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Agenda
▪ Tips on !nal project presentations
▪ Course review
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Final project presentations

▪ Friday December 16th (yes, it’s Black Friday)
- GHC 4102 (not this room)
- 5:30 - 8:30PM

▪ We have 11 projects

▪ 10 minute presentation (+3 minutes of questions)
- Quality of presentation will factor into !nal project grade
- For team projects, each team member should talk 1/2 the time

▪ Final written report: 
- Sunday December 18th, 11:59PM
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Presentation Tips
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Tip #1: it’s not about you 

▪ The audience doesn’t care about everything you did

▪ They only care what you found out, that they ought to know

▪ A talk is a service (a responsibility)
- Ask yourself: What can I say about my work in the allotted time that is the most 

interesting for my audience?
- Think about the man/woman-hours wasted by a bad talk
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Tip #2: know your audience

▪ What should be reviewed as background?

▪ Consider your project:
- What should the rest of the class know based on the lectures?
- What does your project dig into that you don’t expect everyone to know?
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Tip #3: state the problem clearly
▪ What is the problem you are trying to solve?

▪ E.g.,
- This is all about minimizing latency
- This is problem of reducing bandwidth
- I am relaxing assumptions that are hurting performance
- I am creating instrumentation to understand a certain aspect of a workload
- There are two solutions with di"erent strengths/weaknesses, I want a solution 

that provides the best of both worlds 
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Tip #4: text is a crutch **
▪ Common error: add text to slide since it’s a point you want to say 

(don’t want to forget it)
- This is what speakers notes are for

▪ Slides should primarily be !gures

▪ Slides augment what you say
- They are not a text version of what you are saying
- You want people to be listening to you, not reading ahead in your slides

▪ I remove text as I edit my slides as I prep for a talk

** This is a do as I say, not as I do slide
(a good example of visual slides is shown in class)
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Tip #5: explain every !gure or graph

1. Overview

- This !gures shows the e"ect of rasterizing two 
triangles

2. Part-by-part explanation:

- Pixels are the boxes, they are colored according 
to the number of fragments generated ...

- The sample points are given by the dots

3. Point: as you can see pixel ...
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Tip #5: explain every !gure or graph

1. In this graph, the X-axis is _____.
2. The Y-axis is ______.
3. If you look at the left side ...
4. So the trend that you see means ...

Common error: only explaining the result
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Tip #6: prioritize clarity over coverage!

▪ Aim to have your entire talk understood

▪ As a result, every talk can only really have a few points

▪ If you think the audience won’t get it, or you’ll have to rush 
through it, then take it out
- That’s what your !nal writeup is for!
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Tip #7: transition sentences
▪ Good voice over when transitioning between slides can really 

make a talk "ow 

▪ I use speaker’s notes to remind myself of good transition 
sentences

▪ Slide N has a note for what to say as I am transitioning to slide 
N+1
- e.g., “and if you make assumption X, what you get is ...” 
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Tip #8: practice!
▪ Rehearsing your presentation will pay o#!

- Important for determining how you stand on time (10 minutes is short!)
- In general, your real talk will be a little faster (nerves make you speed up) 
- These are short talks, so they are easy to practice

▪ I often do a !nal practice 1-2 hours before the presentation
- To get in rhythm, like an athlete’s pre-game warm up
- I already know the talk well at this point



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Tip #9: three aspects of describing a system

1. What are the components or entities (nouns)?
- Major components (processors, memories, interconnects, pipeline stages)
- Major entities (e.g., vertices, triangles, pixels, shots, frames)

2. What is the state associated with the nouns?

3. What are the operations that can be performed?
- State manipulation operations
- Operations that create or consume entities
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Tip #10: do your analysis 
Many of your projects have an analysis component
(the most important component of certain projects)

1. Consider the low/high watermarks (best/worst case)
- What if a particular component of an algorithm was in!nitely fast?
- If your algorithm was perfect, what is the best it could achieve?

