
Lecture 12:
Deferred Shading

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Special thanks to Andrew Lauritzen (Intel) and Johan Andersson (DICE) for producing excellent tutorials which in!uenced the content in this lecture

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today: deferred shading
▪ Idea: restructure the rendering pipeline to perform shading after all

occlusions have been resolved

▪ Not a new idea: implemented in several old graphics systems, but not
directly supported by modern graphics APIs and GPUs
- [Deering et al. 88]

- UNC PixelFlow [Molnar et al. 92]

▪ Increasingly popular alternative algorithm for rendering

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu"er Ops

Primitive Processing

Frame Bu"er

“Forward rendering”

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

Primitive Processing

“G-bu"er”

Shading

Frame bu"er

Fragment shader outputs surface properties
(e.g., position, normal, material di"use color, specular color)

Traditional pipeline does not output RGB image. Output is a 2D
bu"er representing information about the surface geometry
visible at each pixel (a.k.a. “g-bu"er”)

After all geometry has been rendered, shader is executed for each
sample in the G-bu"er, yielding RGB values

(shading is deferred until all geometry processing -- including all
occlusion computations -- is complete)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

G-bu"er = geometry bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Re!ectance) Depth

SpecularNormal

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Example G-bu"er layout
Graphics pipeline con#gured to render to four RGBA output bu"ers (32-bits per pixel, per bu"er)

Terminology:
Graphics pipeline bound to “multiple render targets”
If G-bu"er considered as one big bu"er, often referred to as having “fat” pixels

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Two-pass deferred shading algorithm
▪ Pass 1: geometry pass

- Write visible geometry information to G-bu"er

▪ Pass 2: shading pass
For each G-bu"er sample, compute shading

- Read G-bu"er data for current sample
- Accumulate contribution of all lights
- Output #nal surface color

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Final Image

Note: Deferred shading produces same result
as forward rendering approach, but order of
computation is di"erent.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Motivation: why deferred shading?

▪ Shade only surface fragments that are visible
- Same e"ect as perfect early occlusion culling
- But triangle order invariant

▪ Forward rendering is ine$cient when shading small triangles
- Recall quad-fragment shading granularity: multiple fragments generated for

pixels along triangle edges

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Motivation: why deferred shading?

▪ Shade only surface fragments that are visible

▪ Forward rendering is ine$cient when shading small
triangles (quad-fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to hundreds of light source

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Lights

Dcutoff
Omnidirectional point light
(with distance cuto")

Directional spotlight

Environment light

Shadowed light

Many di"erent kinds of lights

For e$ciency, lights often specify
#nite volume of in!uence

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: many-light shader (naive)
struct&LightDefinition&{

&&int&type;

&&...

}

sampler&mySamp;

Texture2D<float3>&myTex;

Texture2D<float>&myEnvMaps[MAX_NUM_LIGHTS];&

Texture2D<float>&myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition&lightList[MAX_NUM_LIGHTS];

int&numLights;

float4&shader(float3&norm,&float2&uv)

{

&&float3&kd&=&myTex.Sample(mySamp,&uv);

&&float4&result&=&float4(0,&0,&0,&0);

&&for&(int&i=0;&i<numLights;&i++)

&&{

&&&&&&if&(this&fragment&is&illuminated&by¤t&light)

&&&&&&{

&&&&&&&&&result&+=&//&contribution&of&light&to&surface&reflectance

&&&&&&}&&

 }

&&&return&result;

}

Execution divergence:

1.Di!erent outcomes for “is illuminated”
test

2.Di!erent logic to perform test (based on
light type)

3.Di!erent logic in loop body (based on
light type, shadowed/unshadowed, etc.)

