
Photon mapping: starter code

Christopher Twigg
23 March 2005

Starter code basics

• Prerequisite for photon mapping: ray
tracer

• We are providing you with some starter
code

• Various parts of this code are by
– University of Washington graphics group
– Henrik Wann Jensen
– Me (Chris Twigg)

What’s in there?

• Full Whitted-style ray tracer, supports
– Arbitrary polymesh geometry
– AABB acceleration
– Texture mapping
– Antialiasing using distributed rays

• User interface for visualizing scenes
• Completely portable code, we support

both Windows and Linux

Directory Structure

• src/
– fileio/ : utility stuff for the parser
– parser/ : parsing of .ray files
– scene/ : scene graph, shading, lighting
– SceneObjects/ : geometry & intersection
– ui/ : user interface (graphical and command-

line)
– vecmath/ : wrappers for the VL library

• scenes/ : sample scenes

Visual Code Overview

Camera

Object

Light Source

i

j

Recall how ray tracing works…

Visual Code Overview

Light

i

j

Now, let’s see how we do it in
the starter code:

SceneObject

ray

Material

Camera

Scene

Visual Code Overview

Light::getDirection

i

j

Now, let’s see how we do it in
the starter code:

Scene::intersect

Camera::rayThrough(i,j)

RayTracer::traceRay

Material::shade

SceneObject::
intersect

The scene graph

Scene

TransformNode

Material

SceneObject

TransformNode

Material

SceneObject

TransformNode

Material

SceneObject

Tracing rays…
RayTracer::traceRay

Check if ray intersects scene
Scene::intersect

position
t value
object

ray

isect

Compute local Phong model
Material::shade

isect

color
if(reflective)

recurse on reflected ray
if(refracted)

recurse on refracted ray
return creflect + crefract + cPhong

RayTracer::traceRay

RayTracer::traceRay

User Interface

Clicking here traces a single ray through the scene, so you can
set breakpoints, etc.

Camera

Visualize
rays

User Interface

• Think of creative ways to use the interface
• Visual debugging is a useful skill in

graphics…

Implementing: soft shadows

• For soft shadows, we need to distribute
our shadow rays over the light source area

• A square with emissivity is our only area
light source:

// light
translate(2.78, 5.48, 2.295,

scale(1.3, 1.0, 1.05,
rotate(1.0, 0.0, 0.0, 1.5708,
square {

material = {
emissive = (250.0, 250.0, 250.0);
diffuse = (0.750, 0.750, 0.750);

}
})))

Implementing: soft shadows
• Right now, Square::getDirection acts like

a point light:
LightProperties Square::getDirection(

const Vec3f& P,
unsigned int index) const

{
// Treat it like a point light
vl::Vec3f position = transform

->localToGlobalCoords(vl::Vec3f(0,0,0));
Vec3f d = (position-P);
float dL = len(d);
d /= dL;
float t = dot(position - P, d);
float falloff = 1.0/(4*pi*dL*dL);
return LightProperties(

ray(P, d, index, ray::SHADOW),
t, falloff);

}

Implementing: soft shadows

(0.5, 0.5)

(-0.5, -0.5)

Points on the square are defined in local coordinates

We use transform->localToGlobalCoords
coordinates to get worldspace coords

Implementing: photon maps
• Scene::recomputePhotonMaps is called

before any rays are traced
• Can access photon map from within
Material::shade (use the Scene* that is
passed in)

Implementing: photon maps

• Henrik’s photon map implementation (from the
book) is included (class Photon_map)

• Key functions:
– store: store a photon in the map
– scale_photon_power: scale all photons (since last

time function called) by same value
– balance: balance the kd-tree, must be called after all

photons are stored but before obtaining any
irradiance estimates

– irradiance_estimate

Implementing: photon maps

foreach Light* L
{

for(i = 1 to nPhotons)
{

{power, position, direction} =
trace_photon(L, L->randomDir(), L->color());

photonMap_->store(power, position, direction);
}

photonMap_->scale_photon_power(1.0/nPhotons);
}

photonMap_->balance();

Pseudocode:

Useful functions

• Sources of randomness:
– RayTracer::uniform01()
– RayTracer::uniformOnSphere()
– RayTracer::uniformInt(N)

• Note: Can access these from anywhere
with the following syntax
– traceUI->rayTracer().uniform01();

Sample scenes

cornellBoxWater.raycornellBoxSpheres.raycornellBox.ray

easiest hardest

cornellBoxReflective.ray

Soft shadows
Global illum.

+refractive caustic
(sphere only)

+refractive caustic
(arbitrary geom.)

+reflective caustic
(arbitrary geom.)

probably optional
(pending Doug’s decision)

Make your own!

Jernej Barbic

Kris Poppendorf

Adam Kushner

.ray file format

// light
translate(2.78, 5.48, 2.295,

scale(1.3, 1.0, 1.05,
rotate(1.0, 0.0, 0.0, 1.5708,
square {

material = {
emissive = (250.0, 250.0, 250.0);
diffuse = (0.750, 0.750, 0.750);

}
})))

Arbitrary, nested transforms:

.ray file format

Scoping is allowed:
scale(0.01, 0.01, 0.01,

{
sphere {}
box {}

}

.ray file format

Arbitrary .obj geometry:

polymesh {
material = {

diffuse = (0.750, 0.750, 0.750);
}
objfile = "box.obj";
objgroup = "Cube";

}

note that you must
still specify material
params

.ray file format

Texture map any material attribute:
polymesh {

material = {
// map the diffuse color
diffuse = map("checkerboardDark.bmp");

}
objfile = "torus.obj";
objgroup = "pTorus1";

}

...
material = {

// map the specular color
specular = map("checkerboardDark.bmp");
shininess = 100;

}
. . .

Many more possibilities…
Be creative!

source: Henrik Wann Jensen

source: Henrik Wann Jensen

???

source: FACHE Sebastien

	Photon mapping: starter code
	Starter code basics
	What’s in there?
	Directory Structure
	Visual Code Overview
	Visual Code Overview
	Visual Code Overview
	The scene graph
	Tracing rays…
	User Interface
	User Interface
	Implementing: soft shadows
	Implementing: soft shadows
	Implementing: soft shadows
	Implementing: photon maps
	Implementing: photon maps
	Implementing: photon maps
	Useful functions
	Sample scenes
	Make your own!
	.ray file format
	.ray file format
	.ray file format
	.ray file format
	Many more possibilities…

