Lecture 12:
Deferred Shading

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Special thanks to Andrew Lauritzen (Intel) and Johan Andersson (DICE) for producing excellent tutorials which influenced the content in this lecture

Today: deferred shading

B |dea: restructure the rendering pipeline to perform shading after all
occlusions have been resolved

B Notanew idea: implemented in several old graphics systems, but not
directly supported by modern graphics APls and GPUs

- [Deering et al. 88]
- UNC PixelFlow [Molnar et al. 92]

B Increasingly popular alternative algorithm for rendering

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

[
 VertexProcesing | “Forward rendering”

l

Primitive Generation

W

Rasterization

(Fragment Generation)

|

oo

l

Frame-Buffer Ops
Frame Buffer

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Deferred shading pipeline

Fragment shader outputs surface properties
l (e.g., position, normal, material diffuse color, specular color)

[darias sy] Traditional pipeline does not output RGB image. Qutput is a 2D
l buffer representing information about the surface geometry

visible at each pixel (a.k.a. “g-buffer”)

l

After all geometry has been rendered, shader is executed for each
[A Faesiny] sample in the G-buffer, yielding RGB values

Rasterization (shading is deferred until all geometry processing -- including all
(Fraginans Sengrath) occlusion computations -- is complete)

Geometry pass-through
Shading
Frame-Buffer Ops
“G-buffer” Frame buffer

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

G-buffer = geometry bhuffer

Depth

Normal " Speéular
Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Example G-buffer layout

Graphics pipeline configured to render to four RGBA output buffers (32-bits per pixel, per buffer)

A8
Depth 24bpp Stencil
Lighting Accumulation RGB Intensity
Normal X (FP16) Normal Y (FP16)

Motion Vectors XY Spec-Power Spec-Intensity
Diffuse Albedo RGB Sun-Occlusion

Source: W. Engel, “Light-Prepass Renderer Mark 111" SIGGRAPH 2009 Talks

Terminology:
Graphics pipeline bound to “multiple render targets”
If G-buffer considered as one big buffer, often referred to as having “fat” pixels

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Two-pass deferred shading algorithm

m Pass 1: geometry pass

= Write visible geometry information to G-buffer

m Pass 2: shading pass

For each G-buffer sample, compute shading
- Read G-buffer data for current sample
= Accumulate contribution of all lights
= Qutput final surface color

Note: Deferred shading produces same result
as forward rendering approach, but order of
computation is different.

Final Image

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Motivation: why deferred shading?

m Shade only surface fragments that are visible

- Same effect as perfect early occlusion culling
- But triangle order invariant

m Forward rendering is inefficient when shading small triangles

— Recall quad-fragment shading granularity: multiple fragments generated for
pixels along triangle edges

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

Motivation: why deferred shading?

m Shade only surface fragments that are visible

m Forward rendering is inefficient when shading small
triangles (quad-fragment granularity)

B |ncreasing complexity of lighting computations
— Growing interest in scaling scenes to hundreds of light source

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

1000 lights

U [S
. e -
NSRS
R,

. .-;‘. .. N
. ~.\ 5

AN
Aok b o i
__."?. "“,..' ‘ i
L A NS 5

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

-
——--- e a,
- ..
e ~

Lights

Many different kinds of lights - Omnidirectional point light
: Doy - (With distance cutoff)

i
1

For efficiency, lights often specify
finite volume of influence

Sea -
- -
" E s Em=-

Directional spotlight

Shadowed light

Environment light

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: many-light shader (naive)

struct LightDefinition {

Large footprint:

Assets for all lights (shadow maps,
environment maps, etc.) must be
allocated, initialized, and bound to
pipeline

int type;

sampler mySamp;
Texture2D<float3> myTex;
Texture2D<float> myEnvMaps[MAX NUM LIGHTS];

Texture2D<float> myShadowMaps[MAX_NUM_LIGHTS]; Execution d ivergence.

LightDefinition lightList[MAX_NUM_LIGHTS];

int numLights; . "o s . ”
HE 1.Different outcomes for “is illuminated

test
float4 shader(float3 norm, float2 uv)

{ 2. Different logic to perform test (based on

float3 kd = myTex.Sample(mySamp, uv); light type)

float4 result = float4(o, 0, 0, 0);

for (int i=0; i<numLights; i++)

3.Different logicin loop body (based on
light type, shadowed/unshadowed, etc.)

