Lecture 13:
Reyes Architecture and Implementation

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

A gallery of images rendered using Reyes

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Image credit: Lucasfilm (Adventures of Andre and Walle B, 1984)

Image credit: Pixar (Luxo Jr., 1986)

A

Image credit: Pixar (Toy Story 2, 1999)

3 -

-~ }
2

o T | % ‘ -,
“‘Mﬁ-x«m’w’ ” : ey N2

K T R TG D ate T i Rk

-

Image credit: Pixar (Wall-E, 2008)

Image credit: Pixar (Ratatouille, 2007)

Image credit: Pixar (UP, 2009)

aspapapar arl

Image credit: Pixar (UP, 2009)

I

. -
y
Image credit: Pixar (UP, 2009)

Image credit: Pixar (UP, 2009)

Imagg-iredit: Pixar (UP, 2009)

Image credit: Pixar (Toy Story 3,2010)

The Reyes image rendering architecture

B Reyes: acronym for Renders Everything You Ever Saw

- Also reference to Pt. Reyes, CA (just north of San Francisco)

- Disagreement in graphics community about whether it is written Reyes or REYES.
(Rob Cook says it's “Reyes”)

m Developed at Lucasfilm (graphics group later
became Pixar)

m Pixar’s implementation is called
Photorealistic Renderman (prman)

— Renderman name was a take off on Sony Discman

B Rendering system for every Pixar film

— And vast majority of film special effects

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reyes goals
m High image quality: no faceting, no visible aliasing
B Handle massive scene complexity

m Support large diversity in models, shading, etc.

m High performance: achieve all of the above in “reasonable”
rendering time (minutes/hours frame)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Canonical Reyes pipeline

Primitives
(e.g., parametric patch, sphere)

Primitive Bound

Primitive Split

Primitive Dice

Micropolygon Grid

Shaded Micropolygon Grid
N (vertices displaced)

Rasterization

“Hider” momemmmmnm Visible points

Frame-Buffer Ops

|

Frame Buffer

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Definitions

® Micropolygon = canonical intermediate representation in the Reyes
pipeline. Expectation is that projected area <=1 pixel

® Grid = micropolygon mesh corresponding to contiguous surface region

m Reyes pipeline configuration defines
- Target micropolygon area (typically 1/4 to 1 pixels)

- Maximum number of micropolygons in a grid (typically ~256)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

|) ! | | |
e { - = — - ===t - -t

I) ! -1 1 | 1

) | | | | |) |)

».'1';_' S Sedba— - -
7 4 B I
=

| | !) ! | |) |
! ! ! | | | | | !
! | ! i | | | !

: |

| |

- -t

! |
)) |) | | |

SRR NNINeA |]
S EERERERY- - o A (A h
MR D IS

B\ .ﬂ.l/'”' N h.4
. A g ‘.V.A .
OS2

- Iﬂkwi s‘ } a)
A“va’“»nrmw‘mwff \ CAS
LN Do esfal? |
4 ». ; hﬁl g ‘ R . a " ;
km_f SN, »m«.‘zﬂmmvﬂ . Ev}ﬂ%.smw S
o 74\ Y.\ | &v :..‘iVA v d . MW nvu&\\ \

y 9

v
v,
% VANTIZS Vin arig
: ,m»‘ i Am...ﬂmﬂ,\e.\\ &v«»w} S
‘A.' }
he

N\a
AN 4 \ VY \F -
SN /N N\ b1 rav Ik O
SN L AR
RDIARZANYAN rk.w.ﬂy SRR, MLMV. /A \
|) Nv\h..\i»ﬂ;.«ﬂ’f«.‘h"»\ VA‘*‘“_‘},.. «\..\mu. q..VA' P
<\] AVAY AT Ac&‘\.\«wﬂ V‘*WL\\\V\"V ;

\4
) "."b“‘."."‘" L "‘ : ‘ .‘ Tl
RSN NI 7 2

o
Pt e

4 f ~ i . y ‘ lm.r
TR \..xm)

-
o -
» ’»

Pl

)
v;
4
VANV,
VAVAN

ORSSZ

ACESLS 7
’“.’L .Y' Y

1 4

N

N

N
vxza

A
. ﬁy .‘
N

\/
VA
N
S
=
v

.v"’
Sy
o

4 - “:».
;4:\
2

v
ig’
-
b

: D

—

O
A
N
s,
¥

A
7N

LAY
A/

LN
SES
Ths

NS

X

A%
“i". \Z

v

A
ANJ
“ ’

\ 2
A\

\ 7

.
4N

“
-

SR
Ay
v

‘4.

