, of

The min and max funct ions
a list of two or more value

¢ minimum or maximum, respe

return th
urns

5. The clamp function ret

nval) ,maxval)

x clamped to the specific
normal, or color. The
ona component-by

min(max(x,mi

that is, the value
float, point, vector,
point-like objects operate
for x, ¥, and z).

d range. The type may be any of
variants that operate on colors ot
-.component basis (i.e., geparately

float alpha)
s a linear blending of any simp
x*(l—-m-t_\r:s{ot)

tvpe mix (type x, ¥i
Je type (any of float,

The mix function return
point, vector, normal, or colork

float step (float edge, X)

Returns 0 if x < edge and 1 if x = edge.

float smoothstep (float edge0, edgel, x)
Returns 0 if x < edge0. and 1 if x = edgel and performs a smooth Hermite
interpolation between 0 and 1 when edgeQ <X < edgel. This is useful in cases

where you would wanta thresholding function with a smooth rransition.

Color Operations

float comp (color ¢;
Returns the ith component 0

r c; float i, float x)

ing its ith component 1o value x.

float i)
f a color.

void setcomp (output colo
Modifies color ¢ by seit




7 Introduction to Shading Language

color ctransform (string tospacename; color c_rgb)
name: color c_from) E

color ctransform (string fromspacename, tospace
‘Transform a color from one color space to another. The first form assumes l

that c_rgb is alrcady an “rgh™ color and transforms it to another named color i
space. The second form transforms a color between two named color spaces. i 3
[ :_

Geometric Functions

float xcomp (ptype p)
float ycomp (ptype p)
float zcomp (ptype p)
float comp (ptype p: float i)

Return the x, v, z, or simply the ith component of a point-like variable.

void setxcomp (output ptype p; float x)

void setycomp (output ptype pi float x)

void setzcomp (output ptype pi float x)

void setcomp (output ptype p; float i, %)
Set the x, ¥, &, or simply the ith component of a point-like type. These
routines alter their first argument but do not return any value.

float length (vector V)
float length (normal V)

Return the length of a vector or normal.

float distance (paint PO, P1)
Returns the distance between two points.

float ptlined (point PO, P1L, Q)
Returns the distance from Q to the
PO and P1.

closest point on the line segment joining

vector normalize (vector V)

vector normalize {normal V)
Return a vector in the same
length(V) .

direction as V but with length 1 —that is, V/

vector faceforward (vector N, I, Nref)
vector faceforward (vectar N, 9]
If Nref . I <0, returns N, otherwise, returns -N. For the version with only
two arguments, Nref is implicitly Ng, the true surface normal. The point of
these routines is to return a version of N that faces towards the camera—

the direction “opposite” of 1.




172

simple Built-in functions

To further clarify the situation, here is the implementation of faceforward
expressed in Shading Language:
vector faceforward (vector N, I, Nref) [

return (I.Nref > 0) 7 ~N N3

}

vector faceforward (vector N, I)
]
)

{
extern normal Ng; |
return faceforward (N, 1, Ng); '

vector reflect (vector 1, N)

For incident vector T and surface
tion R = I - 2*(N.I)"N. Note that N must be

formula to work properly.

grientation N, returns the reflection direc-
normalized (unit length) for this

vector refract (vector I, N; filoat eta)

For incident vector I and surface orientation N,
using Snell’s law. The eta parameter is the ratic
the volume containing I divided by the index of refraction of the volu

entered,

returns the refraction direction
y of the index of refraction of
me being

cename; point p_current)
ame; vector v_current)
ame: normal n_current)
d to be in "current” space) into

point transform (string tospa
N vector vtransform (string tospacen
q =3 normal ntransform (string tospacen
5 ; Transform a point, vector, or normal (a
the tospacename coordinate system.

ss5ume

ame; point pfrom)
ename; vector vfrom)

point transform (string fromspacename, tospacen
e: normal nfrom)

vector vtransform (string fromspacename, tospac

normal ntransform (string fromspacename, tospacenam
assumed to be represented by its

vector, Or normal {
ordinate system.

