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Continuing theme: computational photography

▪ Cheap cameras capture light, extensive processing produces desired image

▪ Today:
- Capturing depth in addition to light intensity
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Scene 
Understanding

Why might we want to know the depth of scene objects?

Mapping

Navigation

Segmentation

Tracking
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Depth from time-of-!ight

▪ Conventional LIDAR
- Laser beam scans scene (rotating mirror)
- Low frame rate to capture entire scene

▪ “Time-of-!ight” cameras
- No moving beam, capture image of scene with each light pulse
- Special CMOS sensor records a depth image
- High frame rate
- Today: still low resolution, expensive (but dropping fast)
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Computing depth from images
Binocular stereo 3D reconstruction of P: depth from disparity

P

x x’

ff
b

z

Focal length: f
Baseline:  b 
Disparity:  d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length
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Correspondence problem
How to determine which pairs of pixels in image 1 and image 2 

correspond to the same scene point?



• Determine Pixel Correspondence
–Pairs of points that correspond to same scene point

• Epipolar Constraint
–Reduces correspondence problem to 1D search along conjugate 

epipolar lines

epipolar plane
epipolar lineepipolar line

Epipolar constraint

Slide credit: S. Narasimhan 



For each epipolar line
	
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement: match windows
• This should look familiar...
• Correlation, Sum of Squared Difference (SSD), etc.

Solving correspondence (basic algorithm)

Assumptions?

Slide credit: S. Narasimhan 
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Correspondence: robustness challenges

▪ Scene with no texture (many parts of the scene look the same)

▪ Non-lambertian surfaces (scene appearance dependent on view)

▪ Pixel pairs may not be present (occlusion from one view)
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Depth from defocus

P

f

z

c

a

z’

Thin lens approximation:

Aperture:  a
Circle-of-confusion:  c
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Structured light

z

zref

d

f

Reference plane

Known light 
source

b

One light source emitting known beam, one camera 
If the scene is at reference plane, image recorded by camera is known

Single spot illuminant is inefficient!
(must to “scan” scene with spot to get depth) 
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Structured light
Simplify correspondence problem by encoding spatial position in illuminant

Projected light pattern Camera image
Image: Zhang et al.
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Microsoft Kinect

Illuminant
(Infrared Laser + diffuser)

RGB CMOS Sensor
640x480 (w/ Bayer mosaic)

Monochrome Infrared 
CMOS Sensor

(Aptina MT9M001)
1280x1024 **

** Kinect returns 640x480 disparity image, teardowns suspect sensor con#gured for 2x2 binning down to 640x512, then crop 
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Computing disparity for scene

1. Choose output pixels in infrared image, classify as UNKNOWN or SHADOW (based on whether speckle is found)

2. While signi#cantly large percentage of output pixels are UNKNOWN

- Choose an UNKNOWN pixel.  Correlate surrounding NxM pixel window with reference image to compute 
disparity D=(dx,dy)   (note: search window is a horizontal swath of image, plus some vertical slack)

- If sufficiently good correlation is found:

- Mark pixel as a region anchor

- Attempt to grow region around the anchor:

- Place region anchor in FIFO, mark as ACTIVE

- While FIFO not empty

- Extract pixel P from FIFO (known disparity for P is D)

- Attempt to establish correlations for UNKOWN neighboring (left,right,top,bottom) pixels of P by 
searching region D + (+/-1,+/1)

- If correlation found, mark pixel as ACTIVE, set, parent to P, add to FIFO

- Else, mark pixel as EDGE, set depth to depth of P.

** Source: PrimeSense Patent WO 2007/043036 A1.  (Likely not be actual algorithm used by Kinect)

Region-growing algorithm for compute efficiency **
(Assumption: spatial locality likely implies depth locality)
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Kinect block diagram

Infrared Sensor RGB Sensor Illuminant

Image 
processing

ASIC

USB bus

Box 360 CPU

640x480 x 30fps  RGB image 
640x480 x 30fps  Disparity image

Disparity calculations performed by PrimeSense ASIC in Kinect, not by XBox 360 (or PC) CPU

Kinect

Cheap sensors: ~ 1 MPixel

Cheap illuminant: laser + diffuser makes random 
dot pattern (not a traditional projector)

Custom image-processing ASIC to compute 
disparity image (scale-invariant region 
correlation involves non-trivial compute cost)
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Extracting the player’s skeleton
(enabling full-body game input)

Depth Image Character Joint AnglesChallenge: how to determine player’s 
position/motion from depth images... 
without consuming a large fraction of the 
XBox 360’s compute capability  

[Shotton et al. 2011]
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Key idea: segment pixels into body regions

Published description represents body with 31 regions

[Shotton et al. 2011]
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Pixel classi$cation
For each pixel: compute features from depth image

Pixel classi$er learned from large database of motion capture data  

Two example depth features

Per-pixel probabilities aggregated to compute 3D spatial density 
function for each body part, joint angles inferred from this density

Result: (Prob. pixel x in depth image I is part of body part c)

[Shotton et al. 2011]
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Performance result
▪ Real-time skeleton estimation from depth image requires < 10% 

of Xbox 360 CPU 

▪ XBox GPU-based implementation @ 200Hz (research 
implementation, not used in product)
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XBox 360 + Kinect system
Infrared Sensor RGB Sensor Illuminant

Image 
processing

ASIC

USB bus

XBox 360

640x480 x 30fps  RGB image 
640x480 x 30fps  Disparity image

Kinect

Disparity computations
(create depth image)

CPU CPU CPU GPU

1 MB Shared L2
10 MB Embedded 

DRAM

Skeleton inference 
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Summary
▪ Kinect hardware = cheap depth sensor

- Structured light pattern generated by scattering infrared laser
- Depth obtained from triangulation, not time-of-!ight
- Custom ASIC to convert infrared image into depth values

▪ Interpretation of the depth values is performed on CPU
- Player skeleton estimation made computational feasible by machine learning 

approach

▪ Future
- Calls for higher $eld of view, higher resolution depth


