
Lecture 21:
Course Review

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Agenda
▪ Tips on !nal project presentations
▪ Course review

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Final project presentations

▪ Friday December 16th (yes, it’s Black Friday)
- GHC 4102 (not this room)
- 5:30 - 8:30PM

▪ We have 11 projects

▪ 10 minute presentation (+3 minutes of questions)
- Quality of presentation will factor into !nal project grade
- For team projects, each team member should talk 1/2 the time

▪ Final written report:
- Sunday December 18th, 11:59PM

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Presentation Tips

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #1: it’s not about you

▪ The audience doesn’t care about everything you did

▪ They only care what you found out, that they ought to know

▪ A talk is a service (a responsibility)
- Ask yourself: What can I say about my work in the allotted time that is the most

interesting for my audience?
- Think about the man/woman-hours wasted by a bad talk

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #2: know your audience

▪ What should be reviewed as background?

▪ Consider your project:
- What should the rest of the class know based on the lectures?
- What does your project dig into that you don’t expect everyone to know?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #3: state the problem clearly
▪ What is the problem you are trying to solve?

▪ E.g.,
- This is all about minimizing latency
- This is problem of reducing bandwidth
- I am relaxing assumptions that are hurting performance
- I am creating instrumentation to understand a certain aspect of a workload
- There are two solutions with di"erent strengths/weaknesses, I want a solution

that provides the best of both worlds

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #4: text is a crutch **
▪ Common error: add text to slide since it’s a point you want to say

(don’t want to forget it)
- This is what speakers notes are for

▪ Slides should primarily be !gures

▪ Slides augment what you say
- They are not a text version of what you are saying
- You want people to be listening to you, not reading ahead in your slides

▪ I remove text as I edit my slides as I prep for a talk

** This is a do as I say, not as I do slide
(a good example of visual slides is shown in class)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #5: explain every !gure or graph

1. Overview

- This !gures shows the e"ect of rasterizing two
triangles

2. Part-by-part explanation:

- Pixels are the boxes, they are colored according
to the number of fragments generated ...

- The sample points are given by the dots

3. Point: as you can see pixel ...

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #5: explain every !gure or graph

1. In this graph, the X-axis is _____.
2. The Y-axis is ______.
3. If you look at the left side ...
4. So the trend that you see means ...

Common error: only explaining the result

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #6: prioritize clarity over coverage!

▪ Aim to have your entire talk understood

▪ As a result, every talk can only really have a few points

▪ If you think the audience won’t get it, or you’ll have to rush
through it, then take it out
- That’s what your !nal writeup is for!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #7: transition sentences
▪ Good voice over when transitioning between slides can really

make a talk "ow

▪ I use speaker’s notes to remind myself of good transition
sentences

▪ Slide N has a note for what to say as I am transitioning to slide
N+1
- e.g., “and if you make assumption X, what you get is ...”

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #8: practice!
▪ Rehearsing your presentation will pay o#!

- Important for determining how you stand on time (10 minutes is short!)
- In general, your real talk will be a little faster (nerves make you speed up)
- These are short talks, so they are easy to practice

▪ I often do a !nal practice 1-2 hours before the presentation
- To get in rhythm, like an athlete’s pre-game warm up
- I already know the talk well at this point

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #9: three aspects of describing a system

1. What are the components or entities (nouns)?
- Major components (processors, memories, interconnects, pipeline stages)
- Major entities (e.g., vertices, triangles, pixels, shots, frames)

2. What is the state associated with the nouns?

3. What are the operations that can be performed?
- State manipulation operations
- Operations that create or consume entities

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tip #10: do your analysis
Many of your projects have an analysis component
(the most important component of certain projects)

1. Consider the low/high watermarks (best/worst case)
- What if a particular component of an algorithm was in!nitely fast?
- If your algorithm was perfect, what is the best it could achieve?

2. Consider all the possible “attacks”:
- If I ask you a question about a graph can you explain it?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Course Review

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Vertices

Primitives

Fragments

Pixels

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu"er Ops

Primitive Processing

Frame Bu"er

Memory

Uniform
data

Texture
bu"ers

Uniform
data

Texture
bu"ers

Uniform
data

Texture
bu"ers

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU: heterogeneous many-core

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Shader
Processor

Texture

Shader
Processor

Command
Processor

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

ZTest /
Pixel Blend

Tri Setup /
Rasterizer

Work Scheduler

L2 cache
(shared by all processors)On-chip storage for inter-stage queues

Fetch/Decode

Execution
contexts

Scratchpad/
L1 cache

L1 texture
cache

Texture
Filtering

Logic

Homogeneous collection of throughput-optimized programmable processing cores
Augmented by !xed-function logic

Kayvon Fatahalian, Graphics and Imaging Architectures
(CMU 15-869, Fall 2011)

Throughput processing

Kayvon Fatahalian, Graphics and Imaging Architectures
(CMU 15-869, Fall 2011)

