
Lecture 2:
The Real-Time Graphics Pipeline

Kayvon Fatahalian
CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Today
▪ The real-time graphics pipeline

▪ How the pipeline is used by applications (workload)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Issues to keep in mind

▪ Level of abstraction

▪ Orthogonality of abstractions

▪ How is it designed for performance/scalability?

▪ What the system does and DOES NOT do

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

System stack
Application

(e.g, a computer game)

Scene graph
(database representing/organizing the scene: objects, materials, lights, etc.)

Graphics Pipeline
(OpenGL/Direct3D)

Graphics Pipeline Implementation
(software driver + GPU)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline (from last time)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Memory

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“Assembling vertices”

Vertex Generation

Vertex Processing

V0 V1 VN-1

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawArrays(GL_TRIANGLES, 0, N);

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
 my_vtx_indices);

V0 V1 VN-1

1 3 2 1 5 6

Indexed Version (gather)

Contiguous Version

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

“Assembling vertices”

Vertex Generation

Vertex Processing

XYZ0 XYZ1 XYZN-1

Contiguous Version

UV0 UV1 UVN-1

N0 N1 NN-1

Current pipelines set limit of 16 "oat4 attributes per vertex.

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Vertex stage inputs

Vertex Generation

Vertex Processing

Memory

Uniform
data

Uniform data: constant across vertices
e.g., vertex transform matrix

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Vertex stage inputs

Vertex Processing

Memory

Uniform
data

struct input_vertex
{
 float3 pos; // object space
}

struct output_vertex
{
 float3 pos; // NDC space
}

uniform mat4 my_transform;

output_vertex my_vertex_program(input_vertex input)
{
 output_vertex out;
 out.pos = my_transform * input.pos; // matrix-vector mult
}

(*** Note: for clarity, this is not proper GLSL syntax)

Program

1 input vertex 1 output vertex
independent processing of each vertex

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Vertex processing example: lighting

Per vertex data: surface normal, surface color
Uniform data: light direction, light color

Per vertex lighting Per vertex normal, per pixel lighting

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Vertex processing example: skinning

Image credit: http://www.okino.com/conv/skinning.htm

Per vertex data: blend coe#cients (depend on current animation frame)
Uniform data: “bone” matrices

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Primitive processing

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Memory

Uniform
data

Uniform
data

input vertices for 1 prim output vertices for N prims**
independent processing of each INPUT primitive

** caps output at 1024 "oats of output

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

1 input prim N output fragments

N is unbounded
(size of triangles varies greatly)

struct fragment // note similarity to output_vertex from before
{
 float x,y; // screen pixel coordinates
 float z; // depth of triangle at this pixel

 float3 normal; // application-defined attributes
 float2 texcoord; // (e.g., texture coordinates, surface normal)

}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

Compute covered pixels
Sample vertex attributes once per
covered pixel

struct fragment // note similarity to output_vertex from before
{
 float x,y; // screen pixel coordinates (sample point location)
 float z; // depth of triangle at sample point

 float3 normal; // interpolated application-defined attribs
 float2 texcoord; // (e.g., texture coordinates, surface normal)

}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Screen Space

Object/world/camera Space

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

1 in / N out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Fragment processing

Fragment Processing

Memory

Uniform
data

struct input_fragment
{
 float x,y;
 float z;
 float3 normal;
 float2 texcoord;

}

struct output_fragment
{
 int x,y; // pixel
 float z;
 float4 color;
}

Texture Bu!er 0

Texture Bu!er N

...

texture my_texture;

output_vertex my_vertex_program(input_vertex input)
{
 output_fragment out;

 float4 material_color = sample(my_texture, input.texcoord);

 for (all lights in scene)
 {
 out.color += // compute light reflectance towards camera
 }

}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many uses for textures
Provide surface color/re"ectance

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Bump mapping

[Image credit: Wikipedia]

Bump mapping:
Displace surface in direction of
normal (for lighting calculations)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Normal mapping
Modulate interpolated surface normal

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Many uses for textures
Store precomputed lighting

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Frame Bu!er

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

** 1 in / 1 out Uniform
data

Texture
bu!ers

Uniform
data

Texture
bu!ers

Uniform
data

Texture
bu!ers

** can be 0 out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Frame-bu!er operations

Pixel Operations

Frame Bu!er

Memory
struct output_fragment
{
 int x,y;
 float z;
 float4 color;
}

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Frame-bu!er operations

Stencil Bu!er

Memory
struct output_fragment
{
 int x,y;
 float z;
 float4 color;
}

Alpha Test

Stencil test

Depth test

Update target

Z Bu!er

Color Bu!er 0

Color Bu!er N

...

