
15869 Homework Assignment 1:
Due at the start of class, Thursday Oct 20

Question 1: (10 points) In class we discussed a number of ways a processor might implement the SIMT abstraction for code
containing nested conditions. Describe how you would extend this implementation to handle programs containing for or while
loops with data-dependent loop bounds. Be precise in your description of details such as how lane masks at set in each loop
iteration, how masks are reset after leaving the loop body. Be sure to describe any state you keep around to do this.

Question 2: (10 points)

A common operation in computer graphics is to find intersections between a point and scene objects. During the rasterization
lecture we discussed algorithms for solving the following instance of this problem: “given a primitive in 2D, find all points
contained within the primitive.” This question flips the problem around. Given a point and a set of line segments you need to
efficiently find all the line segments that contain the point. To simply things, you only need to carry out the computation in 1D.

Figure 1 shows a collection of line segments in 1D (the start and end of each segment is given). The figure also shows a binary
tree data structure organizing the segments into a spatial hierarchy. Leaves of the tree correspond to the line segments. Each
interior node of the hierarchy represents a spatial extent spanned by its children. Notice that sibling leaves can overlap. Using
this tree data structure, it is possible to answer the question “what segments contain a specified point” without testing the point
against all segments in the scene.

The function find_largest_segment_1 uses the tree data structure in Figure 1 to quickly find all line segments containing a
point in 1D. It returns the result of very_expensive_function called on the largest of the line segments containing the
point. For example, if this was a simple renderer, one possible implementation of very_expensive_function might
compute the color of the line segment at the intersection point. For simplicity, assume that very_expensive_function is a
straight-line block of code with no conditionals or data-dependent control.

Study the algorithm, and understand how it works. For example, given the point 0.1, the algorithm will perform the following
sequence of operations: (I-test,N0), (I-hit,N0), (I-test,N1), (I-hit,N1), (I-test,N2), (I-hit,N2) (L-test, N3), (VEF, N3), (I-test, N4),
(I-hit, N4), (L-test,N5), (VEF, N5), (L-test, N6), (L-miss, N6), (L-test,N7), (L-miss,N7) , (I-test, N8), (I-miss, N8)

where:

(I-test, Nx) represents a point-interior node test against Node X.
(I-hit, Nx) represents logic of traversing to the child nodes after it is determined the query point is contained within Node X.
(I-miss, Nx) represents logic of traversing to sibling/ancestor nodes when the point is not contained within node X.
(L-test,Nx) represents a point-leaf node test against the segment represented by Node X.
(VEF, Nx) represents very_expensive_function executed on node X.

Now consider simultaneous SIMT-style execution of find_largest_segment_1 on a 4-wide system using the four points 0.1,
0.4, 0.7, and 0.75 as inputs. Using the notation established above, chart the utilization of each “lane” of the processor in the 4-
column matrix below (columns indicate behavior of each of the four SIMT lanes, and rows correspond to processor behavior at a
particular point in time). Note that the first column of the matrix should contain the values given in the example for point 0.1
above. It may be helpful to use --- to indicate that a lane’s operation is masked at a particular time.
8 8

8
struct8Node8{8
888float8min,8max;8
888bool8leaf;8
888Node*8left;8
888Node*8right;8
};8
8
//8returns8the8value8of8very_expensive_function(node,8pt_x)8for8the8largest8
//8segment8containing8pt_x.88If8no8segment8contains8pt_x,8returns8NO_SEGMENT8
8
float8find_largest_segment_1(float8pt_x,8Node*8root_node)8
{8
8
88Stack<Node*>8stack;8
88Node*8node;8
88float8max_extent8=80.0;8
88float8result8=8NO_SEGMENT;8
8
88stack.push(root_node);8
8
88while(!stack.size()8==80)8
88{8
8
8888node8=8stack.pop();8
8
8888while8(!nodeR>leaf)8
8888{8
8
888888//8IRtest:8test8to8see8if8point8is8contained8within8interior8node8
888888if8(pt_x8>=8nodeR>min8&&8pt_x8<=8nodeR>max)8
888888{88
88888888//8IRhit:8continue8to8child8nodes8
88888888push(nodeR>right);8
88888888node8=8nodeR>left;8
888888}8
888888else8
888888{8
88888888//8IRmiss:8point8not8contained8within8node8
88888888if8(stack.size()8==80)8
8888888888return8NO_SEGMENT;8
88888888else8
8888888888node8=8stack.pop();8
888888}8
8888}8
8
8888//8LRtest:8test8to8see8if8point8is8contained8within8line8segment8(leaf8node)8
8888if8(pt_x8>=8nodeR>min8&&8pt_x8<=8nodeR>max8&&8(nodeR>maxRnodeR>min)8>8max_extent)8
8888{8
8888888//8this8basic8block8is8referred8to8as8VEF8in8problem8description:88
8888888result8=8very_expensive_function(node,8pt_x);8
8888888max_extent8=8nodeR>max8–8nodeR>min;8
8888}8
88}8
8
88return8result;8
}8

