15-864 Assignment 2: Mesh Smoothing

Overview

In this short assignment you will get some final practice performing operations on polygon meshes. You may also find these techniques useful for creating
meshes for future projects.

Details

1. Implement an explicit solver for both diffusion- (using the Laplacian operator) and curvature-based smoothing on meshes, as described in [Desbrun et
al. 1999]. You may use an explicit forward Euler method to solve the equation (as described in the paper); be cogent of the timestep restriction,
however.

Provide the ability to change both the lambda value and the number of iterations via either command-line arguments or interactive keystrokes.

Document this in your README file.

3. You should already have a viewer capable of displaying polygon meshes from the first project, as well as an .obj reader. Present the results of the
smoothing in this viewer. Also, as an intuitive way to aid in debugging, display update values (e.g., scaled Laplacian or curvature) at the vertices. For
example, the head at right uses the Matlab Jet colormap to visualize curvature values. The color scheme you use can be anything you want, provided
that it is clear where the high/low values are.

4. As a final step, compare the two smoothing approaches (curvature flow and laplacian smoothing) by showing a side-by-side comparison after N iterations for a few values of NV (a simple
jpeg image is sufficient here). For extra coolness factor, optionally turn in a side-by-side video of the two approaches iterating.

5. Ata minimum, your program should work with the following meshes:

6. As usual, turn in your full source code, plus a README summarizing build instructions, interface details, etc.

(3]

Additional tips

e Ifyou can't recall how to control materials in OpenGL, Nat Robins has a refresher.
¢ Take a look at this page for some useful library pointers.
o Ifyou're (still?) having trouble logging into the lab machines, please see this page.

References

1. Gabriel Taubin. 4 Signal Processing Approach to Fair Surface Design. Proceedings of SIGGRAPH 95. pp. 351-358, 1995.
2. Mathieu Desbrun, Mark Meyer, Peter Schrdder, and Alan H. Barr. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. Proceedings of SIGGRAPH 99. pp. 317-324,

1999.

Implicit Extras

Distance Fields + Sharp Features

 Problem: Distance fields (DFs) sampled at finite
resolution can not recover sharp features

e Consider two related solutions:

— Adaptively Sampled Distance Fields (ADFs)
 [Frisken et al., 2000]

— Extended Marching Cubes
« [Kobbelt et al, 2001]

Adaptively Sampled Distance
Fields (ADFs)

Sarah Frisken, Ronald Perry, Alyn
Rockwood and Thouis Jones,

SIGGRAPH 2000

Adaptively Sampled Distance Fields
(ADFs)

« Detall-directed sampling
— High sampling rates only where needed

e Spatial data structure (e.g., an octree)

— Fast localization for efficient processing

* Reconstruction method (e.qg., trilinear
Interpolation)

— For reconstructing the distance field and its
gradient from the sampled distance values

Reconstruction

A single trilinear field can represent highly curved surfaces

Advantages of ADFs
..lgg!l!g__.lll.. ADFs provide
. F .

e Spatial hierarchy
| ."'.... e Distance field
i e Object surface
e Object interior
e Object exterior

e Surface normal
(gradient at surface)

e Direction to closest
surface point (gradient

| N -
.
off surface)
II--------II

ADFs consolidate the data needed to
represent complex objects

B
B
.ll‘-_j_

..L‘I_“.

Comparison of 3-color Quadtrees and ADFs

* Fewer distance computations
« Smaller memory footprint

T
HHH TTTH T
I HHH

[T H
[P

[T
FarH [1 HeeH

23,573 cells (3-color) 1713 cells (ADF)

Examples

Ficure 8. An
ADF ol the
Menger Sponge
cl JI.IL. al crea .;_‘.,_|
recursively |~.\
subtracting
smaller and
smaller crossing
cuboids from an
initial cube,
Four levels of
: recursion are
Figure 7. An ADF cocaime molecule volume rendered in a haze of R Ay i shown
turbulent mist, The mist was generated using a color function dependent | o .

on distance [rom the molecule surface

Figure 9. Four LOD models with varving amounts of error rendered
[rom an ADFE octree

ADF Examples

Figures 5B. A bas-rehief carving on a slab. The 31 geometry was generated from a black and white image of a flower (photograph courtesy of John Arnold) using the algorithm
described in Section 7.1 for converting range data to an ADE. The highly detailed carving 1s represented as a level-10 ADF requining 186 MB of storage.

Figure 5C. Several sculpted level-8 ADFs showing how well ADFs represent both smooth surfaces and fine detail.

