
Lecture 6:
Texture

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today: texturing!

▪ Texture !ltering

- Texture access is not just a 2D array lookup ;-)

▪ Memory-system implications

- Caching

- Storage layouts

- Prefetching

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Last time
Rasterizer point-samples coverage (4 samples per pixel shown here)
Z-buffer algorithm used to solve for occlusion at these points

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Last time
One fragment per covered pixel
Triangle attributes are interpolated from vertex values
Attributes [typically] sampled at pixel centers to generate values for fragment attributes
(recall modern rasterizers may produce attribute eqns, not values)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shading the fragment

sampler	
 mySamp;
Texture2D<float3>	
 myTex;
float3	
 lightDir;

float4	
 diffuseShader(float3	
 norm,	
 float2	
 uv)
{
	
 	
 float3	
 kd;
	
 	
 kd	
 =	
 myTex.Sample(mySamp,	
 uv);
	
 	
 kd	
 *=	
 clamp(
 dot(lightDir,	
 norm),	
 0.0,	
 1.0);
	
 	
 return	
 float4(kd,	
 1.0);	
 	
 	

}	

HLSL shader program: de!nes behavior of fragment processing stage

Let:

lightDir = [-1, -1, 1]

myTex =

function de!ned on [0,1]2 domain:
myTex : [0,1]2 → #oat3
(represented by 2048x2048 image)

mySamp de!nes how to resample
function to generate value at (u,v)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture coordinates (UV)

Red channel = u
Green channel = v

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Shaded result

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture space

Screen space Texture space

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Filtering textures

Slide credit: Akeley and Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Filtering textures

Actual texture: 64x64

Actual texture: 700x700

...
...

Texture mini!cation

Texture magni!cation

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Pre-!lter texture data

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Mipmap (L. Williams 83)

Williams’ original proposed layout “Mip hierarchy”
level = d

u

v

Slide credit: Akeley and Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Constant-time !ltering

mip-map level d texels

mip-map level d+1 texels

Bilinear: 3 lerps (3 mul + 6 add)

Trilinear: 7 lerps (7 mul + 14 add)

Slide credit: Akeley and Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Computing d

Screen space Texture space

Take differences between texture coordinate values of neighboring fragments

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Computing d
Take differences between texture coordinate values of neighboring fragments

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

L

mip-map d = log2(L)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

GPUs shade quad fragments (2x2 fragment blocks)

Cheap, simple texture coordinate differentials + avoids communication

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Multiple fragments shaded for pixels at triangle boundaries
Shading computations per pixel

8 +
7
6
5
4
3
2
1

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Quick aside: multi-sample AA (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get !nal image pixel values

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is ...

[Peachey 90]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is
independent of the number of surfaces and the size of the textures.

[Peachey 90]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Filtering with mip mapping summary
▪ Extra storage: 1/3 of original texture image

▪ For each texture !ltering request
- Constant !ltering cost (independent of d)

- Constant # texels accessed (independent of d)

▪ Pretty good quality
- Assumption: isotropic !ltering of texture function

- Many improvements to handle anisotropic !ltering (exist in current GPUs)

- Higher quality, but greater compute and memory bandwidth cost

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture mechanics
For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
2. Convert normalized values to texel coordinates
3. Compute d
4. Compute required texels **
5. Load texture data ****
6. Result = tri-linear !lter according to (u,v,d)

** may involve wrap, clamp, etc. of u,v values according to sampling mode con!guration
**** may require decompression

Lots of math: All modern GPUs have sophisticated !xed-function hardware for texture
processing! (note: even Larrabee design had texturing hardware)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture block diagram

Programmable core
(executes fragment shaders)

Texture Processor
(!xed-function)

Texture data cache

Texture request

Texture response
(fp32 rgba)

GPU DRAM

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Consider memory
▪ Texture footprint

- Modern games: large textures: 10s-100s of MB

- Film rendering: GBs to TBs of textures in scene DB

▪ Texture bandwidth
- 8 texels per tri-linear fetch (assume 4 bytes/texel)

- Modern GPU: billions of fragments/sec
(NVIDIA GTX 580: ~40 billion/sec)

▪ Performant graphics systems need:
- Texture caching

- Latency hiding solution

- Texture compression

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Review: the role of caches in CPUs
▪ Reduce off-chip bandwidth requirements (caches service

requests that would require DRAM access)
- Note: Alternatively, you can think about caches as bandwidth ampli!ers

(data path between cache and ALUs is usually wider than that to DRAM)

▪ Reduce latency of data access

▪ Convert !ne-grained memory requests from processors into
large (cache-line sized) requests than can be serviced
efficiently by DRAM

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture caching thought experiment

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line u

v

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Now rotate triangle on screen

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

4D blocking (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Tiled rasterization increases reuse

mip-map level d texels

mip-map level d+1 texels

Assume:
Blocked raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

6D blocking further reduces con#icts

same cache line

contiguous cache-sized block

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Blocked texture formats
▪ Render-to-texture challenge:

- Frame-buffer had a preferred format

- Textures had a preferred format

- Costly to convert between the two

▪ These days:

- Declare usage for buffers at allocation in API

- In general, standard blocking schemes across the board

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Key metric
▪ Unique texel to fragment ratio

- Number of unique texels accessed when rendering a scene / number of
fragments processed [see Igeny reading for stats: often less than < 1]

- Worse case?

▪ In reality, caching behavior is good, but not CPU workload
good
- Design for 90% hits [Montrym & Moreton 95]

- GPUs require high memory bandwidth

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Memory latency
▪ Request texture data. Processor waits for hundreds of cycles.

(Very bad)

▪ Recall: GPUs will miss the cache a lot more than CPUs
(fundamental to the streaming workload)

▪ Solution prior to programmable shading: prefetch
- Today’s reading: Igehy et al. Prefetching in a Texture Cache Architecture

▪ Solution in modern programmable GPUs: thread
- Next time

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Large fragment FIFOs

Note: This diagram does not contain a texture cache. See reading for
implementation of prefetching with caching.

Slide credit: Akeley and Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture summary
▪ Pre-!ltering texture data reduces aliasing

- Mip-mapping fundamental to texture system design

▪ A texture lookup is a lot more than a 2D array access
- Signi!cant computational expense, implemented in specialized !xed-function

hardware

▪ GPU texture caches:
- Primarily serve to amplify limited DRAM bandwidth
- Not to reduce latency to off-chip memory
- Small in size, multi-ported (e.g., need to access 8 texels simultaneously)

▪ Tiled rasterization order, tiled texture layout serve to increase cache hits

▪ Texture access latency is hidden by prefetching (in the old days) and
multi-threading (in modern GPUs)
- The design of a modern GPU processing core is in#uenced heavily by the need to

hide texture access latency (next time)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Readings
▪ Z. Hakura and a. Gupta, The Design and Analysis of a Cache Architecture for Texture

Mapping. ISCA 97

▪ H. Igehy et al., Prefetching in a Texture Cache Architecture. Graphics Hardware
1998