pt_x8=80.18 pt_x8=80.48 pt_x8=80.78 pt_x8=80.758
(IRtest,8N0)8 (IRtest,8N0)8 (IRtest,8N0)8 (IRtest,8N0)8
(IRhit,8N0)8 (IRhit,8N0)8 (IRhit,8N0)8 (IRhit,8N0)8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8
8 8

Question 3: (10 points)

The function find_largest_segment_2 produces the same output as find_largest_segment_1.

Chart its SIMT execution behavior on the same four rays as in question 2 and then intuitively describe the differences in how
find_largest_segment_1 and find_largest_segment_2 execute. Are there advantages and disadvantages of the two
approaches? Although I only provided one example set of segments and point queries in this assignment, it will be helpful to
consider the execution behavior of these functions under varying characteristics of the binary tree (e.g., consider very large,
unbalanced trees), different costs of very_expensive_function, and even different point queries.

8

8

float8find_largest_segment_2(float8pt_x,8Node*8root_node)8

{8

8

88Stack<Node*>8stack;8

88Node*8node;8

88float8max_extent8=80.0;8

88float8result8=8NO_SEGMENT;8

8

88stack.push(root_node);8

8

88while(!stack.size()8==80)8

88{8

8888node8=8stack.pop();8

8

8888if8(!nodeR>leaf)8

8888{8

8888888//8IRtest:8test8to8see8if8point8is8contained8within8interior8node88

8888888if8(pt_x8>=8nodeR>min8&&8pt_x8<=8nodeR>max)8

8888888{88

8888888888//8IRhit:8continue8to8child8nodes8

8888888888push(nodeR>right);8

8888888888push(nodeR>left);8

8888888}8

8888}8

8888else8

8888{8

8888888//8LRtest:8test8to8see8if8point8is8contained8within8line8segment8(leaf8node)8

8888888if8(pt_x8>=8nodeR>min8&&8pt_x8<=8nodeR>max8&&8(nodeR>maxRnodeR>min)8>8max_extent)8

8888888{8

8888888888//8this8basic8block8is8referred8to8as8VEF8in8the8problem8description:8

8888888888result8=8very_expensive_function(node,8pt_x);8

8888888888max_extent8=8nodeR>max8–8nodeR>min;8

8888888}8

8888}8

88}8

8

88return8result;8

}8

8

8

8 8

pt_x8=80.18 pt_x8=80.48 pt_x8=80.78 pt_x8=80.758
(IRtest,8N0)8 (IRtest,8N0)8 (IRtest,8N0)8 (IRtest,8N0)8
(IRhit,8N0)8 (IRhit,8N0)8 (IRhit,8N0)8 (IRhit,8N0)8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8
8

0.0
0.12

0.09
0.24

0.20
0.27

0.36
0.42

0.54

0.78

0.63
0.84

0.69
0.89

0.94
1.0

0.0 / 0.12

0.09 / 0.24
0.2 / 0.27

0.09 / 0.27

0.0 / 0.27

0.36 / 0.42

0.0 / 0.42

0.0 / 1.0

0.54 / 0.78
0.63 / 0.84

0.54 / 0.84
0.69 / 0.89

0.54 / 0.89
0.94 / 1.0

0.54 / 1.0

N
0

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
10

N
11

N
12

N
13

N
14

Figure 1

L
ine segm

ents in 1D

C
orresponding binary tree

