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Recent push towards real-time ray tracing

Image credit: NVIDIA (this image can be rendered at “interactive rates” on NVIDIA Fermi: not real-time yet)
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Visibility
▪ Determine which scene geometry contributes to the appearance 

of which screen pixels
▪ Can be thought of as a problem of computing interacting pairs
▪ Can be thought of as a search problem
- Given polygon, !nd pixel(s) it contributes to

- Given pixel, !nd triangle(s) that contribute to it

Screen

Camera
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▪ Commonly solved via point sampling
- Rasterization:

- What scene geometry covers each visibility sample?
- Coverage (what triangles cover) + occlusion (closest covering triangle)

- Ray tracing formulation:
- Sample → ray in 3D
- What scene geometry is intersected by each ray?
- Which intersection is closest?

Screen

Camera

Visibility
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Ray tracing
▪ Perform ray-scene visibility queries
▪ Given ray (origin, direction), !nd what scene object(s) are 

intersected (“hit”) by ray, optionally determine point of 
intersection

Camera
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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Types of rays

▪ Camera (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow
- Point source: common destination, similar direction

- Area source: similar destination, similar direction (ray “coherence” breaks down 
as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination
- Mirror surface

- Glossy surface

- Diffuse surface Mirror Surface

Glossy Surface

Diffuse Surface

Point light
Area Light
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Recall: rasterization
▪ Rasterization is an optimized visibility algorithm

- Assumption 1: Rays have the same origin **
- Assumption 2: Rays are uniformly distributed (within !eld of view)

1. Same origin: project triangles to reduce ray-triangle 
intersection to 2D point-in-polygon test
- Simpli!es math
- Fixed-point math (clipping used to ensures precision bounds)

** Assumption relaxed if rasterizer simulates defocus blur (e.g., Reyes)
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Rasterization: ray origin need not be camera position

Shadow mapping: place origin at shadowed light source

Image credits: Segal et al. 92, Cass Everitt 

Shadow rays

Shadow map: stores shadow ray results 
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Shadow map undersampling

Image credit: Johnson et al. TOG 2005 

Shadows computed using shadow map 

Correct hard shadows 
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Rasterization: ray origin need not be camera position
Environment mapping:
place ray origin at re"ective object

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray origin at center 
of re"ective box
(produces cube-map)

Center of projection

Cube map:
stores results of approximate mirror re"ection rays

(Question: how can a glossy surface be rendered 
using the cube-map)
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Rasterization
▪ Rasterization is an optimized visibility algorithm

- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed within #eld of view

1. Same origin: project triangles to reduce ray-triangle 
intersection to cheap/efficient 2D point in polygon test 

2. Uniform sample distribution: given polygon, easy (a.k.a. fast/
efficient) to “!nd” samples covered by polygon
- Regular frame buffer: constant time sample lookup, update, edit 
- Search leverages 2D screen coherence: amortize operations over tile of samples
- No need for complex acceleration structures to accelerate a search over samples 

(hierarchy implicit in the samples)
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Rasterization: performance
▪ Frame-buffer: !xed number of samples (determined by screen 

resolution, sampling rate) and common sample representation
- Efficient to !nd samples covered by polygon (highly optimized !xed-function 

implementations of both coverage computation and frame-buffer update)

▪ Approach: stream over geometry (regular/predictable), 
directly access frame-buffer samples
- Unpredictable access to samples, but manageable (see properties above, and 

previous lectures about pipeline sorting and color/z-buffer caching/compression)

▪ Scales to high scene complexity



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Review: Ray Tracing 101
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Problem
Given ray, !nd !rst intersection with scene geometry **

** Simpler, but common query: determine if any intersection exists



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Acceleration structures 
Preprocess scene to build data structure to accelerate ray-scene visibility queries

e.g., bounding volume hierarchy (BVH)
Idea: nodes group objects with spatial proximity
Adapts to non-uniform density of scene objects

Image credit: Wald et al. TOG 2004 

Three different bounding volume hierarchies for the same scene
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How to build a BVH?
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How to build a BVH?
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Surface area heuristic
▪ Current best practice

▪ Minimize cost function:
cost	
  =	
  CT	
  +	
  (PL	
  *	
  CL)	
  +	
  (PR	
  *	
  CR)

CT = cost of performing a tree node traversal (ray-box test)
PL/PR = probability of ray intersecting left/right child
CL/CR = cost of intersecting ray with left/right child

▪ Assumptions:
- Rays are uniformly distributed (uniform distribution of origin and direction) 

but originate from outside node bounding box
- Costs of children typically set to be CI * # primitives

