
Lecture 6:
Texture

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Today: texturing!

▪ Texture !ltering

- Texture access is not just a 2D array lookup ;-)

▪ Memory-system implications

- Caching

- Storage layouts

- Prefetching
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Last time
Rasterizer point-samples coverage (4 samples per pixel shown here)
Z-buffer algorithm used to solve for occlusion at these points
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Last time
One fragment per covered pixel
Triangle attributes are interpolated from vertex values
Attributes [typically] sampled at pixel centers to generate values for fragment attributes
(recall modern rasterizers may produce attribute eqns, not values)
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Shading the fragment

sampler	
  mySamp;
Texture2D<float3>	
  myTex;
float3	
  lightDir;

float4	
  diffuseShader(float3	
  norm,	
  float2	
  uv)
{
	
  	
  float3	
  kd;
	
  	
  kd	
  =	
  myTex.Sample(mySamp,	
  uv);
	
  	
  kd	
  *=	
  clamp(	
  dot(lightDir,	
  norm),	
  0.0,	
  1.0);
	
  	
  return	
  float4(kd,	
  1.0);	
  	
  	
  
}	
  

HLSL shader program: de!nes behavior of fragment processing stage 

Let:

lightDir = [-1, -1, 1] 

myTex = 

function de!ned on [0,1]2 domain:
myTex : [0,1]2 → #oat3
(represented by 2048x2048 image)

mySamp de!nes how to resample 
function to generate value at (u,v)
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Texture coordinates (UV)

Red channel = u
Green channel = v 
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Shaded result
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Texture space

Screen space Texture space
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Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)
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Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)
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Filtering textures

Slide credit: Akeley and Hanrahan
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Filtering textures

Actual texture: 64x64

Actual texture: 700x700

...
...

Texture mini!cation

Texture magni!cation
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Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Pre-!lter texture data
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Mipmap (L. Williams 83)

Williams’ original proposed layout “Mip hierarchy”
level = d

u

v

Slide credit: Akeley and Hanrahan
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Constant-time !ltering

mip-map level d texels

mip-map level d+1 texels

Bilinear: 3 lerps  (3 mul + 6 add)

Trilinear: 7 lerps (7 mul + 14 add)

Slide credit: Akeley and Hanrahan
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Computing d

Screen space Texture space

Take differences between texture coordinate values of neighboring fragments
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Computing d
Take differences between texture coordinate values of neighboring fragments

du/dx = u10-u00 
du/dy = u01-u00 

dv/dx = v10-v00 
dv/dy = v01-v00 

(u,v)00 (u,v)10

(u,v)01

L

L

mip-map d = log2(L) 



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

GPUs shade quad fragments (2x2 fragment blocks)

Cheap, simple texture coordinate differentials  +  avoids communication
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Multiple fragments shaded for pixels at triangle boundaries
Shading computations per pixel

8 +
7
6
5
4
3
2
1 
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Quick aside: multi-sample AA (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get !nal image pixel values
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Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of 
texture information minimally required to render an image of the 
scene is ...

[Peachey 90]
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Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of 
texture information minimally required to render an image of the 
scene is proportional to the resolution of the image and is 
independent of the number of surfaces and the size of the textures.

[Peachey 90]
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Filtering with mip mapping summary
▪ Extra storage:  1/3 of original texture image

▪ For each texture !ltering request
- Constant !ltering cost (independent of d)

- Constant # texels accessed (independent of d)

▪ Pretty good quality
- Assumption: isotropic !ltering of texture function

- Many improvements to handle anisotropic !ltering (exist in current GPUs)

- Higher quality, but greater compute and memory bandwidth cost 
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Texture mechanics
For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
2. Convert normalized values to texel coordinates
3. Compute d
4. Compute required texels **
5. Load texture data ****
6. Result = tri-linear !lter according to (u,v,d)

** may involve wrap, clamp, etc. of u,v values according to sampling mode con!guration
**** may require decompression

Lots of math:  All modern GPUs have sophisticated !xed-function hardware for texture 
processing! (note: even Larrabee design had texturing hardware)
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Texture block diagram

Programmable core
(executes fragment shaders)

Texture Processor
(!xed-function)

Texture data cache

Texture request

Texture response
(fp32 rgba)

GPU DRAM
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Consider memory
▪ Texture footprint

- Modern games: large textures: 10s-100s of MB

- Film rendering: GBs to TBs of textures in scene DB

▪ Texture bandwidth
- 8 texels per tri-linear fetch (assume 4 bytes/texel)

- Modern GPU: billions of fragments/sec
(NVIDIA GTX 580: ~40 billion/sec)

▪ Performant graphics systems need:
- Texture caching

- Latency hiding solution 

- Texture compression
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Review: the role of caches in CPUs
▪ Reduce off-chip bandwidth requirements (caches service 

requests that would require DRAM access)
- Note: Alternatively, you can think about caches as bandwidth ampli!ers 

(data path between cache and ALUs is usually wider than that to DRAM)

▪ Reduce latency of data access

▪ Convert !ne-grained memory requests from processors into 
large (cache-line sized) requests than can be serviced 
efficiently by DRAM   
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Texture caching thought experiment

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line u

v
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Now rotate triangle on screen

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v
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4D blocking (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line
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Tiled rasterization increases reuse

mip-map level d texels

mip-map level d+1 texels

Assume:
Blocked raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line
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6D blocking further reduces con#icts

same cache line

contiguous cache-sized block
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Blocked texture formats
▪ Render-to-texture challenge:

- Frame-buffer had a preferred format

- Textures had a preferred format

- Costly to convert between the two

▪ These days:

- Declare usage for buffers at allocation in API

- In general, standard blocking schemes across the board
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Key metric
▪ Unique texel to fragment ratio

- Number of unique texels accessed when rendering a scene / number of 
fragments processed [see Igeny reading for stats: often less than < 1]

- Worse case?

▪ In reality, caching behavior is good, but not CPU workload 
good
- Design for 90% hits [Montrym & Moreton 95]

- GPUs require high memory bandwidth



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Memory latency
▪ Request texture data. Processor waits for hundreds of cycles.

(Very bad)

▪ Recall: GPUs will miss the cache a lot more than CPUs 
(fundamental to the streaming workload)

▪ Solution prior to programmable shading: prefetch
- Today’s reading: Igehy et al.  Prefetching in a Texture Cache Architecture

▪ Solution in modern programmable GPUs: thread
- Next time
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Large fragment FIFOs

Note: This diagram does not contain a texture cache.  See reading for 
implementation of prefetching with caching.

Slide credit: Akeley and Hanrahan



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Texture summary
▪ Pre-!ltering texture data reduces aliasing

- Mip-mapping fundamental to texture system design

▪ A texture lookup is a lot more than a 2D array access
- Signi!cant computational expense, implemented in specialized !xed-function 

hardware

▪ GPU texture caches:
- Primarily serve to amplify limited DRAM bandwidth
- Not to reduce latency to off-chip memory
- Small in size, multi-ported (e.g., need to access 8 texels simultaneously)

▪ Tiled rasterization order, tiled texture layout serve to increase cache hits

▪ Texture access latency is hidden by prefetching (in the old days) and 
multi-threading (in modern GPUs)
- The design of a modern GPU processing core is in#uenced heavily by the need to 

hide texture access latency (next time)



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Readings
▪ Z. Hakura and a. Gupta, The Design and Analysis of a Cache Architecture for Texture 

Mapping. ISCA 97

▪ H. Igehy et al., Prefetching in a Texture Cache Architecture. Graphics Hardware  
1998


