

## 1 Kernelization Algorithms

In the previous lecture, we saw two FPT algorithms for vertex cover. In one of these, given an instance  $(G, k)$  we repeatedly removed vertices of degree  $> k$  and isolated vertices to produce an instance  $(G', k')$  with at most  $2k^2$  vertices that we could then solve via brute force.

This method, in which the input is mapped to a smaller instance whose size depends only on  $k$  is an algorithmic technique called **kernelization**, which we will soon see is closely related to FPT.

**Definition 2.1.** A **kernelization algorithm** for a language  $L \subseteq \Sigma^* \times \mathbb{N}$  is a function  $\phi : \Sigma^* \times \mathbb{N} \rightarrow \Sigma^* \times \mathbb{N}$  that maps an instance  $(x, k)$  of  $L$  to an instance  $(x', k')$  of  $L$  (called the **kernel**) such that the following hold:

- (i)  $(x, k)$  is in  $L$  if and only if  $(x', k')$  is in  $L$
- (ii) the size of  $(x', k')$  is independent of the size of  $x$ :  $|x'| + k' \leq g(k)$  for some computable  $g : \mathbb{N} \rightarrow \mathbb{N}$
- (iii)  $\phi$  is computable in time  $\text{poly}(|x|, k)$

Notice that the aforementioned vertex cover algorithm satisfies all three of these conditions.

It seems natural that problems with kernelization algorithms are in FPT: solving the output of the kernelization algorithm via brute force will run in FPT time. However, what may be more surprising is that the reverse is also true: any problem in FPT also admits a kernelization algorithm.

**Theorem 2.2.** A parameterized language  $L$  is in FPT if and only if it admits a kernelization algorithm.

*Proof.*

( $\Leftarrow$ ) Given a kernelization algorithm  $\phi$ , we can show  $L$  is in FPT via the following algorithm for deciding  $L$ . Given an instance  $(x, k)$  in  $L$ , we can first compute  $\phi(x, k)$  in time  $\text{poly}(|x|, k)$ , and then determine whether it's in  $L$  via brute force. This is within the desired  $f(k)\text{poly}(|x|, k)$  bound, because the size of  $\phi(x, k)$  is bounded by a function of  $k$ .

( $\Rightarrow$ )

Given an FPT algorithm  $A$  for  $L$  that runs in  $f(k)n^c$  time for some  $f$  and  $c$ , we will construct the following kernelization algorithm:

On input  $(|x|, k)$ :

- run  $A$  for  $(|x| + k)^{c+1}$  steps
- if it halts, return a trivial yes or no instance based on  $A$ 's output.
- otherwise, output  $(|x|, k)$  itself

It is clear that the output of this algorithm will be in  $L$  if and only if the input is in  $L$ , and the run-time is explicitly polynomial in  $|x|$  and  $k$ , so to show that this is a kernelization algorithm, it suffices to show that the output size is bounded by a function of  $k$ .

This is clear in the first case, so let's look at the second case. If  $A$  didn't halt in  $(|x| + k)^{c+1}$  steps,  $(|x| + k)^{c+1} < f(k)n^c$ . Since  $(|x| + k)^{c+1} \geq n^{c+1}$ , we have  $n^{c+1} < f(k)n^c$ , which means  $n < f(k)$ . Therefore, in this case,  $|x|$  is bounded by  $f(k)$ , and therefore the output size is still bounded by a function of  $k$ .

□

## 2 LP Kernel for Vertex Cover

Now that we're equipped with the basic tools for working with kernelization, we'll return to the Vertex Cover problem and proceed with a case study of a specific kernelization algorithm.

Observe that the Vertex Cover problem on a graph  $G = (V, E)$  can be expressed as an integer program in the following way:

Variables:  $x_u, \forall u \in V$

Constraints:

- $x_u \in \{0, 1\} \forall u \in V$
- $x_u + x_v \geq 1 \forall (u, v) \in E$

Although solving integer programs is also a NP-hard problem, this formulation is useful because linear programs can be solved in polynomial time. Relaxing the constraints in the above integer program (instead of restricting the  $x_u$ 's to be 0 or 1, allow  $0 \leq x_u \leq 1$ ) produces a linear program that yields a classic polynomial time 2-approximation algorithm for vertex cover: get the optimal solution to the LP, then place all  $x_u \geq \frac{1}{2}$  in your vertex cover.

We will now see that this linear program also provides a kernelization algorithm: we can solve the LP and then choose all vertices  $x_u \geq \frac{1}{2}$  to be in our kernel.

To argue that this algorithm is in fact a kernelization, we first need an additional tool, the following theorem.

**Theorem 2.3.** (Nemhauser/Trotter [NL75]) *The Vertex Cover L.P. always has an half-integral optimal solution. Equivalently, there always exists an optimal solution such that for all  $u$ ,  $x_u \in \{0, \frac{1}{2}, 1\}$ .*

*Proof.* Let  $Z$  be an optimal LP solution. Our approach will be to iteratively modify the solution to give at least one more vertex a value in  $\{0, \frac{1}{2}, 1\}$  while preserving optimality.

