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Visibility
▪ What scene geometry is visible within each screen pixel? 

- What geometry projects into a screen pixel? (screen coverage)

- Which of this geometry is visible from the camera at that pixel? (occlusion)

Screen

Camera
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Visibility on GPU: rasterization + Z-buffering

▪ The rasterizer converts a primitives (triangles) into fragments
- Computes covered pixels (selection: what fragments get generated?)

- Computes triangle attributes for fragment (attribute assignment: how is surface 
data is associated with the fragment?)

▪ Recall: frame-buffer operations stage handles occlusion using 
the Z-buffer algorithm
- Although there are many optimizations (we will discuss some today)

struct fragment 
{
   float3 normal;     // interpolated application-defined attribs         
   float2 texcoord1;  // (e.g., texture coordinates, surface normal)
   float2 texcoord2;
    
                      // pipeline-interpretted fields:

   int x, y;          // pixel position corresponding to fragment
   float depth;       // triangle depth for fragment
} 
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Fragment selection: What does it mean for a pixel to 
be covered by a triangle?

Pixel

1

2

3

4



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Integrate pixel coverage analytically (A fragment is an area sample)
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Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel.  One of 
these regions is not convex.

Note: unbounded storage per pixel.
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Interpenetration: even worse
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Modern GPU fragment selection: point sample 
triangle-pixel coverage

Pixel (x,y)
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Example: Coverage sample 
point at pixel center

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated 

(x+0.5, y+0.5)
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Edge cases (literally)
Is fragment generated for triangle 1? for triangle 2?

1

2

Pixel
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Edge rules
▪ Direct3D rules: when edge falls directly on sample, sample classi!ed as within 

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge:  an edge that is not exactly horizontal and is on the left side of the 

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft
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Super-sampling to anti-alias edges
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(will discuss next time)
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Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y)  = (x-Xi) dYi  - (y-Yi) dYi
     = Ai x + Bi y + Ci

Ei (x,y) = 0  : point on edge
             > 0  : outside edge
             < 0  : inside edge
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Incremental triangle traversal

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x,y)  = (x-Xi) dYi  - (y-Yi) dYi
     = Ai x + Bi y + Ci

Ei (x,y) = 0  : point on edge
             > 0  : outside edge
             < 0  : inside edge

Note incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai
dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
One addition per edge, per sample test

Note: many traversals possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Modern hierarchical traversal

P0

P1

P2Traverse triangle as before, but in blocks

Test all samples in block against triangle in parallel
(data-parallellism)

Can be implemented as multi-level hierarchy.

Advantages:
- Simplicity of wide parallel execution 

overcomes cost of extra point-in-triangle tests 
(recall: most triangles cover many samples, 
especially when super-sampling coverage)

- Can skip sample testing work (early outs): 
entire block not in triangle, entire block 
entirely within triangle

- Important for early Z cull (later in this lecture)

Another modern approach: Hierarchical Recursive 
Descent.
(See Mike Abrash’s Dr. Dobbs article in readings)
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Attribute assignment
▪ How are fragment attributes (color, normal, texcoords) computed?

- Point sample attributes as well. (e.g., at pixel center)

- Must compute  A(x,y)  for all attributes

Computing a plane equation for an attribute:

Attribute values at three vertices: A0, A1, A2

Projected positions of three vertices: (X0, Y0), (X1, Y1), (X2, Y2)
A(x,y) = ax + by + c 

A0 = aX0 + bY0 + c
A1 = aX1 + bY1 + c
A2 = aX2 + bY2 + c

3 equations, 3 unknowns.  Solve for a,b,c  ** 

** Discard zero-area triangles before getting here (recall we computed area in back-face culling)
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Perspective correct interpolation
Attribute values are linear on triangle in 3D, but not linear in projected screen XY  

Screen

Camera

A0

A1

(A0 + A1) / 2
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Perspective-correct interpolation

Linear screen interpolation of (u,v) Perspective-correct interpolation of (u,v)