[Goldsmith and Salmon 87 ]
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Simple ray tracer (using BVH)
//	
  stores	
  information	
  about	
  closest	
  hit	
  found	
  so	
  far
struct	
  ClosestHitInfo	
  {
	
  	
  	
  Primitive	
  primitive;
	
  	
  	
  float	
  distance;
};

trace(Ray	
  ray,	
  BVHNode	
  node,	
  ClosestHitInfo	
  hitInfo)
{
	
  	
  	
  if	
  (!intersect(ray,	
  node.bbox)	
  ||	
  (closest	
  point	
  on	
  box	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {

trace(ray,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(ray,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}
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Making Ray Tracing Run Fast

Simpli#cations in today’s discussion:
Will not discuss how to make acceleration structure build fast (active research topic)

Scene acceleration structure is read-only: no on-demand build, no on-demand tessellation 
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High-throughput ray tracing
Find intersection of millions of rays with scene geometry
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High-throughput ray tracing

▪ Work efficiency of algorithms
- High quality acceleration structures (minimize ray-box, ray-primitive tests)
- Smart traversal algorithms (early termination, etc.)

▪ Parallelism: multi-core, SIMD execution efficiency

▪ Bandwidth efficiency (caching, memory access characteristics) 

Same issues we’ve talked about all class!
Tension between employing most work-efficient algorithms, and using 

available execution and bandwidth resources well.
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Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

▪ Method 1: SPMD style 
- Each program instance intersects one ray against scene BVH

(programmer writes single ray algorithm)
- Recall previous homework assignment (1D ray tracing)

- SIMD efficient when program instances execute same instructions
- Bandwidth efficient when rays in a SIMD block (“warp”) visit same BVH nodes 
- Will discuss further after reading Aila et al. 2009

▪ Method 2: ray packets
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Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once 
RayPacket
{
	
  	
  	
  	
  Ray	
  rays[PACKET_SIZE];
	
  	
  	
  	
  bool	
  active[PACKET_SIZE];
};

trace(RayPacket	
  rays,	
  BVHNode	
  node,	
  ClosestHitInfo	
  packetHitInfo)
{
	
  	
  	
  if	
  (!ANY_ACTIVE_intersect(rays,	
  node.bbox)	
  ||
	
  	
  	
  	
  	
  	
  	
  (closest	
  point	
  on	
  box	
  (for	
  all	
  active	
  rays)	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  update	
  packet	
  active	
  mask

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  (each	
  ACTIVE	
  ray	
  r	
  in	
  packet)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {
	
  	
  	
  	
  	
  trace(rays,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(rays,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}

[Wald et al. 2001]
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Ray packet tracing
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Blue = active ray after node box test
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r6 does not pass node F box test 
due to closest-so-far check
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Advantages of packets
▪ SIMD execution

- One vector lane per ray

▪ Amortize fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet
- Note: value to making packets much bigger than SIMD width!
- Contrast with SPMD approach 

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox 

(e.g., think of a packet as a beam)
- Further optimizations possible when all rays share origin 
- Note: value to making packets much bigger than SIMD width!
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Disadvantages of packets
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Blue = active ray after node box test

▪ If any ray must visit a node, it drags all 
rays in the packet along with it
(note contrast with SPMD version: each ray only 
visits BVH nodes it is required to)

▪ Loss of efficiency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

Both packet tracing and SPMD ray tracing suffer from 
decreased SIMD and cache efficiency when rays 
traverse the BVH differently... but take a moment to 
think about why (the reasons are different).   
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Ray packet tracing: incoherent rays
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When rays are incoherent, bene#t of packets can decrease 
signi#cantly.  This example: packet visits all tree nodes.  
(All rays visit all tree nodes) 



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if 
a scene is overly detailed

(note importance of geometric level of detail)
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Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet: 
7 of 8 rays active

Example: 8-wide SIMD processor, 16-ray packets
(2 SIMD instructions required to perform operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and 
continue with smaller packet
- Increases SIMD utilization
- Still loses amortization bene!ts of large packets 

[Boulos et al. 2008]
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Improving packet tracing with ray reordering

10-18% speedup over standard packet tracing for glossy re$ection rays 
25-50% speedup for 2-bounce diffuse interre$ection rays
(4-wide SSE implementation) 

Idea: when packet utilization drops below threshold, resort rays and continue with 
smaller packet
- Increases SIMD utilization
- Still loses amortization bene!ts of large packets

Bene!t of higher utilization/tighter packet bounds must overcome overhead of 
reordering operation