Consider all vertices in  $Z$  with values not in  $\{0, \frac{1}{2}, 1\}$ . Let  $\varepsilon$  be the minimum over all distances from vertices in this set to the closest value in  $\{0, \frac{1}{2}, 1\}$ .

$$\varepsilon = \min_{u|z_u \notin \{0, \frac{1}{2}, 1\}} \left( z_u, 1 - z_u, \left| \frac{1}{2} - z_u \right| \right)$$

We will now use epsilon to define two new solutions,  $Z^+$  and  $Z^-$ . On a high level,  $Z^+$  will shift the incorrectly valued vertices towards  $\frac{1}{2}$ , while  $Z^-$  will shift them towards 0 and 1.

$$Z^+ = \left\{ z_u^+ \mid z_u^+ = \begin{cases} z_u + \varepsilon & z_u < \frac{1}{2} \\ z_u - \varepsilon & z_u > \frac{1}{2} \end{cases} \right\}$$

$$Z^- = \left\{ z_u^- \mid z_u^- = \begin{cases} z_u - \varepsilon & z_u < \frac{1}{2} \\ z_u + \varepsilon & z_u > \frac{1}{2} \end{cases} \right\}$$

**Claim 2.4.** *Both  $Z^+$  and  $Z^-$  are optimal LP solutions.*

*Proof.* First, we need to show that  $Z^+$  and  $Z^-$  are both valid solutions. To do this, we will show that for all edges  $(u, v)$ ,  $z_u^+ + z_v^+ \geq 1$  and  $z_u^- + z_v^- \geq 1$

Consider an arbitrary edge  $(u, v)$ . We will case on the values of  $z_u$  and  $z_v$ :

- Case 1:  $z_u, z_v \in (\frac{1}{2}, 1)$   
Because  $\varepsilon$  was the minimum distance to 0, 1, or  $\frac{1}{2}$  over all vertices,  $z_u - \varepsilon \geq \frac{1}{2}$ . Thus,  $z_u^+, z_v^+, z_u^-, z_v^- \geq \frac{1}{2}$ . Thus, in both  $Z^-$  and  $Z^+$ , both endpoints of this edge are at least  $\frac{1}{2}$ , so this constraint is satisfied.
- Case 2:  $z_u < \frac{1}{2}$  and  $z_v > \frac{1}{2}$   
In both  $Z^+$  and  $Z^-$ , one of the vertices is increased by  $\varepsilon$ , and the other is decreased by the same amount. Therefore, the sum remains the same as it was in  $Z$ , and so must still be at least 1.
- Case 3:  $z_u, z_v \in (0, \frac{1}{2})$   
This case is impossible:  $z_u$  and  $z_v$  cannot sum to 1 and we know  $Z$  was a valid solution.

Now that we know  $Z^+$  and  $Z^-$  are solutions, we must show that they are optimal.

Observe that the value of the objective function of  $Z$  is the average of the objective functions of  $Z^+$  and  $Z^-$ :

$$\sum z_u = \frac{\sum z_u^+ + \sum z_u^-}{2}$$

If either  $Z^+$  or  $Z^-$  is suboptimal, it must have a lower objective function value than  $Z$ . However, this means the other must have a higher objective function value than  $Z$ . This is impossible, since it contradicts optimality of  $Z$ , so  $Z^+$  and  $Z^-$  must also be optimal.  $\square$

Therefore, we can find a half-integral solution via picking either  $Z^+$  or  $Z^-$ , whichever decreases the number of incorrectly valued vertices, and then repeating the process using this new optimal solution. Because the number of incorrect vertices decreases by at least 1 each time, this process must terminate, producing the desired half-integral solution.

$\square$

Now, we return to the kernelization algorithm.

Given an input  $(G, k)$ ,  $G = (V, E)$ , we first solve the LP, and then convert our optimal solution into a half-integral one as above.

Now, we can separate the vertices by their value in the optimal solution: let  $V_0 = \{u|x_u = 0\}$ ,  $V_1 = \{u|x_u = 1\}$ ,  $V_{1/2} = \{u|x_u = \frac{1}{2}\}$ .

We will output  $(G[V_{1/2}], k - |V_1|)$  as our kernel, where  $G[V_{1/2}]$  is the subgraph induced by  $V_{1/2}$ . Intuitively, we fix all vertices in  $V_1$  to be in the vertex cover, all the vertices in  $V_0$  to be outside the vertex cover, and we check to see whether we can cover the remaining edges with the correct number of vertices from  $V_{1/2}$ .

