Lecture 5: Rasterization and Occlusion

Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Visibility

- What scene geometry is visible within each screen pixel?
 - What geometry projects into a screen pixel? (screen coverage)
 - Which of this geometry is visible from the camera at that pixel? (occlusion)

Visibility on GPU: rasterization + Z-buffering

- The rasterizer converts a primitives (triangles) into fragments
 - Computes covered pixels (selection: what fragments get generated?)
 - Computes triangle attributes for fragment (attribute assignment: how is surface data is associated with the fragment?)

- Recall: frame-buffer operations stage handles occlusion using the Z-buffer algorithm
 - Although there are many optimizations (we will discuss some today)

Fragment selection: What does it mean for a pixel to be covered by a triangle?

Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel. One of these regions is not convex.

Note: unbounded storage per pixel.

Modern GPU fragment selection: point sample triangle-pixel coverage

Edge cases (literally)

Is fragment generated for triangle 1? for triangle 2?

Edge rules

- Direct3D rules: when edge falls directly on sample, sample classified as within triangle if the edge is a "top edge" or "left edge"
 - Top edge: horizontal edge that is above all other edges
 - Left edge: an edge that is not exactly horizontal and is on the left side of the triangle. (triangle can have one or two left edges)

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = 0$: point on edge

 $> \theta$: outside edge

< 0 : inside edge

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = 0$: point on edge

 $> \theta$: outside edge

< 0 : inside edge

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = 0$: point on edge

 $> \theta$: outside edge

 $< \theta$: inside edge

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = \theta$: point on edge

 $> \theta$: outside edge

< 0 : inside edge

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = 0$: point on edge

 $> \theta$: outside edge

< 0: inside edge

Incremental triangle traversal

$$P_i = (x_i/w_i, y_i/w_i, z_i/w_i) = (X_i, Y_i, Z_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x,y) = (x-X_i) dY_i - (y-Y_i) dY_i$$

= $A_i x + B_i y + C_i$

 $E_i(x,y) = 0$: point on edge

 $> \theta$: outside edge

 $< \theta$: inside edge

Note incremental update:

$$dE_i(x+1,y) = E_i(x,y) + dY_i = E_i(x,y) + A_i$$

 $dE_i(x,y+1) = E_i(x,y) + dX_i = E_i(x,y) + B_i$

Incremental update saves computation: One addition per edge, per sample test

Note: many traversals possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

Modern hierarchical traversal

Traverse triangle as before, but in blocks

Test all samples in block against triangle in parallel (data-parallellism)

Can be implemented as multi-level hierarchy.

Advantages:

- Simplicity of wide parallel execution overcomes cost of extra point-in-triangle tests (recall: most triangles cover many samples, especially when super-sampling coverage)
- Can skip sample testing work (early outs): entire block not in triangle, entire block entirely within triangle
- Important for early Z cull (later in this lecture)

Another modern approach: Hierarchical Recursive Descent.

(See Mike Abrash's Dr. Dobbs article in readings)

Attribute assignment

- How are fragment attributes (color, normal, texcoords) computed?
 - Point sample attributes as well. (e.g., at pixel center)
 - Must compute A(x,y) for all attributes

Computing a plane equation for an attribute:

```
Attribute values at three vertices: A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>
```

Projected positions of three vertices: (X_0, Y_0) , (X_1, Y_1) , (X_2, Y_2)

$$A(x,y) = ax + by + c$$

$$A_0 = aX_0 + bY_0 + c$$

$$A_1 = aX_1 + bY_1 + c$$

$$A_2 = aX_2 + bY_2 + c$$

3 equations, 3 unknowns. Solve for a,b,c **

** Discard zero-area triangles before getting here (recall we computed area in back-face culling)

Perspective correct interpolation

Attribute values are linear on triangle in 3D, but not linear in projected screen XY

Perspective-correct interpolation

Linear screen interpolation of (u,v)

Perspective-correct interpolation of (u,v)

Perspective correct interpolation

Attribute values are linear on triangle in 3D, but not linear in projected screen XY But... projected values (A/w) are linear in screen XY: compute plane equations from A/w

```
For each generated fragment:
```

```
evaluate ^{1}/_{w}(x,y) (from precomputed plane equation) reciprocate to get w(x,y) for each attribute evaluate ^{A}/_{w}(x,y) (from precomputed plane equation) multiply result by w(x,y) to get A(x,y)
```

Storage optimization: store plane equations separate from fragments

(very useful for large triangles)

Note: can skip attribute evaluation during traversal/coverage testing (evaluate attributes as needed, on demand, during subsequent fragment processing)

Fragment buffer

(many fragments)

depth

66 77

"

Rasterization

Triangle setup:

- Transform clip space vertex positions to screen space
- Convert positions to fixed point (Direct3D specifies 8 bits of subpixel precision**)
- Compute edge equations
- Compute plane equations for all vertex attributes and Z

Traverse

- Compute covered fragments using edge tests
- Emit fragments (also emit per-triangle data as necessary)

^{**} Note 1: limited precision can be a good thing: can limit really acute triangles (they snap to 0 area)

^{**} Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z (see Akeley and Su, 2006)