Work ine$cient:
Predicate evaluated for each
fragment/light pair
(spatial coherence should exist)

Large footprint:
Assets for all lights (shadow maps,
environment maps, etc.) must be
allocated, initialized, and bound to
pipeline

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Lights store lists of objects they illuminate
- CPU builds list by intersecting light volume with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

L1: 1

L2: 2, 3, 4
L3: 5

L4: 4, 5

Example: Compute lists based on conservative bounding volumes
for lights and scene objects

Resulting lists:

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: techniques for scaling to many lights
▪ Application maintains light lists

- Lights store lists of objects they illuminate
- CPU builds list by intersecting light volume with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

▪ Option 1: draw scene in smaller batches
- Before drawing each object, only bind data for relevant lights
- Precompile shader variants for di"erent sets of bound lights (4-light version, 8 light version, etc.)
- Low execution divergence during fragment shading
- Many state changes, small draw batch sizes (draw call = single object)

▪ Option 2: multi-pass rendering
- For each light, render scene with additive blending (only render geometry illuminated by light)
- Minimal footprint for light data
- Low execution divergence during fragment shading
- Severe cost of redundant geometry processing, frame-bu"er access, redundant execution of

common shading sub-expressions in fragment shader

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many-light deferred shading
For&each&light:

Generate/bind&shadow/environment&maps
Compute&light’s&contribution&for&each&G]buffer&sample:

For&each&G]buffer&sample
Load&G]buffer&data
Evaluate&light&contribution&(may&be&zero)
Accumulate&contribution&into&frame]buffer

▪ Good
- Only process geometry once
- Avoids divergent execution in shader
- Outer loop over lights: avoids light data footprint issues

▪ Bad?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many-light deferred shading
For&each&light:

Generate/bind&shadow/environment&maps
Compute&light’s&contribution&for&each&G]buffer&sample:

For&each&G]buffer&sample
Load&G]buffer&data
Evaluate&light&contribution&(may&be&zero)
Accumulate&contribution&into&frame]buffer

▪ Bad *
- Limited shading model (G-bu"er de#nes parameters to shader)
- Does not handle transparency
- “Does contribute” predicate evaluated per light-fragment pair
- High bandwidth cost (reload G-bu"er each pass, output to frame-bu"er)

(* Will address one more drawback later)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reducing deferred shading bandwidth costs
▪ Process multiple lights in each accumulation pass

- Amortize G-bu"er load, frame-bu"er write across lighting computations for multiple lights

▪ Only perform shading computations for G-bu"er samples illuminated by light
- E.g., Rasterize light volume, only shade covered G-bu"er samples

(light-fragment predicate evaluated conservatively by rasterizer)

- Compute screen-aligned quad covered by light volume, only process samples within quad

- Many techniques for culling light/G-bu"er sample interactions

Image Credit: A. Lauritzen

Visualization of number
of lights evaluated per
G-bu"er sample
(scene contains 1024 lights)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading
▪ Main idea: Compute lights that in!uence small G-bu"er tile, process tile

samples x relevant lights as a group

▪ E$cient implementation enabled by compute shader (think blocking)

- Amortizes G-bu"er load, frame-bu"er write across lights

- Amortizes light data load across tile samples

- Amortizes light-sample culling across samples in a tile

[Andersson 09]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading [Andersson 09]

LightDescription&tileLightList[MAX_LIGHTS];&&//&group&shared&memory

Compute&Z]min,&Zmax&for¤t&tile&

barrier;

for&each&light:&&//¶llelizes&across&threads&in&group
&&&if&(light&volume&intersects&tile&frustum)
&&&&&&append&to&tileLightList&//&stored&in&shared&memory

barrier;

for&each&sample:&&//¶llelizes&across&threads&in&group
&&&result&=&float4(0,0,0,0)
&&&load&G]buffer&data&for&sample
&&&for&each&light&in&tileLightList:&&//&no&divergence
&&&&&&&result&+=&contribution&of&light&//&thread]local&data

&&&store&result&to&appropriate&position&in&frame&buffer&

Each thread group is responsible for shading a 16x16 sample tile of the G-bu"er

Load depth bu"er once

Cull lights at tile granularity

Read G-bu"er once

Write to frame bu"er once

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading:
good light culling e$ciency

