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Special thanks to Andrew Lauritzen (Intel) and Johan Andersson (DICE) for producing excellent tutorials which in!uenced the content in this lecture 
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Today: deferred shading
▪ Idea: restructure the rendering pipeline to perform shading after all 

occlusions have been resolved 

▪ Not a new idea: implemented in several old graphics systems, but not 
directly supported by modern graphics APIs and GPUs
- [Deering et al. 88]

- UNC PixelFlow [Molnar et al. 92]

▪ Increasingly popular alternative algorithm for rendering
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu"er Ops

Primitive Processing

Frame Bu"er

“Forward rendering”
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Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

Primitive Processing

“G-bu"er”

Shading

Frame bu"er

Fragment shader outputs surface properties
(e.g., position, normal, material di"use color, specular color)

Traditional pipeline does not output RGB image. Output is a 2D 
bu"er representing information about the surface geometry 
visible at each pixel (a.k.a. “g-bu"er”)

After all geometry has been rendered, shader is executed for each 
sample in the G-bu"er, yielding RGB values

(shading is deferred until all geometry processing -- including all 
occlusion computations -- is complete)
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G-bu"er = geometry bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Albedo (Re!ectance) Depth

SpecularNormal
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Example G-bu"er layout
Graphics pipeline con#gured to render to four RGBA output bu"ers (32-bits per pixel, per bu"er)

Terminology:
Graphics pipeline bound to “multiple render targets”
If G-bu"er considered as one big bu"er, often referred to as having “fat” pixels 

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks
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Two-pass deferred shading algorithm
▪ Pass 1: geometry pass

- Write visible geometry information to G-bu"er

▪ Pass 2: shading pass
For each G-bu"er sample, compute shading

- Read G-bu"er data for current sample
- Accumulate contribution of all lights
- Output #nal surface color

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Final Image 

Note: Deferred shading produces same result 
as forward rendering approach, but order of 
computation is di"erent. 
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Motivation: why deferred shading?

▪ Shade only surface fragments that are visible
- Same e"ect as perfect early occlusion culling
- But triangle order invariant

▪ Forward rendering is ine$cient when shading small triangles
- Recall quad-fragment shading granularity: multiple fragments generated for 

pixels along triangle edges
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Recall: forward shading shades multiple fragments at pixels 
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1 
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Recall: forward shading shades multiple fragments at pixels 
containing triangle boundaries

Shading computations per pixel
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Motivation: why deferred shading?

▪ Shade only surface fragments that are visible

▪ Forward rendering is ine$cient when shading small 
triangles (quad-fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to hundreds of light source
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1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]
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Lights

Dcutoff
Omnidirectional point light
(with distance cuto")

Directional spotlight 

Environment light 

Shadowed light

Many di"erent kinds of lights

For e$ciency, lights often specify 
#nite volume of in!uence
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Forward rendering: many-light shader (naive)
struct&LightDefinition&{

&&int&type;

&&...

}

sampler&mySamp;

Texture2D<float3>&myTex;

Texture2D<float>&myEnvMaps[MAX_NUM_LIGHTS];&

Texture2D<float>&myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition&lightList[MAX_NUM_LIGHTS];

int&numLights;

float4&shader(float3&norm,&float2&uv)

{

&&float3&kd&=&myTex.Sample(mySamp,&uv);

&&float4&result&=&float4(0,&0,&0,&0);

&&for&(int&i=0;&i<numLights;&i++)

&&{

&&&&&&if&(this&fragment&is&illuminated&by&current&light)

&&&&&&{

&&&&&&&&&result&+=&//&contribution&of&light&to&surface&reflectance

&&&&&&}&&

    }

&&&return&result;

}

Execution divergence:

1.Di!erent outcomes for “is illuminated” 
test

2.Di!erent logic to perform test (based on 
light type)

3.Di!erent logic in loop body (based on 
light type, shadowed/unshadowed, etc.)  

