
15-859FF: Coping with Intractability CMU, Fall 2019
Lecture #11: ILP in Low Dimensions: Intro, 2-d case, Lattices October 9th, 2019
Lecturer: Anupam Gupta Scribe: Misha Ivkov

I felt a bit like a dentist. I had
dealt with this problem before,
so why were they asking the
same question again?

H. W. Lenstra

1 Integer Linear Programming: An Introduction

In this class and following ones, we will be coming up with an FPT algorithm for Integer Linear
Programming, with the parameter being the number of dimensions.

As a quick reminder, the ILP problem denotes checking the feasibility of K =
{

x : Ax≤b
x∈Zd

}
. In other

words, this is a decision problem asking if K 6= ∅, and can be extended to finding the objective via
binary search.

For completeness, A ∈ Zm×d and b ∈ Zm where m is the number of rows and d is the number of
dimensions. Finally, for simplicity we assume that K is bounded within a region of length M .

For FPT purposes, we are interested in an algorithm with runtime f(d)·poly(m, log ||A||∞, log ||b||∞).
We note that the latter two elements are the largest entries in A and b.

1.1 Early History

In 1980, van Emde Boas and Marchetti-Spacamela asked H. W. Lenstra about the feasibility of a
triangular K in 2 dimensions. Lenstra replied that this was done nearly 200 years back by Lagrange
and Gauss, known as Lagrange-Gauss Basis Reduction. [Sme10]

1.2 Algorithm for triangular K

At a high level, the full algorithm is as follows. We use | · | to denote the Euclidean norm.

1. Apply a linear transformation M to the integer lattice so that K is transformed into a unit-
length equilateral triangle. Let (b1, b2) denote the transformed standard basis vectors (~e1, ~e2).

2. Apply Lagrange-Gauss Basis Reduction to form new basis vectors (b′1, b
′
2).

3. Case on |b′2|.

• If |b′2| < 1
10 , then we are guaranteed an integer point.

• Else, at most a constant number of lines (in particular, 10) parallel to b′1 can intersect
with the triangle. Check each.

Notice that an integer point (x, y) is mapped to x · b′1 + y · b′2. We examine steps 2 and 3 in more
detail.

1

1.2.1 Lagrange-Gauss Basis Reduction

We assume that |b1| ≤ |b2|.

Algorithm 1 Basis Reduction

1: procedure Reduce(b1, b2)

2: µ← 〈b1,b2〉
|b1|2

3: if |µ| > 1
2 then

4: b2 ← b2 − [µ]b1
5: if |b2| < |b1| then return Reduce(b1, b2)
6: end if
7: end if
8: return (b1, b2)
9: end procedure

The algorithm uses [µ], where [·] denotes the nearest integer function. We claim that updating b2
forces |µ| ≤ 1

2 . To show this, note that for any `, 〈b1,b2−`b1〉|b1|2 = µ − `. So, choosing ` = [µ] suffices

as the nearest integer is at most 1
2 away from µ. Pictorially, our returned basis looks as follows:

b1

b2

The angle between b1 and b2 is at least 60◦, where we represent that boundary with the dashed red
lines.

1.2.2 Finishing it off

If |b′2| < 1
10 (the first case), recall that the inradius1 of a unit equilateral triangle is

√
3

6 > 2
10 .

Consider the incenter of the triangle: p = `1b1 + `2b2, and let p∗ = [`1]b1 + [`2]b2. Because
1
10 > |b2| ≥ |b1|, |p∗ − p| ≤

√
(1

2 ·
1
10)2 + (1

2 ·
1
10)2 < 2

10 , so p∗ is an integer point in the unit

equilateral triangle, as desired.

Otherwise, suppose that |b2| ≥ 1
10 . Then consider the lines parallel to b1 and offset by b2 (i.e.,

t ·b1 +k ·b2, parametrized by t). The distance between any two such lines is at least sin θ · |b2| ≥
√

3
20 ,

where θ ≥ 60◦ is the angle between b1 and b2. Hence we only need to check a constant number of
lines for having points within the equilateral triangle.

1Recall that the inradius and incenter of a triangle are defined as follows: take the largest circle completely inside
the given triangle (which is tangent to all three sides of the triangle). The inradius of the triangle is the radius of
this circle, and the incenter is the center of this circle.

2

1.3 General algorithm in 2-D

The general algorithm is very similar to the one for triangular K.

1. Convert K to some “nice” K ′.

2. Use L-G Basis Reduction to get b1, b2 with the same properties as above.

3. We case on |b2|.

• If |b2| is sufficiently small, there must exist an integer point within K.

• Else, there are only a small number of 1-D problems to solve.

For the general, d-dimensional case, basis reduction is done differently and uses the LLL [LLL82]
algorithm. Doing similar recursive steps (substitute 1-D with (d − 1)-D) of depth d gives an FPT
algorithm.2

2 Lattices

Remark 11.1. We specifically consider point lattices.

We begin with some useful definitions about lattices.

Definition 11.2. Given linearly independent vectors b1, b2, . . . , bd ∈ Rd, let

B =

 | | |
b1 b2 · · · bd
| | |


We define Λ(B) =

{
d∑

i=1
λibi : λi ∈ Z

}
as the lattice of B.

In general, there are an infinite number of bases for a lattice. The following operations are permit-
ted.