Transform a point,
the tospacename €O

"fromspace” coordinates) into

point p*current)
e; vector v_current)
current)

transform (matrix tospace;

form (matrix tospac
tospace; normal n_.

point
vector vtrans
normal ntransform (matrix

point transform (string fromspacename; matrix tospace; point pfrom)




7 Introduction 1o shading Language

180

ring fromspacename; matrix tospace; vector vrom)

vector vtransform (st
trix tospace; normal nfrom)

normal ntransform (string fromspacename; ma
These routines work just like the ones that use the space names but instead

use transformation matrices to specify the spaces to transform into.

point PO, P1)

point rotate (point Q; float angle;
point Q by angle radians ahout the

Returns the point computed by rotating
axis that passes from point f0 to PL. ;

String Functions i

void printf (string template, ...)

string format (string template, ...) 2
j Much as in C, printf takes @ template string and an argument list. Wher 2

i the format string comains the characters %F, %C, %p, %m, and %s, printf will

b A subslitute arguments, in order, from the argument list {assuming that the

= G arguments’ types arc float, color, point-like, matrix, and string, respectively).

like printf, takes a template and an argument list. But

The format function,
format returns the assembled, formatted string rather than printing it.

string concat (string sl, ., sh)

atenates a list of strings, returning the aggregate string.

Conc

float match (string pattern, subject)

Does a string pattern match on subject.
anywhere within subject and 0 if the pattern does not
The pattern can be & standard Unix expression. Note
not need to startin the first character of the subject string,

begins with the A (beginning of string) character.

Returns 1 if the pattern exists
exist within subject.
that the pattern does
unless the pattern

Matrix Functions

float determinant (matrix m)
Returns the determinant of matrix m.

matrix translate (matrix m; point )

matrix rotate (matrix m; float angle; vector axis)
matrix scale (uniform matrix m; uniform point t)

result of appending simple transformations onto
all arguments to these functions must be uniform. E:
ar to the RIB Translate, Rotate, and Scale com- =
n angle in rotate() isin radians, not in degrees 5
are no perspective or skewing functions. -

Return a matrix that is the
the matrix m. In each case,
These functions are simil
mands, except that the rotatio
as with the RI1B Rotate. There




Wwriting SL Functions

Writing SL Functions

functions, you will probably

¢ provides many useful
ther programming language.

as you would in any 0
s similar to doing itin C:

Even though Shading Languag
want to write your own, just
Defining your own functions i

returntype functionname ( params )

4
© do some compulations
return return_value ;
1
However, in many ways SL T
ment is allowed per functio
which have no return type

unction definitions are not quite like C:

m Only one return state n. The exception 10 this
rule is for void functions, and thus have no return
statement.

@ All function parameters are

@ You may not compile functions st
functions must be declared prior 10 use and in the
rest of your shader (though you may place them in a separate file an

#include mechanism).?

passed by reference.
parately from the body of your shader. The
same compilation pass as the
d use the

as variable declarations: float,
declare a function as void,
ave a function that returns

valid return types for functions are the same

color, point, vector, normal, matrix, string. You may
indicating that it does pot return a value. You may not h

an array.
In C, parameters arc passed by value, which means that the function has a private

copy that can be modificd without aff ecting the variable specified when the function _;
was called. SL function parameters are passed by reference, which means that if you 1§
modify it, it will actually change the original variable that was passed. However, any

parameters you want to modify must be declared with the output keyword, as in

the following example:

float myfunc (float f; /* you can't assign to f */
output float g;) /* but you can assign to g */

In the SL compiters of both PRMan and BMRT, functions are expanded in-line, not :
compiled separately and called as subroutines. This means that there is no overhead i
associated with the call sequence, The downside is increased size of compiled code :

and the lack of support for recursion.

310 possible that other ret
both PRMan and BMRT require

separate compilation, but as of the time of this writing,

rderers will allow
| the same time as the shader body.

functions to he compiled a

L ———— R




182

7 Introduction 1o Shading Language

shading Language functions obey standard variable Jexical scope rules. Functions
may be declared outside the scope of the shader itself, as you doin C. By default, SL
functions may only access their own local variables and parameters. However, this
can be extended by use of an extern duclaratiun—~global variables may be accessed
by functions if they are accessed as extern variables. Newer gL compilers also
support Jocal functions defined inside shaders or other functions—that is, defined
anyplace where a local variable might be declared. In the case of local functions,
variables declared in the outer lexical scope may be accessed if they are redeclared
using the extern keyword. Following is an example:

float %, ¥

float myfunc (float f)

{
float X; I jocal hides the one in the outer scope L4
extern float ¥i /* refers to the y in the outer scope b d
extern point P f® refers te the g1oha‘l p */

Further Reading

More formal documentation on the RenderMan Shading Language can be found
in the RenderMan Interface specification (Pixar, 1989) as well as Upstill (1990) and
Hanrahan and Lawson {1990).

Discussions of color spaces can be found in Foley, van pam, Feiner, and Hughes
(1990), Hall (198, or Glassner (1993).




