Randomized Spanning Trees & MST verification

(Lecture #2)

Last time saw algorithms that all use the cut rule + fancy data structures to get improvements on runtimes \rightarrow down to $O(m \log n)$ and better.

This time: (randomized) $O(m+n)$ time. Two ingredients:
(a) Sampling and using the cycle rule to delete a lot of edges. (Sparsify)
(b) MST verification

Light & Heavy:
- given a tree T (or a forest F) and edge e in T, e is called T-light if $MSF(F \cup \{e\})$ contains e.
- An edge is T-heavy otherwise.

Fact: if T is a MST then $\forall e \in T, e \in T$-light $\iff \exists e \in E(G)$.

Magic Blackbox: given $G = (V,E)$ and a tree T, there exists an algorithm Verify (G,T) that returns a list of all T-light edges of E. And runs in time $O(m+n)$.

N.B.: if the list of T-light edges is just E_T then T is a MST of G.

So this, in linear time verifies if T is a MST of G.

Namely: would need to check if $\forall e \in E \setminus E_T$, it is the heaviest edge on its fundamental cycle.
Karger’s Algorithm \((V, E) \) \(|V| = n, |E| = m \), \(m > n \).

1. Let \(H \) be a random subset of edges of size \(\epsilon \) of \(E \) with probability \(\frac{1}{2} \).
2. \(E_1 \leftarrow \) random subset of \(E \) (with sampling probability \(\frac{1}{2} \)).
 + (some fixed spanning tree edges) drop.
3. \(T_1 \leftarrow \) Karger \((V', E_1)\)
4. discard all \(T_1 \)-heavy edges from \(E' \). (call this \(E_2 \), all light edges the remainder of \(E' \).
5. return Karger \((V', E_2)\)

Fact 1: \(E[\# \text{edges in } E_1] \leq 2n(\frac{1}{2})^{n-1} \)

Fact 2: \(E[\# \text{edges in } E_2] \leq 2n' \)

Says: all rest of work in steps 1, 2, 4 \(\leq cn \).

Claim: Let \(T(m, n) \) be expected runtime on every possible graph on \(n \) nodes.

\[
T(m, n) \leq E[T(1E_1, V')] + E[T(1E_2, V')] + m
\]

\[
\leq E[21E_1] + n' \epsilon + E[21E_2] + n' + m
\]

\[
\leq 2\left[m + n'\epsilon\right] + n' + 2\left[2n'\right] + n' + m
\]

\[
= 2m + 8n' \epsilon \leq 2m + n.
\]
Proofs of Facts:

Fact 1: easy. just note that each $\in E_i$, up to $\frac{1}{2}$. [must substitute
for $\frac{1}{2}$]

Fact 2: two different proofs depending on how E_i is chosen.

Pf 1: [Karger]. E_i is sampled by picking each edge in E_i up to $\frac{1}{2}$ independently.

Recall: want to bound $\#T_i$. light edges, $T_i \subset$ MST on E_i.

\Rightarrow Build T_i using Kronkeal this way. Sort edges of E_i and look at edges with

when looking at $e \in E_i$:

(i) if e is a cycle with connected forest, ignore it. \Rightarrow even if e_i is a cycle,

(ii) if not, flip a coin for e. \Rightarrow if tails, it will not hit E_i, it will be T_i.

\Rightarrow if heads, e_i is in E_i and $e \in T_i$. \Rightarrow also T_i is light, but in T_i.

\Rightarrow everything we are in case (ii) we make T_i light edge.

But $\frac{1}{2}$ we add an edge to $T_i \Rightarrow E_i$ times before T_i has $n-1$

edges $\Rightarrow E_i$ times before see $(n-1)$ heads $\Rightarrow 2(n-1)$.

QED.

Pf 2: [Chen]. E_i is a random subset of $\frac{1}{2}n^2$ edges of E_i. plus a

Claim: $\forall e \in E_i$ $e \in T_i$ light with $\frac{1}{2}n$. [straight of op].

Pf: $T_i \subset$ MST of E_i.

if $e \in T_i$ light then $e \notin$ MST(T_i, $U \cup E_i$).

Claim: Pick a random edge e, $\Pr[e \in \text{MST}(E_i)\text{-light}] \leq \frac{1}{2^n}$

$\Rightarrow \Pr[e \text{ is in } \text{MST}(E_i \cup e)]$ $\neq \Pr[e \text{ in } \text{MST}(E_i)\text{-light}]$ $\leq \frac{1}{2^n}$

but $\Pr[e \text{ in } \text{MST}(E_i \cup e)] \neq \Pr[e \text{ in } \text{MST}(E_i)$ randomly]

\Rightarrow $\Pr[e \text{ in } \text{MST}(E_i \cup e)] \leq \frac{1}{n^2}$.

Next: How to prove the Magic Black Box? MST verification.

(*) Given a tree T and pairs \((u_1, v_1), (u_2, v_2), \ldots, (u_m, v_m)\), return the minimum weight \(w_i\) of the heaviest edge on the path \(T[u_i, v_i]\), in time \(O(mn)\).

If we do this, can solve the MST verification problem.

History:

- 47: Dixon, Ranum, Tayan on RAM machine.
- 48: Backhaus-Kopplm, Rogers, Moniela, MFC.
- 47: Krevsky also on RAM machine.
- 07: Hagop C. Simony.

Simplifications: Given any tree, can assume that \(v_i\) is an ancestor of \(u_i\).

Idea: Find, for each \((u_i, v_i)\), the LCA \(LCA(u_i, v_i)\).