• Negate bi.

• Replace bi ← bi + `bj where j 6= i and ` ∈ Z.

• Permute the order of the bi.

In line with having a set of operations on a set of vectors, we define a linear transformation with
some desirable properties.

Definition 11.3. U is a unimodular matrix if for all entries Ui,j ∈ Z and | det(U)| = 1.

As it turns out, unimodular matrices have exactly the same properties as the operations we permit.

Lemma 11.4. B1 and B2 are bases of the same lattice Λ if and only if there exists a unimodular
matrix U such that B1 = B2U .

2XP does not seem to be any easier!

3

Finally, we define a notion of volume for general lattices.

Definition 11.5. Define P (B) =

{
d∑

i=1
xibi : 0 ≤ xi ≤ 1

}
as the fundamental domain/parallelipiped

of B.

Furthermore, we define for a lattice over B the volume via

vol Λ , det(Λ) , vol P (B) = | det(B)|

Finally, the density of a lattice is density(Λ) = 1
vol Λ .

Remark 11.6. Note that volume is invariant under choice of basis for the lattice, as if B1 = B2U
we have

| detB1| = |detB2U | = | detB2||detU | = |detB2|

It seems that these definitions are a bit arbitrary, but as it turns out there is a natural hard problem
often used in cryptography relating to them.

Definition 11.7. The Shortest Vector Problem (SVP) asks for the shortest nonzero vector in a
lattice.

Remark 11.8. LLL gives a pretty bad approximation of 2
d
2 . The best known is (1 + ε)d.

Given all of these definitions, we can finally state a result which will be important in our overall
discussion of FPT algorithms for ILP.

Minkowski. Given a d-dimensional lattice Λ, the following are true.

(a) Suppose K is a bounded, symmetric3, and convex body with vol(K) > 2d. Then K ∩ (Zd\0) 6=
∅. In other words, there is a nonzero vector in K.

(b) There exists a nonzero vector in the lattice of length
√
d · vol(Λ)

1
d

We present some helpful notation before beginning on the proof.

Notation 11.9. Let cK = {cx | x ∈ K} and ||x||K = inf{c ∈ R | x ∈ cK}. Observe that the latter
is a valid norm (in particular, it satisfies the triangle inequality because K is convex).

Proof. We prove (a) first. Consider the following diagram, which shows K and some translated
versions of 1

2K by integer vectors v ∈ Zd.

3x ∈ K ⇐⇒ −x ∈ K.

4

Figure 11.1: Image from [Mat02]

Let C = 1
2K. We claim that C + x and C + y intersect for some integer vectors x and y. Indeed,

suppose not and consider a hypercube of radius S + R(C) centered at some integer point, where
R(C) = 1

2D(C) is the radius of C (and D(C) is the diameter). This hypercube has volume
(2S +D(C))d, and contains at least (2S + 1)d translated copies of C. So, we have

(2S +D(C))d ≥ (2S + 1)d · vol(C) =⇒ vol(C)
1
d ≤ 2S +D(C)

2S + 1

Noting that the right hand side can be made arbitrarily small, this is a contradiction as 2dvol(C) =
vol(K) > 2d.

So, C + x and C + y intersect at some point w. Note that by the triangle inequality, ||x− y||K ≤
||x − w||K + ||w − y||K ≤ 1 because each of the summands are at most 1

2 . So, x − y must be an
integer vector in K.

We now prove (b), using (a). To do so, we prove that for any (bounded, symmetric, convex) body
K with vol(K) > 2d · vol(Λ), it must be true that K ∩ (Λ\0) 6= ∅. Indeed, we transform Λ 7→ Z

d

and K 7→ K ′, and note that K’s volume is scaled by vol(Λ), as vol(Zd) = 1. So, as vol(K ′) > 2d

we apply part (a) to obtain a nonzero integer vector in K ′ and hence K.

Choose K to be the hypercube of radius vol(Λ)
1
d + ε for ε > 0, which must contain an integer

vector of length at most
√
d · (vol(Λ)

1
d + ε). Choosing ε small enough guarantees a vector of length

at most
√
d · vol(Λ)

1
d , as desired.4

2.1 An application of Minkowski’s Theorem

Suppose we are given d irrational numbers α1, α2, . . . , αd and we wish to approximate them with
fractions p1

q ,
p2
q , . . . ,

pd
q for some bounded q. How well can we do this? More next time.

4Recall that the length of an integer vector must be of the form k
1
d , so choose ε small enough that d

d
2 (vol(Λ)

1
d +

ε)d < d
d
2 vol(Λ) + 1.

5

References

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra Jr., and László Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, (261):515–534, 1982. 1.3

[Mat02] Jǐŕı Matoušek. Lectures on Discrete Geometry. Springer, 2002. 11.1

[Sme10] Ionica Smeets. The History of the LLL-Algorithm. In Phong Q. Nguyen and Brigitte
Vallée, editors, The LLL Algorithm: Survey and Applications, chapter 1, pages 1–17.
Springer, 2010. 1.1

6

	Integer Linear Programming: An Introduction
	Early History
	Algorithm for triangular K
	Lagrange-Gauss Basis Reduction
	Finishing it off

	General algorithm in 2-D

	Lattices
	An application of Minkowski's Theorem