Summary: three key ideas for high-throughput execution

1. Use many “slimmed down cores,” run them in parallel

2. Pack cores full of ALUs (by sharing instruction stream overhead
across groups of fragments)
– Option 1: Explicit SIMD vector instructions
– Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of many groups
of fragments
– When one group stalls, work on another group

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

GPU processing core

= SIMD function unit,
 control shared across 16 units
(1 MUL-ADD per clock)

NVIDIA GeForce GTX 480 “core”

“Shared” scratchpad memory
(16+48 KB)

Execution contexts
(128 KB)

Fetch/
Decode

Fetch/
Decode

• The core contains 32 functional units
(2 sets of 16 share instruction stream)

• Two groups of 32 fragments (“warps”)
are selected every other clock (decode,
fetch, and execute two instruction
streams in parallel)

• Up to 48 groups are interleaved (switch
to new group on stall)

Source: Fermi Compute Architecture Whitepaper
 CUDA Programming Guide 3.1, Appendix G

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Thought experiment
Task: element-wise multiplication of two vectors A and B

1. Load input A[i]
2. Load input B[i]
3. Load input C[i]
4. Compute A[i] × B[i] + C[i]
5. Store result into D[i] =

A

B

D

C
+

×

Less than 1% e$ciency… but 6x faster than CPU!

Four memory operations (16 bytes) for every MUL-ADD
Radeon HD 5870 can do 1600 MUL-ADDs per clock
Need ~20 TB/sec of bandwidth to keep functional units busy

Kayvon Fatahalian, Graphics and Imaging Architectures
(CMU 15-869, Fall 2011)

Alternative Rendering Algorithms

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

Primitive Processing

“G-bu"er”

Shading

Frame bu"er

Fragment shader outputs surface properties
(e.g., position, normal, material di"use color, specular color)

Traditional pipeline does not output RGB image. Output is a 2D
bu"er representing information about the surface geometry
visible at each pixel (a.k.a. “g-bu"er”)

After all geometry has been rendered, shader is executed for each
sample in the G-bu"er, yielding RGB values

(shading is deferred until all geometry processing -- including all
occlusion computations -- is complete)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

G-bu"er = geometry bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Re%ectance) Depth

SpecularNormal

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Motivation: why deferred shading?

▪ Shade only surface fragments that are visible

▪ Forward rendering is ine$cient when shading small
triangles (quad-fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to hundreds of light source

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0
r1 r2 r3 r4 r5 r6

r7

r6 does not pass node F box test
due to closest-so-far check

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Packet tracing best practices

▪ Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet
utilization drops below threshold
- For wide SIMD machine, a single branching-factor 4 BVH works well for both

packet and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Image Processing Pipeline

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Image processing pipeline

▪ The signal a camera captures is very di#erent than the image
that is ultimately produced for the user

▪ Understanding of human perception is fundamental to many
operations/optimizations in the image processing pipeline

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Simpli!ed image processing pipeline
▪ Correct for sensor bias (using measurements of optically

black pixels)

▪ Correct pixel defects

▪ Vignetting compensation

▪ Dark frame subtract (optional)

▪ White balance

▪ Demosaic

▪ Denoise / sharpen, etc.

▪ Color Space Conversion

▪ Gamma Correction
▪ Color Space Conversion (Y’CbCr)

▪ 4:4:4 to 4:2:2 chroma subsampling
▪ JPEG compress

12-bits per pixel
1 intensity per pixel
Pixel values linear in energy

3x12-bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
(until 4:2:2 subsampling)
Pixel values perceptually linear

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Light !eld inside a camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

New types of cameras

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Light !eld camera: each sensor pixel records a beam of light

Sensor plane: (X,Y)

Lens aperture: (U,V)

Microlens array

World plane of focus

Pixel 1

X

U

Ray space plot

Pixel 1

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Structured light depth camera

z

zref

d

f

Reference plane

Known light
source

b

One light source emitting known beam, one camera
If the scene is at reference plane, image recorded by camera is known

Single spot illuminant is ine$cient!
(must to “scan” scene with spot to get depth)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texas Instruments OMAP 5 (2012)

Image credit: TI

Mobile system on a chip

Two tiny really-low-power CPU cores
Two beefy low-power CPU cores with SIMD
GPU (~12 cores)
2D graphics processor
Image Processor (fixed function)
Video Processor (fixed function)
Face detector processor
Programmable DSP

Think of a modern mobile system-on-chip as a Swiss Army Knife of computing.
Software (programmer? compiler? runtime?) picks the right tool(s) for the job.
Heterogeneity is very likely the future at many scales of computing!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Class themes
▪ Visual computing applications (graphics, image/video processing, vision)

are driving the design of many computing architectures

▪ Big di"erence between FAST and EFFICIENT
- Graphics systems are very e$cient, they have to be
- Highly optimized algorithms and heterogeneous HW implementations

▪ Good system design: hardware implementation, algorithms, and
abstractions all designed with each other in mind

▪ Go understand your workloads!
- Where is the parallelism, communication, locality

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Thank you!

