
Lecture 4:
Geometry Processing

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today
▪ Key per-primitive operations (clipping, culling)

▪ Programmable primitive generation
- Geometry shader
- Modern GPU tessellation

Various slides credit John Owens, Kurt Akeley, and Pat Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall: in a modern graphics pipeline, application-speci!ed
logic computes vertex positions

Vertex Processing

Rasterization
(Fragment Generation)

(x,y,z,w)

Vertex positions emitted by vertex processing (or the
geometry shader, if enabled) are represented in
homogeneous clip-space coordinates.

Vertex is within the view frustum if:

-w ≤ x ≤ w
-w ≤ y ≤ w
-w ≤ z ≤ w

Vertex’s position in euclidian space is (x/w, y/w, z/w)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Per primitive operations

Assemble vertices into primitives
Clip primitive against view frustum
For each resulting primitive

Divide by w
Apply viewport transform
Discard back-facing primitives [optional, depends on con!g]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Assembling vertices into primitives

How to assemble is part of graphics state (speci!ed by draw command)

Notice: independent vertices get grouped into primitives (dependency!)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Clipping

▪ May generate new vertices/primitives, or eliminate vertices/primitives
▪ Data-dependent computation
- variable amount of work per primitive
- variable control "ow per primitive

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Why clipping?
▪ Avoid downstream processing that will not contribute to

image (rasterization, fragment processing)

▪ Establish invariants for emitted primitives

- Can safely divide by w after clipping

- Bounds on vertex positions (can now choose precision of
subsequent operations accordingly)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Guard-band clipping
▪ Reduces variance in per-primitive clipping work
▪ Cost (conservative: primitives no longer guaranteed to be fully on screen)

- Rasterizer must not generate off-screen fragments

- Increased precision needed during rasterization

[RealityEngine, Akeley 93]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Back-face culling
▪ Use sign of triangle area to determine if triangle is facing toward

or away from camera
▪ May discard primitive as a result of this test

- For closed meshes, eliminates ~ 1/2 of triangles
(these triangles will be occluded anyway)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

SGI Reality Engine 1992

▪ Divide triangle strips from application into small strips, round robin to geometry engines

▪ Buffers absorb variance in amount of work per triangle

[Akeley 93]

Command Processor

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Input Fifo

Output Fifo

Fragment
Generator

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Programmable geometry ampli!cation
▪ Ampli!cation by “geometry shader” or tessellation

functionality in a modern pipeline is far greater than that of
clipping

▪ Geometry shader: output up to 1024 "oats worth of vertices
per input primitive

▪ Tessellation: thousands of vertices from a base primitive

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Thought experiment

Command Processor

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Geometry
Ampli!er

Input Fifo

Output Fifo

Fragment
Generator

Assume maximum ampli!cation factor is large (known statically)

Simple approach 1: make on-chip buffers as big as possible: run fast for low ampli!cation

Simple approach 2: make huge FIFOs (store off-chip in memory)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU tessellation
▪ Motivations:

- Reduce CPU-GPU bandwidth

- Animate/skin course resolution
mesh, but render high
resolution mesh

▪ Requires parametric surfaces
(must support direct evaluation)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not canonical stage names)

[Moreton 01]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Parametric surface

u

v

(1,0)(0,0)

(1,1)(0,1)

(u,v)

f(u,v)=<x,y,z>

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Parametric surfaces: common examples

Bicubic patch, 16 control points
(quad domain)

PN Triangles, 3 vertices + 3 normals
(de!nes bezier patch on triangular domain)

See “Approximating Catmull-Clark
Subdivision Surfaces With Bicubic

Patches”, Loop et al. 2008

See “Curves PN Triangles”,
Vlachos et al. 2008

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU tessellation
▪ Hull shader

- Accepts primitives after
traditional vertex processing

- Computes tessellation factor
along each domain edge

- Computes control points for
parametric surface (from
primitive vertices)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not canonical stage names)

Control Points

Edge Factors

Primitive (with adjacency)

7

2

53

Hull shader produces edge tessellation rates
Based on estimate of parametric surface position
(Note: rates need not be integral)

u

v

7

2

53

Fixed-function tessellation stage

[Moreton 01]

Input: edge tessellation constraints for a patch
Output: (almost) uniform mesh topology meeting constraints

Domain shader stage
Input: control points (from hull shader) and stream of
parametric vertex locations (u,v) from tessellator
Output: position of vertex at parametric coordinate: f(u,v)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU tessellation
▪ Heterogeneous implementation
▪ Hull shader
- Original primitive granularity

- Data-parallel

- Large working set (typically a primitive + one-ring)

▪ Tessellator
- Surface agnostic, !xed-function hardware implementation

- Irregular control "ow

▪ Domain shader
- Fine-mesh-vertex granularity

- Data-parallel (preserves shader programming model)

- Direct evaluation of surface (extra math, but data-parallel)

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Hull Shader

Note: D3D11 Stage Naming
(not canonical stage names)

Control Points

Edge Factors

Primitive (with adjacency)

Challenge: avoid cracks!

2

1

2
1 (parametric domain)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern GPU tessellation summary
▪ Heterogeneous, 3-stage implementation

- Algorithms co-designed with pipeline abstractions and
hardware

▪ Enables adaptive level-of-detail, high-resolution meshes in
games

▪ Challenges

- Application developer: avoiding cracks (requires consistent
edge rate evaluation -- this is tricky in "oating point math)

- GPU implementor: managing large data ampli!cation...
while maintaining parallelism, locality, and order

