
Lecture 5:
Rasterization and Occlusion

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Visibility
▪ What scene geometry is visible within each screen pixel?

- What geometry projects into a screen pixel? (screen coverage)

- Which of this geometry is visible from the camera at that pixel? (occlusion)

Screen

Camera

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Visibility on GPU: rasterization + Z-buffering

▪ The rasterizer converts a primitives (triangles) into fragments
- Computes covered pixels (selection: what fragments get generated?)

- Computes triangle attributes for fragment (attribute assignment: how is surface
data is associated with the fragment?)

▪ Recall: frame-buffer operations stage handles occlusion using
the Z-buffer algorithm
- Although there are many optimizations (we will discuss some today)

struct fragment
{
 float3 normal; // interpolated application-defined attribs
 float2 texcoord1; // (e.g., texture coordinates, surface normal)
 float2 texcoord2;

 // pipeline-interpretted fields:

 int x, y; // pixel position corresponding to fragment
 float depth; // triangle depth for fragment
}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Fragment selection: What does it mean for a pixel to
be covered by a triangle?

Pixel

1

2

3

4

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Integrate pixel coverage analytically (A fragment is an area sample)

10%

35%

60%

85%

15%

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel. One of
these regions is not convex.

Note: unbounded storage per pixel.

1
2 2

1

2

1

Interpenetration: even worse

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU fragment selection: point sample
triangle-pixel coverage

Pixel (x,y)

1

2

3

4

Example: Coverage sample
point at pixel center

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated

(x+0.5, y+0.5)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Edge cases (literally)
Is fragment generated for triangle 1? for triangle 2?

1

2

Pixel

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Edge rules
▪ Direct3D rules: when edge falls directly on sample, sample classi!ed as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Super-sampling to anti-alias edges

100% 0%

25%

75%

100%

25%100%

(will discuss next time)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Incremental triangle traversal

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y) = (x-Xi) dYi - (y-Yi) dYi
 = Ai x + Bi y + Ci

Ei (x,y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Note incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai
dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
One addition per edge, per sample test

Note: many traversals possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern hierarchical traversal

P0

P1

P2Traverse triangle as before, but in blocks

Test all samples in block against triangle in parallel
(data-parallellism)

Can be implemented as multi-level hierarchy.

Advantages:
- Simplicity of wide parallel execution

overcomes cost of extra point-in-triangle tests
(recall: most triangles cover many samples,
especially when super-sampling coverage)

- Can skip sample testing work (early outs):
entire block not in triangle, entire block
entirely within triangle

- Important for early Z cull (later in this lecture)

Another modern approach: Hierarchical Recursive
Descent.
(See Mike Abrash’s Dr. Dobbs article in readings)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Attribute assignment
▪ How are fragment attributes (color, normal, texcoords) computed?

- Point sample attributes as well. (e.g., at pixel center)

- Must compute A(x,y) for all attributes

Computing a plane equation for an attribute:

Attribute values at three vertices: A0, A1, A2

Projected positions of three vertices: (X0, Y0), (X1, Y1), (X2, Y2)
A(x,y) = ax + by + c

A0 = aX0 + bY0 + c
A1 = aX1 + bY1 + c
A2 = aX2 + bY2 + c

3 equations, 3 unknowns. Solve for a,b,c **

** Discard zero-area triangles before getting here (recall we computed area in back-face culling)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Perspective correct interpolation
Attribute values are linear on triangle in 3D, but not linear in projected screen XY

Screen

Camera

A0

A1

(A0 + A1) / 2

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Perspective-correct interpolation

Linear screen interpolation of (u,v) Perspective-correct interpolation of (u,v)

[images from Heckbert and Moreton 1991]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Perspective correct interpolation
Attribute values are linear on triangle in 3D, but not linear in projected screen XY

But... projected values (A/w) are linear in screen XY: compute plane equations from A/w

For each generated fragment:
evaluate 1/w (x,y) (from precomputed plane equation)
reciprocate to get w(x,y)

for each attribute
 evaluate A/w (x,y) (from precomputed plane equation)
 multiply result by w(x,y) to get A(x,y)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Storage optimization:
store plane equations separate from fragments
(very useful for large triangles)

Rasterization

Attributes: N, texcoord

pixel xy
sample screen xy
depth
tri_id: 2

1

2

1/w plane eq
N/w plane eq
texcoord/w plane eq

...

1/w plane eq
N/w plane eq
texcoord/w plane eq

Fragment buffer
(many fragments)

Triangle buffer
(far fewer triangles
than fragments)

tri 2

tri 1
“”

tri_id: 1

“”

tri_id: 1

“”

tri_id: 1

Note: can skip attribute evaluation
during traversal/coverage testing
(evaluate attributes as needed, on
demand, during subsequent
fragment processing)

Attributes: N, texcoord

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Rasterization
▪ Triangle setup:

- Transform clip space vertex positions to screen space

- Convert positions to !xed point (Direct3D speci!es 8 bits of subpixel precision**)

- Compute edge equations

- Compute plane equations for all vertex attributes and Z

▪ Traverse

- Compute covered fragments using edge tests

- Emit fragments (also emit per-triangle data as necessary)

** Note 1: limited precision can be a good thing: can limit really acute triangles (they snap to 0 area)
** Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z (see Akeley and Su, 2006)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: z-buffer for occlusion
▪ Z-buffer stores depth of scene at each coverage sample
- Each sample, not just each pixel
- In practice, usually stores z/w

▪ Triangles are planar: each triangle has exactly one depth at each
sample (consistent ordering of fragments for each sample) **

