CHAPTER FOURTEEN *

Balanced Allocations

In this chapter we examine a simple yet powerful variant of the classic balls-and-bins
paradigm, with applications to hashing and dynamic resource allocation.

14.1. The Power of Two Choices

Suppose that we sequentially place n balls into n bins by putting each ball into a bin
chosen independently and uniformly at random. We studied this classic balls-and-bins
problem in Chapter 5. There we showed that, at the end of the process, the most balls
in any bin - the maximum load — is ©@(Inn/Inln n) with high probability.

In a variant of the process, each ball comes with d possible destination bins, each
chosen independently and uniformly at random, and is placed in the least full bin
among the d possible locations at the time of the placement. The original balls-and-
bins process corresponds to the case where d = . Surprisingly, even when d = 2, the
behavior is completely different: when the process terminates, the maximum load is
Inlnn/In2+ O(1) with high probability. Thus, an apparently minor change in the ran-
dom allocation process results in an exponential decrease in the maximum load. We
may then ask what happens if each ball has three choices; perhaps the resulting load is
then O(Inlnlnn). We shall consider the general case of d choices per ball and show
that, when d > 2, with high probability the maximum load is Inlnn/Ind + ®(1).
Although having more than two choices does reduce the maximum load. the reduction
changes it by only a constant factor, so it remains @(InIn n).

14.1.1. The Upper Bound

Theorem 14.1: Suppose that n balls are sequentially placed into n bins in the follow-
ing manner. For each ball, d > 2 bins are chosen independently and uniformly at
random (with replacement). Each ball is placed in the least full of the d bins at the
time of the placement, with ties broken randomly. After all the balls are placed, the
maximum load of any bin is at most Inlnn/Ind + O(1) with probability 1 — o(1/n).
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14.1 THE POWER OF TWO CHOICES

The proof is rather technical, so before beginning we informally sketch the main points.
In order to bound the maximum load, we need to approximately bound the number of
bins with i balls for all values of i. In fact, for any given i, instead of trying to bound
the number of bins with load exactly i, it will be easier to bound the number of bins
with load at least i. The argument proceeds via what is, for the most part, a straight-
forward induction. We wish to find a sequence of values 8; such that the number of
bins with load at least i is bounded above by ; with high probability.

Suppose that we knew that, over the entire course of the process, the number of bins
with load at least i was bounded above by 8;. Let us consider how we would deter-
mine an appropriate inductive bound for g;, that holds with high probability. Define
the height of a ball to be one more than the number of balls already in the bin in which
the ball is placed. That is, if we think of balls as being stacked in the bin by order of
arrival, the height of a ball is its position in the stack. The number of balls of height at
least i + 1 gives an upper bound for the number of bins with at least i + 1 balls.

A ball will have height at least i + | only if each of its d choices for a bin has load
at least i. If there are indeed at most 8; bins with load at least i at all times, then the
probability that each choice yields a bin with load at least i is at most 8;/n. Therefore,
the probability that a ball has height at least i + | is at most (8;/n)¢. We can use a
Chernoff bound to conclude that, with high probability, the number of balls of height
at least i + 1 will be at most 2n(8;/n)¢. That is, if everything works as sketched, then

n n
We examine this recursion carefully in the analysis and show that 8; becomes O(Inn)
when j = Inlnn/Ind + O(1). At this point, we must be a bit more careful in our analy-
sis because Chernoff bounds will no longer be sufficiently useful, but the result is easy
to finish from there.

The proof is technically challenging primarily because one must handle the condi-
tioning appropriately. In bounding f;, we assumed that we had a bound on 8;. This
assumption must be treated as a conditioning in the formal argument, which requires
some care. _

We shall use the following notation: the state at time ¢ refers to the state of the sys-
tem immediately after the rth ball is placed. The variable h(7) denotes the height of
the rth ball, and v;(¢) and p;(t) refer (respectively) to the number of bins with load at
least i and the number of balls with height at least i at time ¢. We use v; and pu; for
vi(n) and p;(n) when the meaning is clear. An obvious but important fact, of which
we make frequent use in the proof, is that v;(1) < w;(¢), since every bin with load at
least i must contain at least one ball with height at least i.

Before beginning, we make note of two simple lemmas. First, we utilize a specific
Chernoff bound for binomial random variables, easily derived from Eqn. (4.2) by let-
ting § = L.

Lemma 14.2:
Pr(B(n, p) > 2np) < e "3, (14.1)
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The following lemma will help us cope with dependent random variables in the main
proof.

