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Today

m Key per-primitive operations (clipping, culling)

Various slides credit John Owens, Kurt Akeley, and Pat Hanrahan

m Programmable primitive generation
- Geometry shader
- Modern GPU tessellation
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Recall: in a modern graphics pipeline, application-specified
logic computes vertex positions

l

{ Jertexirocessing }

I

(x,y,Z,w)

Rasterization
(Fragment Generation)

Vertex positions emitted by vertex processing (or the
geometry shader, if enabled) are represented in
homogeneous clip-space coordinates.

Vertex is within the view frustum if:

-Ww<<x<w
-WSYSW
-WSZI<W

Vertex’s position in euclidian space is (x/w, y/w, z/w)
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Per primitive operations

Assemble vertices into primitives
Clip primitive against view frustum
For each resulting primitive
Divide by w
Apply viewport transform
Discard back-facing primitives (optional, depends on config]
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Assembling vertices into primitives
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How to assemble is part of graphics state (specified by draw command)

Notice: independent vertices get grouped into primitives (dependency!)
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» ®

B May generate new vertices/primitives, or eliminate vertices/primitives
B Data-dependent computation

— variable amount of work per primitive
— variable control flow per primitive
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Why clipping?

m Avoid downstream processing that will not contribute to
image (rasterization, fragment processing)

m Establish invariants for emitted primitives
- (Can safely divide by w after clipping

- Bounds on vertex positions (can now choose precision of
subsequent operations accordingly)
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Guard-band clipping

B Reduces variance in per-primitive clipping work
m  (ost (conservative: primitives no longer guaranteed to be fully on screen)
- Rasterizer must not generate off-screen fragments

= Increased precision needed during rasterization

- Rendered

B Discarded

[] Clipped

Viewport '

Guard-band
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Back-face culling

B Usesign of triangle area to determine if triangle is facing toward
or away from camera

m  May discard primitive as a result of this test
- For closed meshes, eliminates ~ 1/2 of triangles

(these triangles will be occluded anyway)
x2,y2

x0,y0 x1,y1

(xOy1 - x1y0) + (x1y2 - x2y1) + (x2y0 - x0y2)

Triangle area =
2

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)



5GI Reality Engine 1992

Input Fifo

Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry
Engine Engine Engine Engine Engine Engine Engine Engine

Output Fifo

I_I_I_I_I_I_I_I_I

Fragment

Generator

®  Divide triangle strips from application into small strips, round robin to geometry engines

m  Buffers absorb variance in amount of work per triangle
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Programmable geometry amplification

m Amplification by “geometry shader” or tessellation
functionality in a modern pipeline is far greater than that of

clipping

B Geometry shader: output up to 1024 floats worth of vertices
per input primitive

m Tessellation: thousands of vertices from a base primitive
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Thought experiment

Assume maximum amplification factor is large (known statically)

Input Fifo

Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry
Amplifier Amplifier Amplifier Amplifier Amplifier Amplifier Amplifier Amplifier

Output Fifo
Fragment
MR Generator [l

Simple approach 1: make on-chip buffers as big as possible: run fast for low amplification

Simple approach 2: make huge FIFOs (store off-chip in memory)
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Modern GPU tessellation oo

m Motivations: ot canonical tage name)

- Reduce CPU-GPU bandwidth

- Animate/skin course resolution l
mesh, but render high T
resolution mesh

|
m Requires parametric surfaces | ’J““”‘l”*“‘“’ |
(must support direct evaluation)
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Parametric surface
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Parametric surfaces: common examples

Bicubic patch, 16 control points PN Triangles, 3 vertices + 3 normals
(quad domain) (defines bezier patch on trianqular domain)

See “Approximating Catmull-Clark See “Curves PN Triangles’,
Subdivision Surfaces With Bicubic Vlachos et al. 2008
Patches’, Loop et al. 2008
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Modern GPU tessellation

m Hull shader a0t canonical stage names
- Accepts primitives after P—
traditional vertex processing Frimitive withadjaceny) |
Edge Factors
- Computes tessellation factor Tessellator Contral Points
along each domain edge \
=

- complItes Contl‘0| pOintS for Geometry Shader
parametric surface (from
primitive vertices)
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Hull shader produces edge tessellation rates

Based on estimate of parametric surface position

(Note: rates need not be integral)

2




Fixed-function tessellation stage

Input: edge tessellation constraints for a patch
Output: (almost) uniform mesh topology meeting constraints

2

[Moreton 01]



Domain shader stage

Input: control points (from hull shader) and stream of
parametric vertex locations (u,v) from tessellator

Output: position of vertex at parametric coordinate: f(u,v)




B Heterogeneous implementation
B Hull shader

— Original primitive granularity

Modern GPU tessellation

Note: D3D11 Stage Naming
(not canonical stage names)

Vertex Shader

Primitive (with adjacency) l

— Data-parallel Hull Shader }
— Large working set (typically a primitive + one-ring) Edge Factors
B Tessellator Tessellator Control Paints
— Surface agnostic, fixed-function hardware implementation \
— Irreqular control flow { Domain Shader }

B Domain shader

— Fine-mesh-vertex granularity

Geometry Shader

— Data-parallel (preserves shader programming model)

— Direct evaluation of surface (extra math, but data-parallel)
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Challenge: avoid cracks!

T\ A=
A

. ,? <

(parametric domain)




Modern GPU tessellation summary

m Heterogeneous, 3-stage implementation

— Algorithms co-designed with pipeline abstractions and
hardware

m Enables adaptive level-of-detail, high-resolution meshes in
games

m (Challenges

— Application developer: avoiding cracks (requires consistent
edge rate evaluation -- this is tricky in floating point math)

— GPU implementor: managing large data amplification...
while maintaining parallelism, locality, and order
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