
Lecture 3:
Parallelizing Pipeline Execution

(+ notes on workload)

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today
▪ Brief discussion of graphics workload

▪ Strategies for parallelizing the graphics pipeline

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline (last time)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels Frame Buffer

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Programming the pipeline (last time)
▪ Issue draw commands frame-buffer contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2
Bind new shader
Draw using vertex buffer for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex buffer for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Where is the work?

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels Frame Buffer

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out

Triangle size

[0-1] [1-5] [5-10] [10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] [> 100]

30

20

10

0

Pe
rce

nt
ag

e o
f t

ot
al

 tr
ia

ng
le

s

Triangle area (pixels)

[source: NVIDIA] Note: tessellation is triggering a reduction in triangle size

Credit: Pro Evolution Soccer 2010 (Konami)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Amount of data

Compact model

High-resolution mesh

screen-space
fragments

Frame buffer pixels

“Diamond” structure of
graphics workload

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Key workload metrics
▪ Data ampli#cation

- Triangle size

- Expansion by geometry shader (if enabled)

- Tessellation factor (if enabled)

▪ [Vertex/fragment] program cost

▪ Depth Complexity

- Determines number of z/color buffer writes

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Scene depth complexity

Loose approximation: TA = SD
T = # triangles
A = average triangle area
S = pixels on screen
D = average depth complexity

[Imagination Technologies]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Pipeline workload changes rapidly
▪ Triangle size scene and frame dependent

- Even object dependent within a frame (characters: higher res meshes)

▪ Varying complexity of materials, different number of lights illuminating surfaces

- No “average” shader
- Tens to several hundreds of instructions per shader

▪ Shadow map creation

- NULL fragment shader

▪ Screen post-processing

- Two triangles cover screen
(~ no vertex work)

▪ Recall: thousands of draw calls per frame
[NVIDIA]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Parallelization

Some slides credit Kurt Akeley and Pat Hanrahan (Stanford CS448 Spring 2007)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Remember our workload
▪ Immediate mode interface: accepts sequence of commands

- draw commands
- state modi#cation commands

▪ Processing of commands has sequential semantics

- Effects of command A visible before those of command B

▪ Relative cost of pipeline stages changes frequently and unpredictably
(e.g., triangle size)

▪ Ample opportunities for parallelism

- few dependencies (most notable: order, frame-buffer update)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Parallelism and communication
▪ Parallelism - using multiple execution units to process work in parallel

▪ Communication - connecting the execution units allowing work to be
distributed and aggregated
(note: consider synchronization a form of communication)

▪ Issues:

- Scalability:
- Computation
- Bandwidth
- Load-balancing

- Dependencies (ordering semantics)
- Work efficiency

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Opportunities for parallelism in graphics
▪ Data parallelism

- Simultaneously execute same operation on different data

- Object space (vertices, primitives, etc.)

- Image space (fragments, pixels)

▪ Task parallelism

- Simultaneously execute different tasks on similar (or different) data

- Vertex processing, rasterization, fragment processing

Note: many redundancies in the pipeline: optimizations exploiting these redundancies can create
dependencies that reduce opportunities of parallelism

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Simple parallelization (pipelined)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Separate hardware
unit for each stage

Speedup?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Simpli#ed pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Geometry

Application

Display

For now: just consider all
geometry processing work
(vertex/primitive processing,
tessellation, etc.) as
“geometry” processing.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Simpli#ed pipeline

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Application

Display

Geometry Processing

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Scaling “wide”

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sorting taxonomy

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort #rst

Sort middle

Sort last fragment

Sort last image
composition

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort #rst

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort #rst
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assign each hardware pipeline a region of the render target
Do minimal amount of work to determine which region(s) input primitive overlaps

Sort!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort #rst

▪ Good:
- Bandwidth scaling (small amount of sync/communication, simple point-to-point)
- Computation scaling
- Simple: just replicate rendering pipeline (order maintained within each)
- Easy early #ne occlusion cull (“early z”)

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort #rst

▪ Bad:
- Potential for workload imbalance (one part of screen contains most of scene)
- Extra cost of “pre-transformation”
- Tile spread: as screen tiles get smaller, primitives cover more tiles

