
Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Lecture 20:
The Frankencamera

A Programmable Camera Architecture

Note: Apple not involved in Frankencamera’s industrial design. ;-)

[Adams et al. 2010]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Context
▪ Cheap and ubiquitous cameras
▪ Signi!cant processing capability on cameras
▪ Lot’s of techniques on how to combine multiple photos to

overcome de!ciencies in traditional camera systems

▪ But... ability to implement techniques on cameras was limited
- Cameras not programmable by general public
- Where some programmability did exist, interface too basic

(end result was that latency between two photos was high, mitigating utility
of multi-shot techniques)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Example: high dynamic range images

Source photographs: varying exposure Tone mapped HDR image

Credit: Debevec and Malik

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

More multi-shot photography examples

Flash-no-!ash photography [Eisemann and Durand]
(use !ash image for sharp, colored image, infer actual room lighting from no-!ash image)

“Lucky” Imaging

Take a bunch of photos in rapid succession:
likely to "nd one without camera shake

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Frankencamera goals
1. Create open, handheld camera platform for researchers

2. De"ne system architecture for computational photography
applications
- Motivated by impact of OpenGL on graphics application and graphics hardware

development (portable apps despite highly optimized GPU implementations)

- Motivated by proliferation of smart-hone apps

Nokia N900 Smartphone ImplementationF2 Reference Implementation

[Adams et al. 2010]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

F-cam components

Sensor **

Image Processor

Device
(Lens)

Device
(Flash)

Extensibility Mechanism

** Sensor is really just a special case of a device

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shot
▪ A shot is a command

- Actually it’s a set of commands
- Encapsulates both “set state”, and “perform action(s)”

▪ De!nes state (con!guration) for:
- Sensor
- Image processor
- Relevant devices

▪ De!nes a timeline of actions
- Exactly one sensor action: expose
- Optional actions for devices
- Note: timeline extends beyond length of exposure (“frame time”)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shot
▪ Interesting analogy:

- An F-cam shot is very similar to an OpenGL display list
- It is really a series of commands (both action commands and state

manipulation commands)
- State manipulation commands specify the entire state of the system
- De"nes precise timing of the commands (no OpenGL analogy)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Frame
▪ A frame describes the result of a shot

▪ A frame contains:
- Reference to corresponding image buffer
- Statistics for image (computed by image processor)
- Shot con"guration data (what was speci"ed by app)
- Actual con"guration data (con"guration actually used when acquiring image)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“Streaming” mode
▪ System repeats shot (or series of shots) in in!nite loop
▪ Stops only when application says so

▪ Intended for “live view” (digital view!nder) or metering mode

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

F-cam as an architecture

Sensor

Image Processing

Device
(Lens)

Device
(Flash)

Completed Frames

Event Queue

Cmd Processor

RAW Data

Image Buffers

...

Application Commands (“Shots”)

Stream Cmd Buffer

Memory

Frames

Image Data

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Code examples

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

F-cam scope
▪ F-cam provides a set of abstractions that allow for

manipulating con!gurable camera components
- Timeline based speci"cation of actions
- Feed-forward: no feedback loops (like graphics pipeline)

▪ F-cam architecture performs image processing, but...
- This functionality is not programmable
- F-cam does not provide an image processing language
- Other than work performed by image processing stage, F-cam applications do all

their own image processing (e.g., on camera’s CPU)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texas Instruments OMAP 5

Image credit: TI

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

F-cam extension: programmable image processing

Sensor

Image Processing

Device
(Lens)

Device
(Flash)

Completed Frames

Event Queue

Cmd Processor

Frames

RAW Data

Image Buffers

...

Application Commands (“Shots”)

Stream Cmd Buffer

Memory

Image Data

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Class design challenge 1
▪ If there was a programmable image processor, application

would probably seek to use it for more than just on data
coming off sensor

▪ E.g., HDR imaging app

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Class design challenge 2

▪ Question: How does auto-focus work in F-cam?

▪ How might we abstract a separate autofocus/metering
sensor?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Class design challenge 3

▪ Should we add a face detection unit?

▪ How might we abstract a face detection unit?

▪ Or a feature extractor?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Architecture is hard.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Class discussion
▪ Is there a need for a camera “App Store”?