QPR
2

....-‘ i.A._.rhmo,v«
Ay ST A
- e [A

2\
\/

5
\ 7

X

umv...\\rl\

. P
1/

44

s \:-.-
TR
&

. \

2
AN
AN

~,

Boey
A‘;\'\'\ N \

AVAY

SORN ONBA AR
Q%m% AR

,uﬁw‘wm‘w&b%ﬁﬁm. o
SISk
RS AORSSSHRMOASE

KA eSAT &&w»«%«««aﬂ&«»@gﬁ> ;
AN IN N I

X TTYTS ii\«wﬂé.ﬂf Avv.rnv..».ib 7 K

L - ra— ’

2w

DR AN
el

~

I
5%
SN
\/

\ B
N
<SS
7S
<\

AVAr
NS

N
A
ESN

.

) A¢
A

. .
LAY

-
>
N

vALLRY

AY

AN
3N

N/
S

]
s : . . = e
pa »J__Em &Wa.ﬂb.(N

NSNS 2 28
NN KB SN

e
/N :

/

WAV 21h K7 O
m@ ran ey A
¥ 7,

¥l

AN — ﬂw..- " v - o/ . .Lqun\Hl‘Hllm A=K

- - "!
VATA

Today

m Tessellation
- Lane-carpenter algorithm

m Shading

m Hiding

- Stochastic rasterization

m Transparency
- A-buffer algorithm

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tessellation

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tessellating primitives into micropolygon grids

B Goals

- Want micropolygons all about the same size
- Want projected micropolygon areas to closely match target

- ldeally, grids should be reasonably large (close to max grid size)

B Reyes tessellation

- Lane-carpenter algorithm (often referred to as “split-dice”)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Uniform patch tessellation is insufficient

"
! Too many polygons: poor performance
Polygons too large: poor quality
> U
Uniform partitioning of patch Patch viewed from camera

(parametric domain)

Split-dice adaptive tessellation Lane 80

Patch parametric domain Patch viewed from camera

Split-dice adaptive tessellation Lane 80

7
Patch parametric domain Patch viewed from camera

>

Split-dice adaptive tessellation Lane 80

: .U
Patch parametric domain

(7T T TV N\
YAV SN R
/[[[|
[T TT]
/]]]]

(/)])]
(/)]]]]

[/L[]

Patch viewed from camera

Reyes primitive interface

class Primitive

{
BBox3D bbox () ;
bool canDice();
List<Primitive> split();
Grid dice();

}s

Split partitions primitive into 1 or more child primitives

Split may generate child primitives of a different type

Note: bbox is expanded by renderer to account for primitive motion over the frame (motion blur),
surface displacement, etc.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Interesting implications of split

B Encapsulates adaptivity (keep dice simple, reqular, and fast)

B Divide and conquer:

- Micropolygons generation order exhibits high spatial locality
- Provides temporal stability

m Splitting implicitly creates a hierarchy of grids

- Very useful for frustum/depth culling at largest possible granularity
- Use bbox to cull primitives prior to dicing (or prior to unnecessary splitt

® Splitting enables a clipless rasterization (see Reyes paper)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shading

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reyes shades micropolygon grid vertices

B Reyes invokes the shading function once for each grid vertex
- Shading function defined using Renderman Shading Language (RSL) ***

- Shading function computes surface appearance at vertex

- Shading function may also reposition vertex (displacement)

¥ See shading languages lecture

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

i
| e
<),
=
7,
WJ

i~
.

s

d
D
=

|
D

-

Micropolygon mesh

Micropolygon mesh: after displacement

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Why grids?

m Execution coherence

- All vertices on grid shaded with same shader
= Permits SIMD implementation

B Locality

- Grid is contiguous region of surface: shading points together increases texture locality

m Compact representation

- Forreqular (tensor product) grid, topology is implicit
- Quad micropolygon grid: each interior vertex shared by four micropolygons

m Connectivity leveraged to compute derivatives in shaders

- (Can compute higher order derivatives

m Preserve hierarchy

- Allows per-grid operations, in addition to per micropolygon or per-vertex

- Useful for culling, etc.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Hiding micropolygons (rasterization + occlusion)