▪ After fragment processing (shading) ...
if (fragment.depth < z_buffer[fragment.x][fragment.y])

{

color_buffer[fragment.x][fragment.y].rgba =

 blend(color_buffer[fragment.x][fragment.y].rgba, fragment.rgba);

z_buffer[fragment.x][fragment.y] = fragment.depth;

}

▪ Constant time occlusion test per fragment
▪ Constant space per coverage sample

** assumes edge-on triangles have been discarded

✓

✓
✓

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Z-buffer for occlusion
▪ High bandwidth requirements (particularly when super-sampling)

- Number of Z-buffer reads/writes depends on:
- depth complexity of the scene

- order triangles are provided to the graphics pipeline
(if depth test fails, don’t write Z or rgba)

▪ Bandwidth estimate:
- 60 Hz * 2 MPixel image * avg. depth complexity 4 (assume replace 50%, 32-bit Z) = 2.8 GB/s

- If super-sampling, multiply by 4 or 8x

- 5 shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s

- Note: this does not include color buffer bandwidth

▪ Modern GPU implementations employ caching, compression
- Recall sort-middle chunked: Z-buffer for current tile always on chip, can

(sometimes) skip write of !nal Z values to memory (Z-buffer bandwidth = 0)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Z-buffer compression
▪ Modern GPUs implement some form of lossless Z-buffer

compression

▪ Very large compression ratios possible by exploiting screen
coherence in depth values
- Store plane equation for Z for an entire tile of pixels

(possible when triangle covers tile)

- Store base + low precision offsets for each sample in a tile

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Early Z-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops Pipeline generates, shades,
and depth tests orange

triangle fragments in this
region although they do not

contribute to "nal image.
(occluded by blue triangle)

Pipeline de!nition
speci!es depth test

is done here!

Goal: discard useless fragments from
pipeline as soon as possible

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Early Z-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops Pipeline de!nition
speci!es depth test

is done here!

Constraint: occlusion cannot depend on shading
e.g., pipeline alpha test enabled, fragment shader modi!es Z

Note: Only provides bene!t if blue triangle is rendered by application !rst.

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization:
perform depth test
here!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Early Z
▪ Perform depth test after rasterization, prior to fragment shading

▪ Reduces fragment processing work
- Amount of reduction dependent on triangle ordering
- Ideal: front-to-back order

▪ Does not reduce Z-buffer bandwidth (same Z reads and writes
still occur)

▪ Common trick: “Z-prepass”
- Two rendering passes

1. Render all scene geometry, with fragment processing disabled (pre-
populate the Z-buffer)

2. Re-render scene with shading enabled

- Overhead of processing geometry twice vs. maximal early Z culling

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall hierarchical traversal during rasterization

Hierarchical early Z: “hi-Z”

P0

P1

P2For each screen tile, compute farthest value in the
z-buffer: z_far

During traversal, for each tile:
1. Compute closest point on triangle in tile:

tri_near (using Z plane equation)
2. If tri_near > z_far, then triangle is

occluded in this tile. Proceed immediately
to next tile. (no fragments generated)

Note, if z-buffer also stores z_near for each tile
and tri_far < z_near, then all depth tests for
triangle in tile will pass. (no need to check
individual per-sample depth values later)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Hierarchical + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Z-buffer

Zmin/max tile buffer

Per tile: compact, possibly on-chip

Feedback: must update zmin/zmax
tiles on z-buffer update

Remember: these are GPU implementation
optimizations. They are not re#ected in the
pipeline abstraction

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Hierarchical Z
▪ Perform depth test at tile granularity prior to sampling coverage

- Reduces rasterization work
- Reduces required Z-buffer bandwidth
- Does not reduce fragment processing work more than early Z (conservative

optimization: will discard a subset of the fragments early Z does)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern research topic
▪ Accurate camera simulation in real-time rendering

- Visibility algorithms discussed today simulate image formation by virtual
pinhole camera, with in"nite shutter

- Real cameras have "nite apertures, "nite exposure duration
- Visibility computation requires integration over time and lens aperture (high

computational cost + diminished spatial coherence)

Time integration: motion blur

Lens integration: defocus blur

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Readings
Rasterization Techniques:
▪ M. Olano and T. Greer, Triangle Scan Conversation Using 2D Homogeneous Coordinates. Graphics Hardware 97
▪ M. Abrash, Rasterization on Larrabee, Dr. Dobbs Portal. May 1, 2009

http://drdobbs.com/high-performance-computing/217200602

▪ Take a look at source code for NVIDIA CUDA rasterizer:
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus

Hierarchical Z-Buffering:
▪ N. Greene et al., Hierarchical Z-Buffer Visibility. SIGGRAPH 93
▪ S. Morien, ATI Radeon HyperZ Technology. Hot 3D Presentation, Graphics Hardware 2000

Z-Buffer Precision:
▪ K. Akeley and J. Su, Minimum Triangle Separation for Correct Z-Buffer Occlusion, Eurographics 2006

Recent Rasterization Topics:

▪ K. Fatahalian et al., Data-parallel Rasterization of Micropolygons with Motion and Defocus Blur. High
Performance Graphics 2009

▪ S. Laine et al., Clipless Dual-Space Bounds for Faster Stochastic Rasterization. SIGGRAPH 2011
▪ G. Johnson et al. The Irregular Z-buffer: Hardware Acceleration for Irregular Data Structures. Transactions on

Graphics (4), 2005

Also Highly Recommended:
▪ A. R. Smith, A Pixel is Not a Little Square. Microsoft Technical Memo, 1995

http://drdobbs.com/high-performance-computing/217200602
http://drdobbs.com/high-performance-computing/217200602
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus

