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Today
▪ Key per-primitive operations (clipping, culling)

▪ Programmable primitive generation
- Geometry shader
- Modern GPU tessellation

Various slides credit John Owens, Kurt Akeley, and Pat Hanrahan
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Recall: in a modern graphics pipeline, application-speci!ed 
logic computes vertex positions

Vertex Processing

Rasterization
(Fragment Generation)

(x,y,z,w)

Vertex positions emitted by vertex processing (or the 
geometry shader, if enabled) are represented in 
homogeneous clip-space coordinates.

Vertex is within the view frustum if:

-w ≤ x ≤ w
-w ≤ y ≤ w
-w ≤ z ≤ w

Vertex’s position in euclidian space is (x/w, y/w, z/w)
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Per primitive operations

Assemble vertices into primitives
Clip primitive against view frustum
For each resulting primitive

Divide by w
Apply viewport transform
Discard back-facing primitives [optional, depends on con!g]
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Assembling vertices into primitives

How to assemble is part of graphics state (speci!ed by draw command)

Notice: independent vertices get grouped into primitives (dependency!) 
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Clipping

▪ May generate new vertices/primitives, or eliminate vertices/primitives
▪ Data-dependent computation
- variable amount of work per primitive
- variable control "ow per primitive
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Why clipping?
▪ Avoid downstream processing that will not contribute to 

image (rasterization, fragment processing)

▪ Establish invariants for emitted primitives

- Can safely divide by w after clipping

- Bounds on vertex positions (can now choose precision of 
subsequent operations accordingly)
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Guard-band clipping
▪ Reduces variance in per-primitive clipping work
▪ Cost (conservative: primitives no longer guaranteed to be fully on screen)

- Rasterizer must not generate off-screen fragments 

- Increased precision needed during rasterization

[RealityEngine, Akeley 93]
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Back-face culling
▪ Use sign of triangle area to determine if triangle is facing toward 

or away from camera
▪ May discard primitive as a result of this test

- For closed meshes, eliminates ~ 1/2 of triangles
(these triangles will be occluded anyway)
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SGI Reality Engine 1992

▪ Divide triangle strips from application into small strips, round robin to geometry engines

▪ Buffers absorb variance in amount of work per triangle

[Akeley 93]

Command Processor

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Input Fifo

Output Fifo

Fragment 
Generator . . .. . .
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Programmable geometry ampli!cation
▪ Ampli!cation by “geometry shader” or tessellation 

functionality in a modern pipeline is far greater than that of 
clipping

▪ Geometry shader: output up to 1024 "oats worth of vertices 
per input primitive

▪ Tessellation: thousands of vertices from a base primitive 
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Thought experiment

Command Processor

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Input Fifo

Output Fifo

Fragment 
Generator . . .. . .

Assume maximum ampli!cation factor is large (known statically) 

Simple approach 1: make on-chip buffers as big as possible: run fast for low ampli!cation

Simple approach 2: make huge FIFOs (store off-chip in memory) 
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Modern GPU tessellation
▪ Motivations:

- Reduce CPU-GPU bandwidth

- Animate/skin course resolution 
mesh, but render high 
resolution mesh

▪ Requires parametric surfaces
(must support direct evaluation)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not canonical stage names)

[Moreton 01]
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Parametric surface

u

v

(1,0)(0,0)

(1,1)(0,1)

(u,v)

f(u,v)=<x,y,z>
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Parametric surfaces: common examples

Bicubic patch, 16 control points
(quad domain)

PN Triangles, 3 vertices + 3 normals
(de!nes bezier patch on triangular domain)

See “Approximating Catmull-Clark 
Subdivision Surfaces With Bicubic 

Patches”, Loop et al. 2008 

See “Curves PN Triangles”, 
Vlachos et al. 2008 
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Modern GPU tessellation
▪ Hull shader

- Accepts primitives after 
traditional vertex processing

- Computes tessellation factor 
along each domain edge

- Computes control points for 
parametric surface (from 
primitive vertices)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not  canonical stage names)

Control Points

Edge Factors

Primitive (with adjacency)
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Hull shader produces edge tessellation rates
Based on estimate of parametric surface position
(Note: rates need not be integral)

u

v



7

2

53

Fixed-function tessellation stage

[Moreton 01]

Input: edge tessellation constraints for a patch
Output: (almost) uniform mesh topology meeting constraints 



Domain shader stage
Input: control points (from hull shader) and stream of 
parametric vertex locations (u,v) from tessellator
Output: position of vertex at parametric coordinate:  f(u,v)
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Modern GPU tessellation
▪ Heterogeneous implementation
▪ Hull shader
- Original primitive granularity 

- Data-parallel

- Large working set (typically a primitive + one-ring)

▪ Tessellator
- Surface agnostic, !xed-function hardware implementation

- Irregular control "ow

▪ Domain shader
- Fine-mesh-vertex granularity 

- Data-parallel (preserves shader programming model)

- Direct evaluation of surface (extra math, but data-parallel)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not  canonical stage names)

Control Points

Edge Factors

Primitive (with adjacency)



Challenge: avoid cracks!

2

1

2
1 (parametric domain)
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Modern GPU tessellation summary
▪ Heterogeneous, 3-stage implementation

- Algorithms co-designed with pipeline abstractions and 
hardware

▪ Enables adaptive level-of-detail, high-resolution meshes in 
games

▪ Challenges

- Application developer: avoiding cracks (requires consistent 
edge rate evaluation -- this is tricky in "oating point math)

- GPU implementor: managing large data ampli!cation... 
while maintaining parallelism, locality, and order