Create pairs \((u_i, LCA(u_i, v_i))\) and \((v_i, LCA(u_i, v_i))\) for each original \((u_i, v_i)\).

Now, given a soln for new instance, just return \(w_i = \min \{LCA(u_i, v_i)\}\).

How long to find LCA’s of all pairs?

Thm [Harel & Tayan]: Can preprocess a tree \(T\) in \(O(n)\) time so that

- can answer LCA queries in \(O(1)\) time.

Actually simpler: given \(T\) and all the pairs up front can answer in time \(O(mn)\), \(\approx\) easier problem.

May come back at end to give a soln \(O(m \log (mn) + n)\) time algorithm using min-find.
OK: do Tree T, pair u_i, v_i with v_i ancestor of u_i. Return $w_i = \max$ wt edge on $T[u_i, v_i]$.

Simplification #2: T is a fully branchy tree.

A fully-branchy tree T is a rooted leveled tree with:

(a) all leaves on some level d.
(b) each internal node has at least 2 children.

Claim: take T, run Bronska on it, this gives a nice laminar structure which defines a tree T'

- height of $T' \leq \log_2 n$.

Fact:

$$\max \text{ wt edge on } T'[u_i, v_i] = \max \text{ wt edge on } T[u_i, v_i].$$

[HW #1]

OK: so do simplification #2, and then #1 gives a fully branchy tree T and pair (u_i, v_i) of v_i an ancestor of u_i, and u_i is a leaf (by simplification #2).

How to solve max queries now!
For each edge $e = (u, v)$, look at all queries starting in Tu and ending above v.

Say they go to v_1, v_2, \ldots, v_k such that $d(v_1) < d(v_2) < \ldots < d(v_k)$.

And we have a "query string"

$Q_u = (d_1, d_2, \ldots, d_k)$.

For which we have an answer string

$A_u = (a_1, a_2, \ldots, a_k)$ where $a_i = \max$ wt. edge between u and v_i at depth di.

Crucial Fact: $a_1 \geq a_2 \geq \ldots \geq a_k$.

Now, want to extend this to Q_x and get A_x.

Note: $Q_x \subseteq Q_u \cup \text{depth}(u)$.

So we can know that A_u consists of

$\max(a_1, w(x, u)), \max(a_2, w(x, u)), \ldots, \max(a_k, w(x, u))$.

Can use binary search to find the right place, after which it in all $w(x, u)$.

$\#\text{comps} = \left\lceil \log_2(1 + |Q_u|) \right\rceil = \log_2|Q_u| + 1$.

$\Rightarrow \text{total \#comps} \leq \sum_u \log_2(1 + |Q_u|) + n$.

Claim: $\leq O(n \log \frac{m + n}{n}) = O(m)$.

Kernels: just count # of comparisons for now.
Pf: let n guys at level i (issues at level 0).

$$\sum_{u \in \text{level}_i} \log (1 + |Qu|) \leq n_i \text{ Average} (\log_2 (1 + |Qu|))$$

$$\leq n_i \log_2 (1 + \frac{\sum_{u \in \text{level}_i} |Qu|}{n_i})$$

Simplifying,

$$= n_i \log_2 (1 + \frac{m_i}{n_i}) \leq n_i \log_2 \left(\frac{n + m_i}{n_i} \right)$$

$$\Rightarrow \sum_{u \in \text{all}} \log (1 + |Qu|) \leq n \log \left(\frac{n + m_i}{n} \right) + \sum n_i \log \left(\frac{m_i}{n_i} \right)$$

$$n_i \leq \frac{n}{2^i} \Rightarrow \sum_{i} n_i \log \left(\frac{m_i}{n_i} \right) \leq n \log \left(\frac{m}{n} \right) + n \log \left(\frac{m}{n} \right)$$

and $x \log \left(\frac{m}{n} \right)$ is increasing for $x \leq \frac{n}{2}.

$$\leq m + n \cdot \frac{n}{2^i} \cdot i$$

$$= O(n).$$

$$\Rightarrow \text{total: } O(n + n \log_2 \left(\frac{n + m_i}{n} \right)).$$

Remark: It is not surprising that I.a proof that $O(n)$ can be proven \Rightarrow is MST.

[Just give sorted list of edges. etc.]

But that this proof can be found using $O(n)$ arrays. And in O(n) time.

Rest of analysis: How to implement all this in $O(n)$ time and not just

Using $O(n)$ comparisons, need to do table lookups and stuff.

High level idea: store the Qu as a log_2 n bit word.

Store answer also as a set of nodes: so a_k is nearest the heaviest

edge on (u, v_k) is one from a_k to $p(a_k)$

now carefully do the same operations but instead of having to do

binary search explicitly, store the solutions in a 0 to 1 bitstrings and use them.
Wrap up: MST verification in O(mn) time.

Saw details except (a) LCA and (b) lemma from HW1.

→ RandomizedAlg in O(mn) time.

Can we make this deterministic? [Can we get an O(mn) algorithm where true or false is output?]

Postscript: LCAs in O(max(m,n)) time? At least when all queries are given up front: "offline"

List L of queries.

LCA(x)
 · makeSet(x)
 · for all children y of x.
 · LCA(y)
 · union(x, y).
 · if "head of find(x) ← x.
 · find(y)
 · x marked

if z st (z,e) ∈ List
 if z marked then LCA(x, z) = head of find(z).

Intuition/Proof:

If z marked then z has been explored and we're in another child of the LCA(= r)

⇒ find(z).head = r.

[Trayan's '79 paper]