Work ine$cient:
Predicate evaluated for each 
fragment/light pair
(spatial coherence should exist)

Large footprint:
Assets for all lights (shadow maps, 
environment maps, etc.) must be 
allocated, initialized, and bound to 
pipeline
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Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Lights store lists of objects they illuminate
- CPU builds list by intersecting light volume with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)
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Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

L1: 1

L2:  2, 3, 4
L3: 5

L4: 4, 5

Example: Compute lists based on conservative bounding volumes 
for lights and scene objects

Resulting lists:
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Forward rendering: techniques for scaling to many lights
▪ Application maintains light lists

- Lights store lists of objects they illuminate
- CPU builds list by intersecting light volume with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

▪ Option 1: draw scene in smaller batches
- Before drawing each object, only bind data for relevant lights
- Precompile shader variants for di"erent sets of bound lights (4-light version, 8 light version, etc.)
- Low execution divergence during fragment shading
- Many state changes, small draw batch sizes (draw call = single object)

▪ Option 2: multi-pass rendering
- For each light, render scene with additive blending (only render geometry illuminated by light)
- Minimal footprint for light data
- Low execution divergence during fragment shading
- Severe cost of redundant geometry processing, frame-bu"er access, redundant execution of 

common shading sub-expressions in fragment shader
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Many-light deferred shading
For&each&light:

Generate/bind&shadow/environment&maps
Compute&light’s&contribution&for&each&G]buffer&sample:

For&each&G]buffer&sample
Load&G]buffer&data
Evaluate&light&contribution&(may&be&zero)
Accumulate&contribution&into&frame]buffer

▪ Good
- Only process geometry once
- Avoids divergent execution in shader
- Outer loop over lights: avoids light data footprint issues 

▪ Bad?
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Many-light deferred shading
For&each&light:

Generate/bind&shadow/environment&maps
Compute&light’s&contribution&for&each&G]buffer&sample:

For&each&G]buffer&sample
Load&G]buffer&data
Evaluate&light&contribution&(may&be&zero)
Accumulate&contribution&into&frame]buffer

▪ Bad *
- Limited shading model (G-bu"er de#nes parameters to shader)
- Does not handle transparency
- “Does contribute” predicate evaluated per light-fragment pair 
- High bandwidth cost (reload G-bu"er each pass, output to frame-bu"er)

(* Will address one more drawback later)
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Reducing deferred shading bandwidth costs
▪ Process multiple lights in each accumulation pass

- Amortize G-bu"er load, frame-bu"er write across lighting computations for multiple lights

▪ Only perform shading computations for G-bu"er samples illuminated by light
- E.g., Rasterize light volume, only shade covered G-bu"er samples

(light-fragment predicate evaluated conservatively by rasterizer)

- Compute screen-aligned quad covered by light volume, only process samples within quad

- Many techniques for culling light/G-bu"er sample interactions

Image Credit: A. Lauritzen

Visualization of number 
of lights evaluated per 
G-bu"er sample
(scene contains 1024 lights) 
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Tile-based deferred shading
▪ Main idea: Compute lights that in!uence small G-bu"er tile, process tile 

samples x relevant lights as a group 

▪ E$cient implementation enabled by compute shader (think blocking)

- Amortizes G-bu"er load, frame-bu"er write across lights

- Amortizes light data load across tile samples

- Amortizes light-sample culling across samples in a tile

[Andersson 09]
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Tile-based deferred shading [Andersson 09]

LightDescription&tileLightList[MAX_LIGHTS];&&//&group&shared&memory

Compute&Z]min,&Zmax&for&current&tile&

barrier;

for&each&light:&&//&parallelizes&across&threads&in&group
&&&if&(light&volume&intersects&tile&frustum)
&&&&&&append&to&tileLightList&//&stored&in&shared&memory

barrier;

for&each&sample:&&//&parallelizes&across&threads&in&group
&&&result&=&float4(0,0,0,0)
&&&load&G]buffer&data&for&sample
&&&for&each&light&in&tileLightList:&&//&no&divergence
&&&&&&&result&+=&contribution&of&light&//&thread]local&data

&&&store&result&to&appropriate&position&in&frame&buffer&

Each thread group is responsible for shading a 16x16 sample tile of the G-bu"er

Load depth bu"er once

Cull lights at tile granularity

Read G-bu"er once

Write to frame bu"er once
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Tile-based deferred shading:
good light culling e$ciency