if (fragment.z < zbuffer[fragment.x][fragment.y])
{
 zbuffer[fragment.x][fragment.y] = fragment.z;
 colorbuffer[fragment.x][fragment.y] =
 blend(colorbuffer[fragment.x][fragment.y], fragment.color);
}

Depth test (hidden surface removal)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Frame-bu!er operations

if (fragment.z < zbuffer[fragment.x][fragment.y])
{
 zbuffer[fragment.x][fragment.y] = fragment.z;
 colorbuffer[fragment.x][fragment.y] =
 blend(colorbuffer[fragment.x][fragment.y], fragment.color);
}

Depth test (hidden surface removal)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels Frame Bu!er

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
bu!ers

Uniform
data

Texture
bu!ers

Uniform
data

Texture
bu!ers

1 in / 0 or 1 out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Programming the pipeline
▪ Issue draw commands frame-bu!er contents change

Bind shaders, textures, uniforms
Draw using vertex bu!er for object 1
Bind new uniforms
Draw using vertex bu!er for object 2
Bind new shader
Draw using vertex bu!er for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex bu!er for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: e#ciently managing stage changes is a major challenge in implementations

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Feedback loop
▪ Issue draw commands frame-bu!er contents change

Bind contents of color bu!er as texture 1
Draw using vertex bu!er for object 5
Draw using vertex bu!er for object 6

CommandCommand Type

State change
Draw
Draw

...

Key idea for:
shadows
environment mapping
post-processing e!ects

1000-1500 draw calls per frame
(source: Johan Andersson, DICE -- circa 1998)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Feedback loop 2
▪ Issue draw commands save intermediate geometry

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out
Uniform

data
Texture
bu!ers

Uniform
data

Texture
bu!ers

output vertex bu!er

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

OpenGL state diagram (OGL 1.1)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Graphics pipeline
with tessellation
(OpenGL 4, Direct3D 11)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu!er Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Graphics pipeline characteristics

▪ Level of abstraction
- Declarative, not imperative

(“Draw a triangle, using this fragment program, with depth testing on” vs. “draw a cow
made of marble on a sunny day”)

- Programmable stages give large amount of application "exibility

- Con$gurable: Turn stages on and o!, feedback loops

- Low enough to allow application to implement many techniques, high enough to
abstract over radically di!erent implementations

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Graphics pipeline characteristics

▪ Orthogonality of abstractions
- All vertices treated the same

- Vertex programs work for all primitive types

- All primitives turned into fragments

- Fragment programs oblivious to primitive type

- Hidden surface remove via z-bu!ering: oblivious to primitive type

- Same is true for anti-aliasing (will be discussed later)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Graphics pipeline characteristics
▪ How is it designed for performance/scalability?

- [Reasonable low level]: low abstraction distance

- Constraints on pipeline structure

- Constrained data-"ows between stages

- Fixed-function stages

- Independent processing of each data element (enables parallelism)

- Di!erent frequencies of computation (per vertex, per primitive, per fragment)

- Only perform work at the rate required

- Keep it simple

- Common intermediate representations

- Triangles, points, lines

- Fragments, pixels

- Z-bu!er algorithm

- “Immediate mode system”: processes primitives as it receives them
(as opposed to bu!ering the entire scene)

- Leave global optimization of how to render scene to application (scene graph)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Graphics pipeline characteristics

▪ What it DOES NOT do
- Modern OpenGL has no concept of lights, materials, modeling transforms

- Only vertices, primitives, fragments, pixels, and STATE: bu!ers and shaders

- No concept of scene

- No global e!ects (must be implemented using multiple draw calls by
application: e.g, shadow maps)

- No I/O, window management

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Perspective from Kurt Akeley
▪ Does the system meet original design goals, and then do

much more than was originally imagined?

- Simple, orthogonal concepts

- Ampli"er e!ect

▪ Often you’ve done a good job if no one is happy ;-)
(you still have to meet design goals)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Readings
▪ M. Segal and K. Akeley. The Design of the OpenGL Graphics Interface

▪ D. Blythe. The Direct10 System. SIGGRAPH 2006