{
if (this fragment is illuminated by current light)
{ - - 5
e | Work inefficient:
result += // contribution of light to surface reflectance .
y Predicate evaluated for each

fragment/light pair
} (spatial coherence should exist)
return result;

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: techniques for scaling to many lights

m Application maintains light lists

= Lights store lists of objects they illuminate
= (PU builds list by intersecting light volume with scene geometry
(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Light lists

Example: Compute lists based on conservative bounding volumes
for lights and scene objects

L3

L4

Resulting lists:
L1:1

12: 2,3,4
L3:5

14:4,5

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Forward rendering: techniques for scaling to many lights

m Application maintains light lists

- Lights store lists of objects they illuminate
= (PU builds list by intersecting light volume with scene geometry
(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

m Option 1: draw scene in smaller batches

- Before drawing each object, only bind data for relevant lights

= Precompile shader variants for different sets of bound lights (4-light version, 8 light version, etc.)
- Low execution divergence during fragment shading

= Many state changes, small draw batch sizes (draw call = single object)

m (Option 2: multi-pass rendering

- Foreach light, render scene with additive blending (only render geometry illuminated by light)
= Minimal footprint for light data
- Low execution divergence during fragment shading

- Severe cost of redundant geometry processing, frame-buffer access, redundant execution of
common shading sub-expressions in fragment shader

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many-light deferred shading

For each light:
Generate/bind shadow/environment maps
Compute light’s contribution for each G-buffer sample:
For each G-buffer sample
Load G-buffer data
Evaluate light contribution (may be zero)
Accumulate contribution into frame-buffer

m Good

— Only process geometry once
— Avoids divergent execution in shader
— Quter loop over lights: avoids light data footprint issues

m Bad?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many-light deferred shading

For each light:
Generate/bind shadow/environment maps
Compute light’s contribution for each G-buffer sample:
For each G-buffer sample
Load G-buffer data
Evaluate light contribution (may be zero)
Accumulate contribution into frame-buffer

m Bad*

— Limited shading model (G-buffer defines parameters to shader)

— Does not handle transparency
— “Does contribute” predicate evaluated per light-fragment pair

— High bandwidth cost (reload G-buffer each pass, output to frame-buffer)

(* Will address one more drawback later)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Reducing deferred shading bandwidth costs

B Process multiple lights in each accumulation pass
- Amortize G-buffer load, frame-buffer write across lighting computations for multiple lights

® Only perform shading computations for G-buffer samples illuminated by light

- E.g., Rasterize light volume, only shade covered G-buffer samples
(light-fragment predicate evaluated conservatively by rasterizer)

- Compute screen-aligned quad covered by light volume, only process samples within quad

= Many techniques for culling light/G-buffer sample interactions

Visualization of number
of lights evaluated per

G-buffer sample
(scene contains 1024 lights)

Image Credit: A. Lauritzen

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading Anderson 09

B Mainidea: Compute lights that influence small G-buffer tile, process tile
samples X relevant lights as a group

m Efficient implementation enabled by compute shader (think blocking)
= Amortizes G-buffer load, frame-buffer write across lights
- Amortizes light data load across tile samples

- Amortizes light-sample culling across samples in a tile

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading

Each thread group is responsible for shading a 16x16 sample tile of the G-buffer

LightDescription tileLightList[MAX LIGHTS]; // group shared memory

Compute Z-min, Zmax for current tile <

barrier;

for each light: // parallelizes across threads in group

if (light volume intersects tile frustum) <
append to tileLightList // stored in shared memory

barrier;

for each sample: // parallelizes across threads in group
result = float4(0,0,0,0)

load G-buffer data for sample <
for each light in tilelLightList: // no divergence
result += contribution of light // thread-local data

store result to appropriate position in frame buffer <

[Andersson 09]

Load depth buffer once

Cull lights at tile granularity

Read G-buffer once

Write to frame buffer once

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tile-based deferred shading:
good light culling efficiency

Number of lights evaluated per G-buffer sample
(scene contains 1024 lights)

Image Credit: A. Lauritzen
Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tiled vs. conventional deferred shading

Deferred shading rendering performance: 1920x1080 resolution

W
N

Deferred lighting slightly faster, but trends similarly : Slope ~ 20 us / light
Slope ~ 4 us / light