Number of lights evaluated per G-bu"er sample
(scene contains 1024 lights)

Image Credit: A. Lauritzen

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tiled vs. conventional deferred shading

[Lauritzen 2009]

Deferred shading rendering performance: 1920x1080 resolution

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Quiz: recall multi-sample anti-aliasing (MSAA)?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: MSAA

Main idea: decouple shading sampling rate from visibility sampling rate
Depth bu"er: stores depth per sample
Color bu"er: stores color per sample
Resample color bu"er to get #nal image pixel values

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

MSAA in a deferred shading system
▪ Challenge: deferred shading is designed to shade exactly once per G-bu!er sample

▪ MSAA: shades once per primitive contributing coverage to pixel

- Large triangle assumption: often results one shading computation per pixel

- But extra shading occurs at pixels along primitive boundaries (extra shading
necessary to anti-alias silhouettes)

▪ Note: this is also one of the reasons transparency is challenging in a deferred system

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Anti-aliasing solutions for deferred shading
▪ Super-sample

- Generate G-bu"er larger than frame bu"er
- Shade at G-bu"er resolution
- Downsample result to get #nal frame-bu"er pixels
- Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

▪ Intelligently "lter frame bu!er
- Identify edges in image and selectively blur frame-bu"er near these pixels

- Same footprint, same shading cost, but produces artifacts

- Current popular technique: morphological anti-aliasing (MLAA)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Morphological anti-aliasing (MLAA)
Detect patterns in image
Blend neighboring pixels according to a few simple rules

[Reshetov 09]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Morphological anti-aliasing (MLAA) [Reshetov 09]

Aliased image After MLAAZoomed views
(top: aliased, bottom: after MLAA)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Anti-aliasing solutions for deferred shading
▪ Super-sample

- Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

▪ Intelligently "lter frame bu!er (MLAA popular choice)
- Same footprint, same shading cost, but produces artifacts

▪ Application implements MSAA on its own
- Render super-sampled G-bu"er
- Launch one shader instance for each G-bu"er pixel, not sample
- Shader implementation:

Detect&if&pixel&contains&an&edge&&//&(how&is&this&done&robustly?)

If&edge:

Shade&all&G]buffer&samples&for&pixel&(sequentially),&combine&results

Else:

Shade&one&G]buffer&sample,&store&result

- Increased footprint, approx. same shading cost as MSAA, some additional BW cost (to detect edges)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Handling divergence
Red pixels = edges
(Require additional shading)

Increases divergence in shader execution
(recall eliminating shading divergence was
one of the motivations of deferred shading)

Can apply standard gamut of data-parallel programming solutions:

Multi-pass:
- pass 1: categorize pixels, set stencil bu"er
- pass 2: shade pixels requiring 1 shading computation
- pass 3: !ip stencil, shade pixels requiring N shading computations

Standard bandwidth vs. execution coherence trade-o"!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Deferred shading summary
▪ Main idea: perform shading calculations after all geometry processing

(rasterization, occlusions) is complete

▪ Driving motivation in current/near-future systems is scaling scenes to many lights
- Also, high geometric complexity (due to tessellation) increases overhead of Z-prepass

▪ Computes (more-or-less) the same result as forward rendering; reorder key
rendering loops to change schedule of computation
- Key loops: for all lights, for all drawing primitives
- Di"erent footprint characteristics

- Trade light data footprint for G-bu"er footprint

- Di"erent bandwidth characteristics

- Di"erent execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence

- Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

▪ Keep in mind: constrains shading model, not used for transparent surfaces

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Final comments
▪ Which is better, forward or deferred shading?

- Often no free lunch

▪ Common tradeo": bandwidth -- execution coherence
- Another example of relying on high bandwidth to achieve high ALU utilization

- In graphics: typically manifest as multi-pass algorithms

▪ When considering new techniques, be cognizant of interoperability
with existing features and optimizations
- Deferred shading not compatible with hardware MSAA implementations (application must role

their own)