[Boulos et al. 2008]
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Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Little bene!t to packets (can decrease performance compared to single ray code)

▪ Idea: exploit SIMD execution within single ray-BVH intersection query
- Interior: use wider-branching BVH

(test single ray against multiple node bboxes in parallel)
- Branching factor 4 has similar efficiency to branching factor 2
- Branching factor 16 exhibits signi!cant reduction in efficiency

- Leaf: test ray against multiple triangles in parallel

[Wald et al. 2008]
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Giving up on packets

▪ Even with reordering, ray coherence during BVH traversal will diminish
- Little bene!t to packets (can decrease performance compared to single ray code)

▪ Idea: exploit SIMD execution within single ray-BVH intersection query
- Interior: use wider-branching BVH
- Leaf: test ray against multiple triangles in parallel

▪ SIMD efficiency independent of ray coherence

▪ But no work/bandwidth reduction due to amortization across rays
- Weren’t getting much bene!t from packets of incoherent rays anyway



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Packet tracing best practices

▪ Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet 
utilization drops below threshold
- For wide SIMD machine, a single branching-factor 4 BVH works well for both 

packet and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree 

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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Scene data access
▪ Recall data access in rasterization

- Stream through scene geometry
- Allow arbitrary, direct access to frame-buffer samples (accelerated by highly 

specialized implementations)

▪ Ray tracer
- Frame-buffer access is minimal
- But BVH traversal requires a lot of jumping through memory

- Not predictable by de!nition (or you have a bad tree)
- Packets amortize cost of node fetches

▪ Incoherent ray traversal suffers from poor cache behavior
- Ray-scene intersection becomes bandwidth bound
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Global ray reordering
Idea: batch up rays in the same part of the scene.  Process these rays 
together to increase locality

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters 
treelet, add rays to treelet queue

2. When treelet queue is 
sufficiently deep, intersect 
enqueued rays with treelet

[Phar 1997, Navratil 07, Alia 10]

[Phar 1997, Navratil 07, Alia 10]
Lots of academic work + some industry attempts
Still not common in major ray tracing implementations 
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Summary
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Not discussed today
A practical, efficient real-time ray tracing system will also need 
to solve these important challenges

1. Building the BVH efficiently
- Rebuild or update each frame as scene changes?

2. On-demand geometry: tessellation
- Intersection modi!es BVH (not so embarrassingly parallel anymore)
- How to determine level-of-detail?

3. Efficiently shading ray hits
- What to do when rays in a packet hits surfaces with different shaders? 
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Summary
▪ Visibility: determine which scene geometry contributes to the 

appearance of which screen pixels
- “Basic” rasterization: given polygon, !nd samples(s) it overlaps
- “Basic” ray tracing: given ray, !nd triangle(s) that it intersects

▪ In practice, not as different as you might think

▪ Just different ways to solve the problem of !nding 
interacting pairs between two hierarchies **
- Hierarchy over point samples
- Hierarchy over geometry

** A great analogy is collision detection (credit Tim Foley)
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Consider performant, modern solutions for 
primary-ray visibility
▪ “Rasterizer”

- Hierarchical rasterization (uniform grid over samples)
- Hierarchical depth culling (quad-tree over samples)
- Application scene graph, hierarchy over geometry

- Modern games perform conservative coarse culling, only submit potentially 
visible geometry to the rendering pipeline
(in practice, rasterization not linear in amount of geometry in scene)

▪ “Ray tracer”
- BVH: hierarchy over geometry
- Packets form hierarchy over samples (akin to frame buffer tiles).  Breaking packets 

into small packets during traversal adds complexity to the hierarchy
- Wide packet traversal, high-branching BVH: decrease work efficiency for better 

machine utilization
(in practice, signi#cant constants in front of that lg(N))
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Trends: ray tracing in #lm

▪ Reyes algorithm still predominant solution for 
primary ray visibility

▪ Re"ections, indirect illumination, ambient 
occlusion, some shadows often computed via ray 
tracing

▪ Sony Pictures Imageworks now uses only ray 
tracing for all #lms
- Arnold renderer has replaced Renderman at Sony 

▪ Complex reasons motivate shift to ray tracing
- More than just performance (artist time, 

production cost, etc.)
Image Credit: Sony (Cloudy With a Chance of Meatballs)

Image Credit: Pixar (Cars)

Image Credit: Blue Sky
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Readings
▪ For next time:

- T. Aila and S. Laine, Understanding the Efficiency of Ray Traversal on GPUs. 
High Performance Graphics 2009

▪ Lots of supplemental ray tracing readings posted on the web site