Feature Sensitive Surface
Extraction from Volume Data

Leif Kobbelt et al.,
SIGGRAPH 2001

Limitations of Marching Cubes

Figure 6: Alias errors 1n surfaces generated by the Marching Cubes
algorithm are due to the fixed sampling grid. By decreasing the grid
size, the effect becomes less and less visible due to the convergence
of S* to S but the problem is not really solved since the normal
vectors of $* do not converge to the normals of S.

Extending Marching Cubes

Figure 1: We present a new technique to extract high quality triangle meshes from volume representations of geometric objects. The
two main contributions are an enhanced distance field representation and an extended Marching Cubes algorithm. The above figures
show reconstructions of the well-known “fandisk™ dataset from its distance field representation. The distance field has been sampled
on a uniform 65 > 65 x 65 grid. The far left image shows the standard Marching Cubes reconstruction, center left is the reconstruction
by the same algorithm but applied to the enhanced distance field with the same resolution. Center right shows the result of our new
extended Marching Cubes algorithm applied to the original volume data, and finally on the far right we show the reconstruction by
our new algorithm applied to the enhanced distance field. The approximation error to the original polygonal model is below 0.25 %.

Directed Distance Fields

T—)

e Scalar DFs

 Directed DFs

—

Using Tangent Information

Figure 7: By using point and normal information on both sides of
the sharp feature one can find a good estimate for the feature point
at the intersection of the tangent elements.

Figure 8: When mserting additional feature samples in some cells
during the extended Marching Cubes we distinguish between dif-
ferent types of feature configurations: edge features are shown in

green and corner features in red.

Figure 9: The feature sensitive sampling in the extended March-
ing Cubes algorithm works in three steps. First, the cells/patches
that contain a feature are identified (left). Then one new sample
is included per cell (center) and finally one round of edge flipping
reconstructs the feature edges.

Shape Transformation Using
Variational Implicit Functions

Turk + O’'Brien, SIGGRAPH 99

Figure 2: Implicit functions tor an X shape. Lefl shows the signed
distance function. and right shows the smoother variational impheit

function.

Figure 5: Upper row 1s a shape transformation created using the

signed distance transform. Lower row is the sequence generated
using a single variational implicit function.

Variational Implicit Functions;
Radial Basis Function Surfaces

A few more detalls...

Reference:

* Reconstruction and Representation of 3D Objects with
Radial Basis Functions, Carr et al., SIGGRAPH 2001.

(b

: (a) Fitting a Radial Basis Function (RBF) 1o a 43 omnt-cloud. (b) Automatic mesh repair using the btharmonic RBF.

Avoiding f(x)=0: Off-surface Points

off-surface ‘normal’ points

surface points

Figure 2: A signed-distance function is constructed from the sur-
face data by specifying off-surface points along surface normals.
These points may be specified on either or both sides of the surface,
or not at all.

Off-surface Points

¢ 30 Reconstruction of a hand from a cloud of points with and without validation of normal lengths.

RBF Function

0 20 40 60 80 100

Figure 4: Cross section through the fingers of a hand reconstructed
from the point-cloud in Fig. 3. The iso-contours corresponding to
H1. 0 and -1 are shown (top) along with a cross sectional profile of

the RBF (bottom) along the line shown.

BL(?)(R3), the Beppo-Levi space of
distributions in R3

S={seBLY (R :s(x;))=f;, i=1,....,N}. (3)

The space BL'?)(IR?) is equipped with the rotation invariant semi-
norm defined by

9 2 2 9 2
H"H2 _ / 0-s(x) i 825(3() i d-s(x)
* JrR3 \ ox? - 022

2 2 2 o) 2
d-5(x) 9”5(x) 0”5 (x)
2 2 2 dx. (4
#(Mp)+<&& o\ ger) @
This semi-norm is a measure of the energy or “smoothness” of func-

tions: functions with a small semi-norm are smoother than those
with a large semi-norm.

Greedy RBF Algorithm

Figure 6: A greedy algorithm iteratively fits an RBE to a pomnt cloud resulting in fewer centers in the final function. In this case the 544,000
point cloud is represented by 80.000 centres to a relative accuracy of 3 < 107 in the final frame.

Greedy RBF Algorithm

A simple greedy algorithm consists of the following steps:

|. Choose a subset from the interpolation nodes x; and fit an RBF
only to these.

. Evaluate the residual, €; = f; — s(x;), at all nodes.
. It max{|g;|} < fitting accuracy then stop.
. Else append new centers where ¢€; is large.

. Re-fit RBF and goto 2.

RBF approximation of noisy data

(b)

Figure 9: (a) Exact fit. (b) medium amount of smoothing applied (the RBIF approximates at data points). (¢) increased smoothing.

Fast Multipole Method
for Complex Models

Figure 14: Solid and semi-transparent renderings of an RBF model of a turbine blade containing intricate internal structure. The RBF has
594.000 centers.