Number of lights evaluated per G-bu"er sample
(scene contains 1024 lights) 

Image Credit: A. Lauritzen
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Tiled vs. conventional deferred shading

[Lauritzen 2009]

Deferred shading rendering performance: 1920x1080 resolution
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Quiz: recall multi-sample anti-aliasing (MSAA)?
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Review: MSAA

Main idea: decouple shading sampling rate from visibility sampling rate
Depth bu"er: stores depth per sample
Color bu"er: stores color per sample
Resample color bu"er to get #nal image pixel values
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MSAA  in a deferred shading system
▪ Challenge: deferred shading is designed to shade exactly once per G-bu!er sample

▪ MSAA: shades once per primitive contributing coverage to pixel

- Large triangle assumption: often results one shading computation per pixel

- But extra shading occurs at pixels along primitive boundaries (extra shading 
necessary to anti-alias silhouettes)

▪ Note: this is also one of the reasons transparency is challenging in a deferred system
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Anti-aliasing solutions for deferred shading 
▪ Super-sample

- Generate G-bu"er larger than frame bu"er
- Shade at G-bu"er resolution
- Downsample result to get #nal frame-bu"er pixels
- Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

▪ Intelligently "lter frame bu!er
- Identify edges in image and selectively blur frame-bu"er near these pixels

- Same footprint, same shading cost, but produces artifacts

- Current popular technique: morphological anti-aliasing (MLAA)
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Morphological anti-aliasing (MLAA)
Detect patterns in image
Blend neighboring pixels according to a few simple rules

[Reshetov 09]



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Morphological anti-aliasing (MLAA) [Reshetov 09]

Aliased image After MLAAZoomed views
(top: aliased, bottom: after MLAA)
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Anti-aliasing solutions for deferred shading 
▪ Super-sample

- Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

▪ Intelligently "lter frame bu!er (MLAA popular choice)
- Same footprint, same shading cost, but produces artifacts

▪ Application implements MSAA on its own
- Render super-sampled G-bu"er
- Launch one shader instance for each G-bu"er pixel, not sample
- Shader implementation:

Detect&if&pixel&contains&an&edge&&//&(how&is&this&done&robustly?)

If&edge:

Shade&all&G]buffer&samples&for&pixel&(sequentially),&combine&results

Else:

Shade&one&G]buffer&sample,&store&result

- Increased footprint, approx. same shading cost as MSAA, some additional BW cost (to detect edges)
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Handling divergence
Red pixels = edges
(Require additional shading)

Increases divergence in shader execution
(recall eliminating shading divergence was 
one of the motivations of deferred shading)

Can apply standard gamut of data-parallel programming solutions:

Multi-pass:
- pass 1: categorize pixels, set stencil bu"er
- pass 2: shade pixels requiring 1 shading computation
- pass 3: !ip stencil, shade pixels requiring N shading computations

Standard bandwidth vs. execution coherence trade-o"!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights) 
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Deferred shading summary
▪ Main idea: perform shading calculations after all geometry processing 

(rasterization, occlusions) is complete

▪ Driving motivation in current/near-future systems is scaling scenes to many lights
- Also, high geometric complexity (due to tessellation) increases overhead of Z-prepass

▪ Computes (more-or-less) the same result as forward rendering; reorder key 
rendering loops to change schedule of computation
- Key loops: for all lights, for all drawing primitives
- Di"erent footprint characteristics

- Trade light data footprint for G-bu"er footprint

- Di"erent bandwidth characteristics

- Di"erent execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence

- Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

▪ Keep in mind: constrains shading model, not used for transparent surfaces
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Final comments
▪ Which is better, forward or deferred shading?

- Often no free lunch

▪ Common tradeo": bandwidth -- execution coherence
- Another example of relying on high bandwidth to achieve high ALU utilization

- In graphics: typically manifest as multi-pass algorithms

▪ When considering new techniques, be cognizant of interoperability 
with existing features and optimizations
- Deferred shading not compatible with hardware MSAA implementations (application must role 

their own)


