
Lecture 10:
Part 1: Discussion of “SIMT” Abstraction

Part 2: Introduction to Shading

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today’s agenda
▪ Response to early course evaluation

▪ Demo: rendering pipeline visualization

▪ Throughput core review

- SIMT vs. traditional SIMD (implicit vs. explicit SIMD)

- Group exercise: implement SIMT

▪ Shading introduction (next time: shading languages)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Demo: graphics pipeline visualization

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: SIMD execution
▪ De!ne SIMD

▪ How is SIMD execution expressed by a program?

▪ An easy, high-level description of Larrabee’s explicit vector
instruction set (in supplemental reading):
- M. Abrash, A First Look at the Larrabee New Instructions (LRBni). Dr. Dobbs

Portal, 2009 (http://drdobbs.com/architecture-and-design/216402188)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: NVIDIA’S “SIMT”
▪ Machine provides SPMD abstraction

(SPMD = single program multiple data)

▪ What is the program?

▪ What is the data?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Assume: !ctitious throughput processor

▪ Decodes one instruction per clock
▪ Instruction broadcast to all eight execution units
▪ Instructions manipulate contents of 32-bit (scalar) registers

- e.g., "oating point or integer operations

Fetch/
Decode ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Let’s implement a SIMT execution system! (whiteboard)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shader 1: conditional
sampler(mySamp;
Texture2D<float3>(myTex;

float4(fragmentShader(float3(norm,(float2(st,(float4(frontColor,(float4(backColor)
{
((float4(tmp;
((if((norm[2](<(0)((//(sidedness(check
(({
(((((tmp(=(backColor;((
((}
((else
(({
(((((tmp(=(frontColor;
(((((tmp(*=(myTex.sample(mySamp,(st);
((}
((return(tmp;
}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shader 2: nested conditional
sampler(mySamp;
Texture2D<float3>(myTex;

float4(fragmentShader(float3(norm,(float2(st,(float4(frontColor,(float4(backColor)
{
((float4(tmp;
((if((norm[2](<(0)((//(sidedness(check
(({
(((((tmp(=(backColor;((
((}
((else
(({
(((((tmp(=(frontColor;
(((((if((fontColor(==(float4(1.0,(0.0,(0.0,(1.0))
((((((((tmp(*=(myTex.sample(mySamp,(st);
(((((else
((((((((tmp(*=(0.5;
((}
((return(tmp;

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shader 3: while loop (homework)
sampler(mySamp;
Texture2D<float3>(myTex;

float4(fragmentShader(float3(norm,(float2(st,(float4(frontColor,(float4(backColor)
{
((float4(tmp;
((if((norm[2](<(0)((//(sidedness(check
(({
(((((tmp(=(backColor;((
((}
((else
(({
(((((tmp(=(frontColor;
(((((while((tmp[0](<(tmp[1])
((((({

(((((tmp[0](+=(0.1;
(((((}
((}
((return(tmp;
}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shader 4: scalar branch
sampler(mySamp;
Texture2D<float3>(myTex;
float(myParam;((
float(myLoopBound;

float4(fragmentShader(float3(norm,(float2(st,(float4(frontColor,(float4(backColor)
{
(((float4(tmp;
(((if((myParam(<(0.5)
({
(((float(scale(=(myParam(*(myParam;
(((tmp(=(scale(*(frontColor;

(}
(else
({((
((((tmp(=(backColor;
(}

(((return(tmp;
}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Optimize for “uniform control”

Fetch/
Decode

1 scalar + 1 vector

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Scalar

▪ Logic shared across all “lanes” need only be performed once
- Must be known at compile time (compiler generates di#erent instructions)

▪ Intel ISAs (LRBni, x86+SSE/AVX, etc.)
▪ AMD’s upcoming Graphics Core Next

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Assume: !ctitious throughput processor

▪ Now decode two instruction streams per clock

▪ What do we do?

Fetch/
Decode ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Fetch/
Decode

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shading Introduction
(or review)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The rendering equation [Kajiya 86]

Note: using notation from Hanrahan 90 (to match reading)

x

x’

i(x,x’)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The rendering equation [Kajiya 86]

x

x’

i(x,x’)

BRDF = bi-directional re"ectance distribution function
Speci!es faction of light from given incoming direction re"ected in given
outgoing direction

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Example re"ection functions

Slide credit Pat Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Example materials

Slide credit Pat Hanrahan
Images from Advanced Renderman [Apodaca and Gritz]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

More materials

Slide credit Pat Hanrahan
Images from Matusik et al. SIGGRAPH 2003

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Simpli!cation
▪ All light sources are point sources

▪ Lights emit equally in all directions

▪ Only illumination of a surface comes directly from light sources

x

x’

i(x,x’)

i=0,1,2

0

1 2

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

More sophisticated lights
▪ Attenuating light (intensity falls o# with distance: 1/R2)

▪ Spot light (does not emit equally in all directions)

▪ Environment light (not a point source: de!nes light from all directions)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Pre-programmable OpenGL
▪ glLight(light_id,(parameter_id,(parameter_value)

- 10 parameters (e.g., ambient/di#use/specular color, position, direction,
attenuation coe$cient)

▪ glMaterial(face,(parameter_id,(parameter_value)

- Face speci!es front or back facing geometry

- Parameter examples (ambient/di#use/specular re"ectance, shininess)

- Material value could be modulated by texture data

▪ Parameterized shading function evaluated at each vertex

- Summation over all enabled lights

- Resulting per-vertex color modulated by result of texturing

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shading languages
▪ Want to support diversity in materials
▪ Want to support diversity in lighting conditions

▪ Allow application to extend renderer by providing
programmatic de!nition of the shading function