Observe that  $|V_{1/2}| \leq 2k$  ( $\sum x_u$  is at most  $k$ , because otherwise we know immediately that there is no  $k$  vertex cover, and can output a trivial no instance, so no more than  $2k$  vertices can have value  $\frac{1}{2}$ ). Therefore, the size of  $G[V_{1/2}]$  depends only on  $k$ , and thus our kernel satisfies the size property.

(Note that while  $G[V_{1/2}]$  has  $O(k)$  vertices, it may have  $O(k^2)$  edges. In fact, we can prove that no kernel with a number of edges subquadratic in  $k$  can exist under standard complexity assumptions. [FR08])

Observe additionally that this kernel was produced in polynomial time: LPs can be solved in polytime.

Therefore, it remains only to justify correctness.

We need to show that  $G$  has a vertex cover of size  $k$  if and only if  $G[V_{1/2}]$  has a vertex cover of size  $k - |V_1|$ . To do this, we need the following lemma.

**Lemma 2.5.** *Given an LP solution with  $V_1$ ,  $V_0$ , and  $V_{1/2}$  as defined above, there exists an optimal vertex cover  $S \subseteq V$  of  $G$  such that  $V_1 \subseteq S$  and  $S \cap V_0 = \emptyset$ .*

*Proof.* Take an arbitrary optimal vertex cover  $S$  of  $G$ .

Consider  $S' = (S \cup V_1) \setminus (S \cap V_0)$ , the set resulting from adding  $V_1$  to  $S$  and removing any elements of  $V_0$ .

$S'$  is still a vertex cover: all edges with an endpoint in  $V_0$  must have had their other endpoint in  $V_1$ , so any edges that would have been left uncovered by removing  $V_0$  must have been covered by adding  $V_1$ .

We want to show that  $S'$  is still an optimal vertex cover:  $|S'| \leq |S|$ . To show this, we will show that we removed at least as many vertices from  $S$  as we added in.

**Claim 2.6.**  $|S \cap V_0| \geq |V_1 \setminus S|$

*Proof.* Construct a new LP solution where all vertices in  $S \cap V_0$  and  $V_1 \setminus S$  are set to  $\frac{1}{2}$ . This is still a valid solution: the only concern is that we are decreasing the values of  $V_1 \setminus S$ , so if there was an edge to  $V_0 \setminus S$ , its other endpoint would not be increased to compensate for this decrease. However, we know no such edges can exist, because  $S$  is a vertex cover, and such an edge would have neither endpoint in  $S$ . This new solution's objective function differs from that of the original by  $\frac{1}{2}|S \cap V_0| - \frac{1}{2}|V_1 \setminus S|$ . Since the original solution was optimal, this difference cannot be negative. Thus, we have

$$\frac{1}{2}|S \cap V_0| - \frac{1}{2}|V_1 \setminus S| \geq 0$$

$$|S \cap V_0| \geq |V_1 \setminus S|$$

□

This finishes the proof of the lemma. □

Now, we can finally conclude by arguing correctness of our kernel.

First, suppose  $S'$  is a vertex cover of  $G[V_{1/2}]$  of size  $k - |V_1|$ . We claim  $S' \cup V_1$  is a vertex cover of size  $k$  in  $G$ . The only potentially uncovered edges would be from  $V_0$  to  $V_{1/2}$ ; however, no such edge can exist, because it would violate the LP's constraint. Thus, we have a valid vertex cover.

Now, suppose  $S$  is a vertex cover of  $G$  of size  $k$ . By the Lemma 2.5 above, assume  $S$  contains  $V_1$  and does not contain any elements of  $V_0$ . Then,  $S \cap V_{1/2}$  is the desired  $k - |V_1|$  vertex cover of  $G[V_{1/2}]$ .

### 3 d-Hitting Set

We'll now briefly introduce a related problem, to be further discussed in future lectures. **d-Hitting set** is a generalization of the vertex cover problem to d-hypergraphs.

More precisely, given an instance  $H = (V, F)$ , a d-hypergraph (meaning  $F$  contains subsets of vertices, each of size at most  $d$ ), we ask the following question: *is there a hitting set of size  $k$ , i.e. does there exist a subset of the vertices of size at  $k$  that nontrivially intersects with every  $S$  in  $F$ ?*



Figure 2.1: An instance of d-hitting set for  $d = 4$ .  $\{a, e, g\}$  is a hitting set

**Exercise.** Show that d-Hitting set is in FPT by providing a  $d^k \text{poly}(n)$  algorithm. (Hint: recall the decision tree algorithm for vertex cover discussed in Lecture #1)

## References

- [FR08] L. Fortnow and Santhanam R. Infeasibility of instance compression and succinct PCPs for NP. In *Proceedings of the fortieth annual ACM symposium on Theory of computing*, pages 133–142, 2008. [2](#)
- [NL75] G.L. Nemhauser and Trotter L.E. Vertex packings: Structural properties and algorithms. *Mathematical Programming*, 8:232–248, 1975. [2.3](#)