[images from Heckbert and Moreton 1991]
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Perspective correct interpolation
Attribute values are linear on triangle in 3D, but not linear in projected screen XY  

But... projected values (A/w) are linear in screen XY: compute plane equations from A/w

For each generated fragment:
evaluate 1/w (x,y)                 (from precomputed plane equation)
reciprocate to get w(x,y)

for each attribute
 evaluate A/w (x,y)          (from precomputed plane equation)
 multiply result by w(x,y) to get A(x,y)
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Storage optimization:
store plane equations separate from fragments
(very useful for large triangles)

Rasterization

Attributes: N, texcoord

pixel xy
sample screen xy 
depth
tri_id: 2

1

2

1/w plane eq
N/w plane eq
texcoord/w plane eq

...

1/w plane eq
N/w plane eq
texcoord/w plane eq

Fragment buffer
(many fragments)

Triangle buffer
(far fewer triangles 
than fragments)

tri 2

tri 1
“”

tri_id: 1

“”

tri_id: 1

“”

tri_id: 1

Note: can skip attribute evaluation 
during traversal/coverage testing
(evaluate attributes as needed, on 
demand, during subsequent 
fragment processing)

Attributes: N, texcoord
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Rasterization
▪ Triangle setup:

- Transform clip space vertex positions to screen space

- Convert positions to !xed point (Direct3D speci!es 8 bits of subpixel precision**)

- Compute edge equations

- Compute plane equations for all vertex attributes and Z

▪ Traverse

- Compute covered fragments using edge tests

- Emit fragments  (also emit per-triangle data as necessary)

** Note 1: limited precision can be a good thing: can limit really acute triangles (they snap to 0 area) 
** Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z  (see Akeley and Su, 2006)
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Recall: z-buffer for occlusion
▪ Z-buffer stores depth of scene at each coverage sample
- Each sample, not just each pixel
- In practice, usually stores  z/w

▪ Triangles are planar: each triangle has exactly one depth at each 
sample (consistent ordering of fragments for each sample) ** 

▪ After fragment processing (shading) ...
if (fragment.depth < z_buffer[fragment.x][fragment.y])

{

color_buffer[fragment.x][fragment.y].rgba =

  blend(color_buffer[fragment.x][fragment.y].rgba, fragment.rgba);

z_buffer[fragment.x][fragment.y] = fragment.depth;

}

▪ Constant time occlusion test per fragment
▪ Constant space per coverage sample

** assumes edge-on triangles have been discarded

✓

✓
✓
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Z-buffer for occlusion
▪ High bandwidth requirements (particularly when super-sampling)

- Number of Z-buffer reads/writes depends on:
-  depth complexity of the scene

-  order triangles are provided to the graphics pipeline
(if depth test fails, don’t write Z or rgba)

▪ Bandwidth estimate: 
- 60 Hz * 2 MPixel image * avg. depth complexity 4  (assume replace 50%, 32-bit Z) = 2.8 GB/s

- If super-sampling, multiply by 4 or 8x

- 5 shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s

- Note: this does not include color buffer bandwidth

▪ Modern GPU implementations employ caching, compression
- Recall sort-middle chunked: Z-buffer for current tile always on chip, can 

(sometimes) skip write of !nal Z values to memory (Z-buffer bandwidth = 0) 
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Z-buffer compression
▪ Modern GPUs implement some form of lossless Z-buffer 

compression

▪ Very large compression ratios possible by exploiting screen 
coherence in depth values
- Store plane equation for Z for an entire tile of pixels

(possible when triangle covers tile)

- Store base + low precision offsets for each sample in a tile
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Early Z-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops Pipeline generates, shades, 
and depth tests orange 

triangle fragments in this 
region although they do not 

contribute to "nal image.
(occluded by blue triangle)

Pipeline de!nition 
speci!es depth test 

is done here!

Goal: discard useless fragments from 
pipeline as soon as possible
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Early Z-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops Pipeline de!nition 
speci!es depth test 

is done here!