Recall: z-buffer for occlusion

- Z-buffer stores depth of scene at <u>each coverage sample</u>
 - Each sample, not just each pixel
 - In practice, usually stores $^{\rm z}/_{\rm w}$
- Triangles are planar: each triangle has exactly one depth at each sample (consistent ordering of fragments for each sample) **
- After fragment processing (shading) ...

```
if (fragment.depth < z_buffer[fragment.x][fragment.y])
{
   color_buffer[fragment.x][fragment.y].rgba =
      blend(color_buffer[fragment.x][fragment.y].rgba, fragment.rgba);
   z_buffer[fragment.x][fragment.y] = fragment.depth;
}</pre>
```

- Constant time occlusion test per fragment
- Constant space per coverage sample

Z-buffer for occlusion

- High bandwidth requirements (particularly when super-sampling)
 - Number of Z-buffer reads/writes depends on:
 - depth complexity of the scene
 - order triangles are provided to the graphics pipeline (if depth test fails, don't write Z or rgba)

Bandwidth estimate:

- 60 Hz * 2 MPixel image * avg. depth complexity 4 (assume replace 50%, 32-bit Z) = 2.8 GB/s
- If super-sampling, multiply by 4 or 8x
- 5 shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s
- Note: this does not include color buffer bandwidth

Modern GPU implementations employ caching, compression

Recall sort-middle chunked: Z-buffer for current tile always on chip, can
 (sometimes) skip write of final Z values to memory (Z-buffer bandwidth = 0)

Z-buffer compression

- Modern GPUs implement some form of lossless Z-buffer compression
- Very large compression ratios possible by exploiting screen coherence in depth values
 - Store plane equation for Z for an entire tile of pixels (possible when triangle covers tile)
 - Store base + low precision offsets for each sample in a tile

Early Z-culling ("early Z")

Goal: discard useless fragments from pipeline as soon as possible

Early Z-culling ("early Z")

Constraint: occlusion cannot depend on shading e.g., pipeline alpha test enabled, fragment shader modifies Z

Note: Only provides benefit if blue triangle is rendered by application first.

Early Z

- Perform depth test after rasterization, prior to fragment shading
- Reduces fragment processing work
 - Amount of reduction dependent on triangle ordering
 - Ideal: front-to-back order
- <u>Does not</u> reduce Z-buffer bandwidth (same Z reads and writes still occur)
- Common trick: "Z-prepass"
 - Two rendering passes
 - 1. Render all scene geometry, with fragment processing disabled (prepopulate the Z-buffer)
 - 2. Re-render scene with shading enabled
 - Overhead of processing geometry twice vs. maximal early Z culling

Hierarchical early Z: "hi-Z"

Recall hierarchical traversal during rasterization

For each screen tile, compute farthest value in the z-buffer: z_far

During traversal, for each tile:

- 1. Compute closest point on triangle in tile: tri_near (using Z plane equation)
- 2. If tri_near > z_far, then triangle is occluded in this tile. Proceed immediately to next tile. (no fragments generated)

Note, if z-buffer also stores z_{near} for each tile and $tri_{far} < z_{near}$, then all depth tests for triangle in tile will pass. (no need to check individual per-sample depth values later)

Hierarchical + early Z-culling

Remember: these are GPU implementation optimizations. They are not reflected in the pipeline abstraction

Hierarchical Z

- Perform depth test at tile granularity prior to sampling coverage
 - Reduces rasterization work
 - Reduces required Z-buffer bandwidth
 - <u>Does not reduce fragment processing work more than early Z (conservative optimization: will discard a subset of the fragments early Z does)</u>

Modern research topic

- Accurate camera simulation in real-time rendering
 - Visibility algorithms discussed today simulate image formation by virtual pinhole camera, with infinite shutter
 - Real cameras have finite apertures, finite exposure duration
 - Visibility computation requires integration over time and lens aperture (high computational cost + diminished spatial coherence)

Time integration: motion blur

Lens integration: defocus blur

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Readings

Rasterization Techniques:

- M. Olano and T. Greer, *Triangle Scan Conversation Using 2D Homogeneous Coordinates*. Graphics Hardware 97
- M. Abrash, Rasterization on Larrabee, Dr. Dobbs Portal. May 1, 2009 http://drdobbs.com/high-performance-computing/217200602
- Take a look at source code for NVIDIA CUDA rasterizer:

 http://research.nvidia.com/publication/high-performance-software-rasterization-gpus

Hierarchical Z-Buffering:

- N. Greene et al., *Hierarchical Z-Buffer Visibility*. SIGGRAPH 93
- S. Morien, ATI Radeon HyperZ Technology. Hot 3D Presentation, Graphics Hardware 2000

Z-Buffer Precision:

■ K. Akeley and J. Su, *Minimum Triangle Separation for Correct Z-Buffer Occlusion*, Eurographics 2006

Recent Rasterization Topics:

- K. Fatahalian et al., Data-parallel Rasterization of Micropolygons with Motion and Defocus Blur. High Performance Graphics 2009
- S. Laine et al., Clipless Dual-Space Bounds for Faster Stochastic Rasterization. SIGGRAPH 2011
- G. Johnson et al. The Irregular Z-buffer: Hardware Acceleration for Irregular Data Structures. Transactions on Graphics (4), 2005

Also Highly Recommended:

A. R. Smith, *A Pixel is Not a Little Square*. Microsoft Technical Memo, 1995