(duplicate geometry processing)

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort #rst examples
▪ WireGL/Chromium** (parallel rendering with a cluster of GPUs)
- “front-end” sorts primitives
- each GPU is a full rendering pipeline

▪ Pixar RenderMan (implementation of REYES)
- Multi-core software implementation
- Sort surfaces into tiles prior to tessellation

(sort the surfaces, not all the little “micropolygons”)

** Chromium can also be con#gured as a sort-last system

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assign each rasterizer a region of the render target
Distribute primitives to top of pipelines (e.g., round robin)
Sort after geometry processing based on screen space projection of primitive vertices

Sort!

Distribute

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Interleaved mapping of screen
▪ Decrease chance of one rasterizer processing most of scene
▪ Most triangles overlap multiple screen regions

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle interleaved
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Good:
- Workload balance: both for geometry work AND onto rasterizers
- Computation scaling
- Easy #ne early occlusion cull
- Does not duplicate geometry processing for each overlapped screen region

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle interleaved
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Bad:
- Bandwidth scaling: sort implemented as a broadcast

(each triangle goes to many/all rasterizers)
- If tessellation enabled, must communicate many more primitives than sort #rst

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

SGI RealityEngine [Akeley 93]

Sort-middle interleaved

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle tiled
▪ Sort no longer requires broadcast

- Point-to-point communication

- Better bandwidth scaling

▪ Risks workload imbalance amongst rasterizers

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle tiled (chunked)
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

Distribute

bucket
0 ...bucket

1
bucket

2
bucket

3
bucket

N
Buckets stored in off-chip

memory

Partition screen into many small tiles (many more tiles than rasterizers)
Sort geometry by tile into off-chip buckets.
After all geometry complete, rasterizers process buckets (think work queue)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort middle tiled (chunked)
▪ Inserts frame of delay

- Cannot begin rasterization until geometry processing completes (order)

▪ Requires off-chip storage of immediate data

▪ Good:

- Sort approaches point to point traffic

- Good load balance

- Low bandwidth requirements (why?)

▪ Recent examples: Intel Larrabee, NVIDIA CUDA rasterizer, many mobile GPUs

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines (e.g., round robin)
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Good:
- No redundant work (geometry processing or in rast)
- Point-to-point communication during sort
- Interleaved pixel mapping results in good workload balance for frame-buffer ops

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Bad:
- Workload imbalance due to primitives of varying size
- Bandwidth scaling: many more fragments than triangles
- Hard to implement early occlusion cull (more bandwidth challenges)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last image composition
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Each pipeline renders some part of the frame (color buffer + depth buffer)
Combine the color buffers, according to depth into the #nal image

frame buffer 0 frame buffer 1 frame buffer 3 frame buffer 4

Merge

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last image composition

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort last image composition
▪ Cannot maintain order

▪ Simple: N separate rendering pipelines

- Can use off the shelf GPUs

- Coarse-grained communication

▪ Similar load imbalance problems as sort-last fragment

▪ Bandwidth requirements compared to sort-last fragment depend on
scene depth complexity

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sort everywhere

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Redistribute- point-to-point

Pomegranate
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines
Redistribute after geometry processing (e.g, round robin)
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point

[Eldridge 00]

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Recall: modern OpenGL
4/Direct3D 11 pipeline
5 programmable stages

Tessellation

Programmable stages with data-dependent
control $ow (varying per vertex/per
fragment run-time)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Modern NVIDIA, AMD, Intel GPUs
Cmd Processor /Vertex Generation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer Rasterizer

Rasterizer Rasterizer

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Hardware is a heterogeneous collection of resources
Programmable resources are time-shared by vertex/primitive/fragment processing work
Must keep programmable cores busy: sort everywhere

High-speed Interconnect

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Readings
▪ Molnar et al. A Sorting Classi#cation of Parallel Rendering. IEEE Graphics and

Applications 1994

▪ Eldridge et al. Pomegranate: A Fully Scalable Graphics Architecture. SIGGRAPH 2000