Lemma 14.3: Let Xy, X», ..., X, be a sequence of random variables in an arbitrary
domain, and let Y\, Y, .... Y, be a sequence of binary random variables with the prop-
erty that ¥; = Yi(X,,....X;). If

Pr(Y, =1 Xy,...,Xi-)) < p,

Pr(z Y > k) < Pr(B(n, p) > k).

i=l

then

Proof: If we consider the ¥; one at a time, then each Y; is less likely to take on the
value 1 than an independent Bernoulli trial with success probability p, regardless of the
values of the X;. The result then follows by a simple induction. =

We now begin the main proof.

Proof of Theorem 14.1: Following the earlier sketch, we shall construct values B;
such that, with high probablllty, vi(n) < B; forall i. Let B4 = n/4, and let By =
2B8¢/n?~" for 4 < i < i*, where i* is to be determined. We let £; be the event that
vi(n) = B;. Note that & holds with probability 1; there cannot be more than 1 /4 bins
with at least 4 balls when there are only n balls. We now show that, with high proba-
bility, if £ holds then &; holds for4 < i < i*

Fix a value of i in the given range. Let ¥, be a binary random variable such that

Yi =1 ifandonlyif h(f) > i+ land v;i(t — 1) < B;.

That is, ¥, is 1 if the height of the rth ball is at least i + 1 and if, at time ¢t — 1, there
are at most fB; bins with load at least /. The requirement that ¥; be 1 only if there are at
most B; bins with load at least i may seem a bit odd: however, it makes handling the
conditioning much easier.

Specifically, let w; represent the bins selected by the jth ball. Then

B

Pr(Y, =1]|wy,...,w-) < —;

n
That is, given the choices made by the first t — | balls, the probability that ¥, is 1 is
bounded by (B;/n)?. This is because. in order for ¥, to be I, there must be at most Bi
bins with load at least i; and when this condition holds. the ¢ choices of bins for the
rth ball all have load at least i with probability (8;/n)“. If we did not force ¥, to be 0
if there are more than B8; bins with load at least i, then we would not be able to bound
this conditional probability in this way.

Let p; = Bf/n’. Then, from Lemma 14.3, we can conclude lhd[

n

Pr(z Y, > A—) = Pr(B(n, p;) = k).
=1
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14.1 THE POWER OF TWO CHOICES

This holds independently of any of the events &£;, owing to our careful definition of ¥,.
(Had we not included the condition that ¥, = | only if v;(r — 1) < B, the inequality
would not necessarily hold.)

Conditioned on &;, we have }_/_, ¥, = ;1. Since vy < p;41, we have

Pr(vig) > k| &) <Pr(pip = k| &)

:PI‘(ZY, >k|£;‘)
1=l

Pe( D tup s = k)
= Pr(&;)
- Pr(B(n, p;) > k)
Pr(&;)

We bound the tail of the binomial distribution by using the Chernoff bound of
Lemma 14.2. Letting k = B;+| = 2np; in the previous equations yields

Pr(B(n, p;) > 2np;) I
Pr(vii1 > Biv1 | &) < Pr(Z)) = ool Pr(&)’
which gives
1
Pr(—&i | E) < m (14.2)

whenever p;n = 61nn.
We now remove the conditioning by using the fact that

Pr(=&i 1) = Pr(—=&i11 | £) Pr(€;) + Pr(—&iyy | —=&) Pr(=E&))
< Pr(=&i41 | &) Pr(&;) + Pr(=&;); (14.3)

then, by Eqns. (14.2) and (14.3),

|
Pr(=&i41) < Pr(=&) + - (14.4)
n? .

as long as p;n > 61Inn.

Hence, whenever p;n > 61nn and &; holds with high probability, then so does &; ;.
To conclude we need two more steps. First, we need to show that p;n < 6Inn when
i is approximately Inlnn/Ind, since this is our desired bound on the maximum load.
Second, we must carefully handle the case where p;n < 61lnn separately, since the
Chernoff bound is no longer strong enough to give appropriate bounds once p; is this
small.

Let i* be the smallest value of i such that p; = ,6;!/::“’ < 6lnn/n. We show that i*
islnlnn/Ind 4+ O(1). To do this, we prove inductively the bound

n

Biva= ———.
.)lrl“ _S:=[|| d’

This holds true when i = 0, and the induction argument follows:
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The first line is the definition of 8;; the second follows from the induction hypothesis.