-
o)

»—Deferred Shading (NVIDIA 480)

—Deferred Shading (ATI 5870)
——Deferred Lighting (ATI 5870)
—+—Deferred Lighting (NVIDIA 480)
-=—Tiled (NVIDIA 480)

*—Tiled (ATI 5870)

00

S

)
£
Q
E
-
Q
£
T
-
[

64 128 256 512 1024

Number of Point Lights
[Lauritzen 2009]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Quiz: recall multi-sample anti-aliasing (MSAA)?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: MSAA

1. multi-sample locations 2. multi-sample coverage 3. quad fragments

4. shading results 5. multi-sample color 6. final image pixels

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get final image pixel values

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

MSAA in a deferred shading system

B (Challenge: deferred shading is designed to shade exactly once per G-buffer sample
B MSAA: shades once per primitive contributing coverage to pixel

- Large triangle assumption: often results one shading computation per pixel

- But extra shading occurs at pixels along primitive boundaries (extra shading
necessary to anti-alias silhouettes)

m Note: this is also one of the reasons transparency is challenging in a deferred system

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Anti-aliasing solutions for deferred shading

® Super-sample
= Generate G-buffer larger than frame buffer
- Shade at G-buffer resolution

- Downsample result to get final frame-buffer pixels
= Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

B [ntelligently filter frame buffer

- ldentify edges in image and selectively blur frame-buffer near these pixels
- Same footprint, same shading cost, but produces artifacts

= Current popular technique: morphological anti-aliasing (MLAA)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Detect patternsi

nimage

Morphological anti-aliasing (MLAA)

Blend neighboring pixels according to a few simple rules

= N W S U OO N

(2)
\U
a b ¢ d e f g h
2shapes: | [T & A~

Ushapes: LI M] [

L-shapes:

= N W s U OO N D

l

a b ¢ d e f g h

Z and U shape decomposition into L-shapes:

-

e—

b SO

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Morphological anti-aliasing (MLAA) «cs

Aliased image Zoomed views After MLAA
(top: aliased, bottom: after MLAA)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Anti-aliasing solutions for deferred shading

® Super-sample
= Increases footprint, increases shading cost, increases bandwidth required (but not ratio)

B [ntelligently filter frame buffer (MLAA popular choice)

- Same footprint, same shading cost, but produces artifacts

B Application implements MSAA on its own

= Render super-sampled G-buffer
= Launch one shader instance for each G-buffer pixel, not sample
- Shader implementation:

Detect if pixel contains an edge // (how is this done robustly?)
If edge:

Shade all G-buffer samples for pixel (sequentially), combine results
Else:

Shade one G-buffer sample, store result

= Increased footprint, approx. same shading cost as MSAA, some additional BW cost (to detect edges)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Handling divergence

Red pixels = edges
(Require additional shading)

Increases divergence in shader execution
(recall eliminating shading divergence was
one of the motivations of deferred shading)

Can apply standard gamut of data-parallel programming solutions:

Multi-pass:
- pass 1: categorize pixels, set stencil buffer
- pass 2: shade pixels requiring 1 shading computation
- pass 3: flip stencil, shade pixels requiring N shading computations

Standard bandwidth vs. execution coherence trade-off!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Deferred shading summary

B Main idea: perform shading calculations after all geometry processing
(rasterization, occlusions) is complete

B Driving motivation in current/near-future systems is scaling scenes to many lights

= Also, high geometric complexity (due to tessellation) increases overhead of Z-prepass

B Computes (more-or-less) the same result as forward rendering; reorder key
rendering loops to change schedule of computation

= Key loops: for all lights, for all drawing primitives
- Different footprint characteristics

- Trade light data footprint for G-buffer footprint

- Different bandwidth characteristics

- Different execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence

= Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

B Keep in mind: constrains shading model, not used for transparent surfaces

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Final comments

B Whichis better, forward or deferred shading?

= (Often no free lunch

B Common tradeoff: bandwidth -- execution coherence
= Another example of relying on high bandwidth to achieve high ALU utilization

= Ingraphics: typically manifest as multi-pass algorithms

B When considering new techniques, be cognizant of interoperability
with existing features and optimizations

= Deferred shading not compatible with hardware MSAA implementations (application must role
their own)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