Option 1: micropolygon is flat shaded (apply color from one vertex to sample)

Note: many visibility samples per pixel to eliminate aliasing

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Hiding micropolygons (rasterization + occlusion)

Option 2: interpolate per-vertex colors

Note: many visibility samples per pixel to eliminate aliasing

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aside: interesting sampling question

m Reyes samples surface appearance uniformly in parametric space (within in grid)

- Uniform in parametric space = uniform in object space, but not uniform in
screen space due to projection

- Textures filtered using object-space surface derivatives

m Surfaceis projected, and then appearance is resampled uniformly in screen space
at visibility sample points

B OpenGL/Direct3D pipeline samples surface appearance uniformly in screen space

- Textures filtered using screen-space surface derivatives

Question: is there a preferred solution?

Consider:

High frequency surface appearance: due to bumpy geometry, due to high frequency texture
Surfaces at grazing angles to camera (near silhouettes)

What is lost in resampling step?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Moving micropolygon

Common simplification: linear motion for
t duration of virtual camera exposure

y pr

X,T plane (visibility samples distributes in space and time)

t)

Motion blur + defocus: 5D point-in-polygon tests (XY, T, lens UV)

x.

Candidate visibility samples

t

Tighter bounds (4 time intervals)

t

Tighter bounds (4 time intervals)

Slow motion = tight bounds
t A

t)

Fast motion = loose bounds

Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class: see web site)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Stochastic sampling for motion blur
(and defocus blur)

B Need high visibility sampling rates to remove noise in renderings with
large motion blur, or camera defocus

B 64 - 128 visibility samples per pixel common in film rendering
- Large frame-buffer!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Transparent surfaces

. 100% opaque, red

75% opaque, blue

25% opaque, green

composited result = 0.25 * green + .75 * (.75 * blue + .25 * red)

OpenGL/Direct3D solution relies on pipeline ordering semantics:
Application sorts surfaces, renders surfaces back-to-front ***

Set frame-buffer blend mode:
frag.alpha * frag.color + (1-frag.alpha) * fb_color

*** front-to-back rendering solution exists as well

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Transparency when using Z-buffer for occlusion

m Application sorting is a pain

m Depth sort order not well defined with triangles
(interpenetration), let alone complex Reyes primitives

m Further complicated by motion blur

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

A' b Uffe I [Carpenter 84]

B Store list of “visible points” at each visibility sample
- visible point ={rgb, alpha, z}

B When frame rendering is complete:

For each sample:
Sort visible points in list by Z
Blend front-to-back (or back-to-front)

B Provides primitive order-independent solution for rendering transparency
m (ost: variable storage per visibility sample

B Many optimizations to prune list as rendering proceeds

- e.g., don't need to add visible points behind an opaque point in the list

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reyes A-buffer

m Many visibility samples per pixel (recall: 64-128)

m Many visible points per sample (under conditions of
significant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel

4 visible points per sample (rgb,a,z)

~10 GB A-buffer !

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reyes implementations use bucketing

m Recall “sort middle tiled chunked”
m Motivation here is to keep the A-buffer for a bucket in memory

(previously we discussed how some implementations of OpenGL use a similar sorting scheme to:
gain parallelism, keep a tile of frame-buffer on chip)

for each primitive, place in screen bucket
for each bucket
allocate G-buffer for bucket
for each primitive
split-dice to create grids // each split, cull primitives falling outside of bucket
shade + hide grids
for each bucket g-buffer sample

composite visible points

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reyes summary

m Keyalgorithms
- High quality, split-dice tessellation

- Shades per-vertex, prior to rasterization
- Visibility via stochastic point sampling to simulate motion blur, camera defocus

- Correct rendering of transparent surfaces via the A-buffer

m Key system concepts

- Micropolygons: common intermediate representation for all primitive types
- Micropolygon grids for locality and SIMD shading

- Bucketed rendering to fit tiles of A-buffer in memory (high depth complexity due to
transparency and high visibility sampling rates)

(not discussed today: lots of smarts in a performant Reyes implementation to keep working
set in memory)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

