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Why tessellation?
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Lack of geometric detail…

Pixels are meticulously shaded, 
but geometric detail is modest

Image from Far Cry® 2, 
courtesy of Ubisoft
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Geometry in Film

Pixels are meticulously shaded 
and geometric detail is substantial

Tessellation + displacement mapping
is the defacto standard

Enables richer content and animation

© Disney Enterprises, Inc. and Jerry Bruckheimer, Inc.
All rights reserved. Image courtesy Industrial Light & Magic.
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GF100 enables much greater geometric detail

Before GF100 – minimal progress in geometry performance
GeForce FX 5800 to GeForce GT200

>150x shading performance
<3x geometry performance

APIs unable to support a significant increase in geometry

Chicken & egg – really… 

GF100 ― New geometry processing architecture
delivers 8x performance to support DX11
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Memory footprint & BW savings
Store coarse geometry, expand on-demand, keep data on die
Enables more complex animations 

Scalability
Dynamic LOD allows for performance/quality tradeoffs
Scale into the future – resolution, compute power

Computational efficiency
Dynamic LOD
GPU animate and expand compact representation

Real geometry
Dynamic shadows
3D Vision™

Tessellation – What and Why

© Kenneth Scott, id Software 2008
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Hull shader
Runs pre-expansion
Explicitly parallel

Output control points
and LODs

Tessellation in DirectX 11 From input assembly

Control
points
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Fixed function tessellation stage
Configured by HS LOD output
Produces

U,V values
Primitive topology

Supports triangles and lines

Tessellation in DirectX 11 From input assembly

Control
points
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Domain shader
Runs post-expansion
Input: LOD, (u,v), control points
Maps (u,v) to (x,y,z,w)

Attributes
Implicitly parallel

Tessellation in DirectX 11 From input assembly

Control
points

CMU 15-869 Graphics and Imaging Architectures  (Special Topics in Graphics)

Henry Moreton NVIDIA Corporation October 13, 2011



DX10 Logical Pipeline
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DX10 Logical Pipeline + Tessellation
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DX10 + Tessellation – data expansion

API ordering means buffering
before Setup

CMU 15-869 Graphics and Imaging Architectures  (Special Topics in Graphics)

Henry Moreton NVIDIA Corporation October 13, 2011



Fermi GF100 Logical Pipeline
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Task Distributor
Task ª Hull Shader output

Control points + LOD
Pre-expansion

Distribute tasks
Expand patch into primitives
Optional GS

Reduced buffering

Fermi GF100 Logical Pipeline
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Polymorph Engine
Tessellator
Viewport Transform
Attribute Setup

Fermi GF100 Logical Pipeline
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Parallel Rasterization
Edge Setup, Raster & Z Cull
Multiple primitives per clock
Screen mapped load balancing

Fermi GF100 Logical Pipeline
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GF100 Block
Diagram

512 CUDA cores
16 geometry units
4 raster units
64 texture units
48 ROP units
384-bit GDDR5
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GF100 Scalable Parallel Implementation

Distributed, parallel geometry

The Challenge:
Sequential Rendering Semantics
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Maintaining API Order

Greater parallelism is straightforward
API order is the challenge
WDX – Work Distribution Crossbar

Between Viewport and Raster
Distributes work
Maintains order
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Work Distribution Crossbar

OWDX
Bounding box
Broadcast to Raster

SWDX
Reconstructs API order

Each Raster owns its pixels
No further sorting
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Screen-mapped Rasterization

Each block is a tile of pixels
Blocks are bound to rasterizers
Small primitives can still straddle tiles
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Load balance tension

Small tiles 
+ Better pixel distribution
- More redundant Setup

Large tiles
- Risk camping
+ Not Setup limited
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Questions?
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Geometry Shaders – a postmortom

Introduced as part of DX10
Intended as a tessellation post-processor

Vestige of stencil shadow volumes

Implements legacy features  sprites
API sequential rendering semantics are costly
Outputs are spilled to memory or buffered

2

CMU 15-869 Graphics and Imaging Architectures  (Special Topics in Graphics)

Henry Moreton NVIDIA Corporation October 13, 2011



Future

More transistors
No more watts
More dark silicon

Special purpose units
Video encode/decode
Camera
Copy

Suspended cores
Vision

The killer consumer application?
OpenCV – low level
Is there an API at a higher semantic level?

Analogous to touch….
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Thanks
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