It follows that ;4 < n/Z‘fi and hence that i* is Inlnn/Ind + O(1). By inductively
applying Eqn. (14.4), we find that

sk

Pr(—&ir) < —.
n
We now handle the case where p;n < 61nn. We have

P]‘(U;'t_H > 181Inn I Ei) < PI‘(‘U.,'*+] > 181Inn [ Eiv)
Pr(B(n,6Inn/n) = 181nn)
Pr(gi“}

S
T n2Pr(&p)
where the last inequality again follows from the Chernoff bound. Removing the con-
ditioning as before then yields
i*+1
n? -’

1
Pr(v;- 1 > 181nn) = Pl’("g,‘*) + - = (14.5)
n

To wrap up, we note that
Pr(viegs 2 1) < Pr(pinga 2 1) < Pr(piesa 2 2)
and bound the latter quantity as follows:

Pr(B(n,(181nn/n)?) > 2) _ (3)(181nn/n)*

P i*+2 =2 | vy < 181 = :
r(ﬂ = I Virst 2 i PI'(U;‘&H = lS]nn) - Pr(v,-«H = 181n JI)

Here the last inequality comes from applying the crude union bound: there are (3) ways
of choosing two balls, and for each pair the probability that both balls have height at
least i* + 2 is (18 Inn/n)?<.
Removing the conditioning as before and then using Eqn. (14.5) yields
Pr(vis43 = 1) < Pr(psq2 > 2)
S Pr(ppgr =2 | vieyy < 181Inn) Pr(v-y; < 181nn)
+ Pr(vi+y; > 181nn)

(18Inn)*  j*+|
”zd—z

n?
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14.2 TWO CHOICES: THE LOWER BOUND

showing that Pr(v;-43 = 1) is o(l/n) for d = 2 and hence that the probability the max-
imum bin load is more than i* + 3 = Inlnn/Ind + O(1) is o(1/n). |

Breaking ties randomly is convenient for the proof, but in practice any natural tie-
breaking scheme will suffice. For example, in Exercise 14.1 we show that if the bins
are numbered from | to n then breaking ties in favor of the smaller-numbered bin is
sufficient.

As an interesting variation, suppose that we split the n bins into two groups of equal
size. Think of half of the bins as being on the left and the other half on the right.
Each ball now chooses one bin independently and uniformly at random from each half.
Again, each ball is placed in the least loaded of the two bins — but now, if there is a
tie, the ball is placed in the bin on the left half. Surprisingly, by splitting the bins and
breaking ties in this fashion, we can obtain a slightly better bound on the maximum
load: Inlnn/21In((1+ v/5)/2) + O(1). One can generalize this approach by splitting
the bins into d ordered equal-sized groups; in case of a tie for the least-loaded bin, the
bin in the lowest-ranked group obtains the ball. This variation is the subject of Exer-
cise 14.13.

14.2. Two Choices: The Lower Bound

In this section we demonstrate that the result of Theorem 14.1 is essentially tight by
proving a corresponding lower bound.

Theorem 14.4: Suppose that n balls are sequentially placed into n bins in the follow-
ing manner. For each ball, d = 2 bins are chosen independently and uniformly at
random (with replacement). Each ball is placed in the least full of the d bins at the
time of the placement, with ties broken randomly. After all the balls are placed, the
maximum load of any bin is at least Inlnn/Ind — O(1) with probability 1 — o(1/n).

The proot is similar in spirit to the upper bound, but there are some key differences. As
with the upper bound, we wish to find a sequence of values y; such that the number of
bins with load at least i is bounded below by y; with high probability. In deriving the
upper bound, we used the number of balls with height at least i as an upper bound on
the number of bins with height at least i. We cannot do this in proving a lower bound,
however. Instead, we find a lower bound on the number of balls with height exactly i
and then use this as a lower bound on the number of bins with height at least i.

In a similar vein, for the proot of the upper bound we used that the number of bins
with at least i balls at time n was at least v;(¢) for any time ¢ < n. This is not helpful
now that we are proving a lower bound: we need a lower bound on v;(¢). not an upper
bound, to determine the probability that the rth ball has height i + 1. To cope with this,
we determine a lower bound y; on the number of bins with load at least i that exist at
time n(1 — 1/2") and then bound the number of balls of height i 4 1 that arise over the
interval (n(1 — 1/2"),n(1 — 1/2*1)]. This guarantees that appropriate lower bounds
hold when we need them in the induction, as we shall clarify in the proof.
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