2. Consider all the possible “attacks”:
- If I ask you a question about a graph can you explain it?
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Course Review
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Vertices

Primitives
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The graphics pipeline
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Fragment Processing

Frame-Bu"er Ops

Primitive Processing
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Uniform
data
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data

Texture
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Modern GPU: heterogeneous many-core
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Logic

Homogeneous collection of throughput-optimized programmable processing cores
Augmented by !xed-function logic
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Throughput processing
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Summary: three key ideas for high-throughput execution

1. Use many “slimmed down cores,” run them in parallel

2. Pack cores full of ALUs (by sharing instruction stream overhead 
across groups of fragments)
– Option 1: Explicit SIMD vector instructions
– Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of many groups 
of fragments
– When one group stalls, work on another group
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GPU processing core

= SIMD function unit,
 control shared across 16 units
(1 MUL-ADD per clock)

NVIDIA GeForce GTX 480 “core”

“Shared” scratchpad memory
(16+48 KB)

Execution contexts
(128 KB)

Fetch/
Decode

Fetch/
Decode

• The core contains 32 functional units
(2 sets of 16 share instruction stream)

• Two groups of 32 fragments (“warps”) 
are selected every other clock (decode, 
fetch, and execute two instruction 
streams in parallel)

• Up to 48 groups are interleaved (switch 
to new group on stall) 

Source: Fermi Compute Architecture Whitepaper
 CUDA Programming Guide 3.1, Appendix G  
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Thought experiment
Task: element-wise multiplication of two vectors A and B

1. Load input A[i]
2. Load input B[i]
3. Load input C[i]
4. Compute A[i] × B[i] + C[i]
5. Store result into D[i] =

A

B

D

C
+

×

Less than 1% e$ciency… but 6x faster than CPU!

Four memory operations (16 bytes) for every MUL-ADD
Radeon HD 5870 can do 1600 MUL-ADDs per clock
Need ~20 TB/sec of bandwidth to keep functional units busy
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Alternative Rendering Algorithms
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Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

Primitive Processing

“G-bu"er”

Shading

Frame bu"er

Fragment shader outputs surface properties
(e.g., position, normal, material di"use color, specular color)

Traditional pipeline does not output RGB image. Output is a 2D 
bu"er representing information about the surface geometry 
visible at each pixel (a.k.a. “g-bu"er”)

After all geometry has been rendered, shader is executed for each 
sample in the G-bu"er, yielding RGB values

(shading is deferred until all geometry processing -- including all 
occlusion computations -- is complete)
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G-bu"er = geometry bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Albedo (Re%ectance) Depth

SpecularNormal
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Motivation: why deferred shading?

▪ Shade only surface fragments that are visible

▪ Forward rendering is ine$cient when shading small 
triangles (quad-fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to hundreds of light source
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Ray packet tracing
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Packet tracing best practices

▪ Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet 
utilization drops below threshold
- For wide SIMD machine, a single branching-factor 4 BVH works well for both 

packet and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree 

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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Image Processing Pipeline
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Image processing pipeline

▪ The signal a camera captures is very di#erent than the image 
that is ultimately produced for the user

▪ Understanding of human perception is fundamental to many 
operations/optimizations in the image processing pipeline
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Simpli!ed image processing pipeline
▪ Correct for sensor bias (using measurements of optically 

black pixels)

▪ Correct pixel defects

▪ Vignetting compensation

▪ Dark frame subtract (optional)

▪ White balance

▪ Demosaic

▪ Denoise / sharpen, etc.

▪ Color Space Conversion

▪ Gamma Correction
▪ Color Space Conversion (Y’CbCr)

▪ 4:4:4 to 4:2:2 chroma subsampling
▪ JPEG compress

12-bits per pixel
1 intensity per pixel
Pixel values linear in energy

3x12-bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
(until 4:2:2 subsampling)
Pixel values perceptually linear
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Light !eld inside a camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2
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New types of cameras
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Light !eld camera: each sensor pixel records a beam of light

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

X

U

Ray space plot

Pixel 1
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Structured light depth camera

z

zref

d

f

Reference plane

Known light 
source

b

One light source emitting known beam, one camera 
If the scene is at reference plane, image recorded by camera is known

Single spot illuminant is ine$cient!
(must to “scan” scene with spot to get depth) 
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Texas Instruments OMAP 5 (2012)

Image credit: TI

Mobile system on a chip

Two tiny really-low-power CPU cores
Two beefy low-power CPU cores with SIMD
GPU (~12 cores)
2D graphics processor
Image Processor (fixed function)
Video Processor (fixed function)
Face detector processor
Programmable DSP

Think of a modern mobile system-on-chip as a Swiss Army Knife of computing.
Software (programmer? compiler? runtime?) picks the right tool(s) for the job.
Heterogeneity is very likely the future at many scales of computing!
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Class themes
▪ Visual computing applications (graphics, image/video processing, vision) 

are driving the design of many computing architectures

▪ Big di"erence between FAST and EFFICIENT
- Graphics systems are very e$cient, they have to be
- Highly optimized algorithms and heterogeneous HW implementations

▪ Good system design: hardware implementation, algorithms, and 
abstractions all designed with each other in mind

▪ Go understand your workloads!
- Where is the parallelism, communication, locality
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Thank you!