Constraint: occlusion cannot depend on shading
e.g., pipeline alpha test enabled, fragment shader modi!es Z

Note: Only provides bene!t if blue triangle is rendered by application !rst. 

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization: 
perform depth test 
here!
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Early Z
▪ Perform depth test after rasterization, prior to fragment shading

▪ Reduces fragment processing work
- Amount of reduction dependent on triangle ordering
- Ideal: front-to-back order

▪ Does not reduce Z-buffer bandwidth (same Z reads and writes 
still occur)

▪ Common trick: “Z-prepass”
- Two rendering passes

1. Render all scene geometry, with fragment processing disabled (pre-
populate the Z-buffer)

2. Re-render scene with shading enabled  

- Overhead of processing geometry twice vs. maximal early Z culling
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Recall hierarchical traversal during rasterization

Hierarchical early Z: “hi-Z”

P0

P1

P2For each screen tile, compute farthest value in the 
z-buffer: z_far

During traversal, for each tile:
1. Compute closest point on triangle in tile: 

tri_near (using Z plane equation)
2. If tri_near > z_far, then triangle is 

occluded in this tile.  Proceed immediately 
to next tile. (no fragments generated)

Note, if z-buffer also stores z_near for each tile 
and tri_far < z_near, then all depth tests for 
triangle in tile will pass. (no need to check 
individual per-sample depth values later)
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Hierarchical + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Z-buffer

Zmin/max tile buffer

Per tile: compact, possibly on-chip

Feedback: must update zmin/zmax 
tiles on z-buffer update

Remember: these are GPU implementation 
optimizations. They are not re#ected in the 
pipeline abstraction
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Hierarchical Z
▪ Perform depth test at tile granularity prior to sampling coverage

- Reduces rasterization work
- Reduces required Z-buffer bandwidth
- Does not reduce fragment processing work more than early Z (conservative 

optimization: will discard a subset of the fragments early Z does)
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Modern research topic
▪ Accurate camera simulation in real-time rendering

- Visibility algorithms discussed today simulate image formation by virtual 
pinhole camera, with in"nite shutter

- Real cameras have "nite apertures, "nite exposure duration
- Visibility computation requires integration over time and lens aperture (high 

computational cost + diminished spatial coherence) 

Time integration: motion blur

Lens integration: defocus blur
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Readings
Rasterization Techniques:
▪ M. Olano and T. Greer, Triangle Scan Conversation Using 2D Homogeneous Coordinates. Graphics Hardware 97
▪ M. Abrash, Rasterization on Larrabee, Dr. Dobbs Portal.  May 1, 2009

http://drdobbs.com/high-performance-computing/217200602 

▪ Take a look at source code for NVIDIA CUDA rasterizer:
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus 

Hierarchical Z-Buffering:
▪ N. Greene et al., Hierarchical Z-Buffer Visibility. SIGGRAPH 93
▪ S. Morien, ATI Radeon HyperZ Technology. Hot 3D Presentation, Graphics Hardware 2000 

Z-Buffer Precision:
▪ K. Akeley and J. Su, Minimum Triangle Separation for Correct Z-Buffer Occlusion, Eurographics 2006

Recent Rasterization Topics:

▪ K. Fatahalian et al., Data-parallel Rasterization of Micropolygons with Motion and Defocus Blur. High 
Performance Graphics 2009

▪ S. Laine et al., Clipless Dual-Space Bounds for Faster Stochastic Rasterization. SIGGRAPH 2011
▪ G. Johnson et al. The Irregular Z-buffer: Hardware Acceleration for Irregular Data Structures. Transactions on 

Graphics (4), 2005

Also Highly Recommended:
▪ A. R. Smith, A Pixel is Not a Little Square. Microsoft Technical Memo, 1995

http://drdobbs.com/high-performance-computing/217200602
http://drdobbs.com/high-performance-computing/217200602
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus
http://research.nvidia.com/publication/high-performance-software-rasterization-gpus

