
15-859FF: Coping with Intractability CMU, Fall 2019
Lecture #2: Kernelization for Vertex Cover September 9, 2019
Lecturer: Venkatesan Guruswami Scribe: Komal Dhull

1 Kernelization Algorithms

In the previous lecture, we saw two FPT algorithms for vertex cover. In one of these, given an
instance (G, k) we repeatedly removed vertices of degree > k and isolated vertices to produce an
instance (G′, k′) with at most 2k2 vertices that we could then solve via brute force.

This method, in which the input is mapped to a smaller instance whose size depends only on k is
an algorithmic technique called kernelization, which we will soon see is closely related to FPT.

Definition 2.1. A kernelization algorithm for a language L ⊆ Σ∗ ×N is a function
φ : Σ∗ × N → Σ∗ × N that maps an instance (x, k) of L to an instance (x′, k′) of L (called the
kernel) such that the following hold:

(i) (x, k) is in L if and only if (x′, k′) is in L

(ii) the size of (x′, k′) is independent of the size of x: |x′| + k′ ≤ g(k) for some computable
g : N→ N

(iii) φ is computable in time poly(|x|, k)

Notice that the aforementioned vertex cover algorithm satisfies all three of these conditions.

It seems natural that problems with kerenelization algorithms are in FPT: solving the output of the
kernelization algorithm via brute force will run in FPT time. However, what may be more surprising
is that the reverse is also true: any problem in FPT also admits a kernelization algorithm.

Theorem 2.2. A parameterized language L is in FPT if and only if it admits a kernelization
algorithm.

Proof.

(⇐) Given a kernelization algorithm φ, we can show L is in FPT via the following algorithm
for deciding L. Given an instance (x, k) in L, we can first compute φ(x, k) in time poly(|x|, k), and
then determine whether it’s in L via brute force. This is within the desired f(k)poly(|x|, k) bound,
because the size of φ(x, k) is bounded by a function of k.

(⇒)

Given an FPT algorithm A for L that runs in f(k)nc time for some f and c, we will construct the
following kernelization algorithm:

On input (|x|, k):

• run A for (|x|+ k)c+1 steps

• if it halts, return a trivial yes or no instance based on A’s output.

• otherwise, output (|x|, k) itself

1

It is clear that the output of this algorithm will be in L if and only if the input is in L, and the
run-time is explicitly polynomial in |x| and k, so to show that this is a kernelization algorithm, it
suffices to show that the output size is bounded by a function of k.

This is clear in the first case, so let’s look at the second case. If A didn’t halt in (|x|+ k)c+1 steps,
(|x| + k)c+1 < f(k)nc. Since (|x| + k)c+1 ≥ nc+1, we have nc+1 < f(k)nc, which means n < f(k).
Therefore, in this case, |x| is bounded by f(k), and therefore the output size is still bounded by a
function of k.

2 LP Kernel for Vertex Cover

Now that we’re equipped with the basic tools for working with kernelization, we’ll return to the
Vertex Cover problem and proceed with a case study of a specific kernelization algorithm.

Observe that the Vertex Cover problem on a graph G = (V,E) can be expressed as an integer
program in the following way:

Variables: xu,∀u ∈ V

Constraints:

• xu ∈ 0, 1 ∀u ∈ V

• xu + xv ≥ 1 ∀(u, v) ∈ E

Although solving integer programs is also a NP-hard problem, this formulation is useful because
linear programs can be solved in polynomial time. Relaxing the constraints in the above integer
program (instead of restricting the xu’s to be 0 or 1, allow 0 ≤ xu ≤ 1) produces a linear program
that yields a classic polynomial time 2-approximation algorithm for vertex cover: get the optimal
solution to the LP, then place all xu ≥ 1

2 in your vertex cover.

We will now see that this linear program also provides a kernelization algorithm: we can solve the
LP and then choose all vertices xu ≥ 1

2 to be in our kernel.

To argue that this algorithm is in fact a kernelization, we first need an additional tool, the following
theorem.

Theorem 2.3. (Nemhauser/Trotter [NL75]) The Vertex Cover L.P. always has an half-integral
optimal solution. Equivalently, there always exists an optimal solution such that for all u, xu ∈
{0, 12 , 1}.

Proof. Let Z be an optimal LP solution. Our approach will be to iteratively modify the solution
to give at least one more vertex a value in {0, 12 , 1} while preserving optimality.

Consider all vertices in Z with values not in {0, 12 , 1}. Let ε be the minimum over all distances
from vertices in this set to the closest value in {0, 12 , 1}.

ε = minu|zu /∈{0, 1
2
,1}

(
zu, 1− zu,

∣∣∣∣12 − zu
∣∣∣∣)

We will now use epsilon to define two new solutions, Z+ and Z−. On a high level, Z+ will shift
the incorrectly valued vertices towards 1

2 , while Z− will shift them towards 0 and 1.

2

Z+ =

{
z+u

∣∣∣∣∣ z+u =

{
zu + ε zu <

1
2

zu − ε zu >
1
2

}

Z− =

{
z−u

∣∣∣∣∣ z−u =

{
zu − ε zu <

1
2

zu + ε zu >
1
2

}

Claim 2.4. Both Z+ and Z− are optimal LP solutions.

Proof. First, we need to show that Z+ and Z− are both valid solutions. To do this, we will show
that for all edges (u, v), z+u + z+v ≥ 1 and z−u + +z−v ≥ 1

Consider an arbitrary edge (u, v). We will case on the values of zu and zv:

• Case 1: zu, zv ∈ (12 , 1)
Because ε was the minimum distance to 0, 1, or 1

2 over all vertices, zu − ε ≥ 1
2 . Thus,

z+u , z
+
v , z

−
u , z

−
v ≥ 1

2 . Thus, in both Z− and Z+, both endpoints of this edge are at least 1
2 , so

this constraint is satisfied.

• Case 2: zu <
1
2 and zv >

1
2

In both Z+ and Z−, one of the vertices is increased by ε, and the other is decreased by the
same amount. Therefore, the sum remains the same as it was in Z, and so must still be at
least 1.

• Case 3: zu, zv ∈ (0, 12)
This case is impossible: zu and zv cannot sum to 1 and we know Z was a valid solution.

Now that we know Z+ and Z− are solutions, we must show that they are optimal.

Observe that the value of the objective function of Z is the average of the objective functions of
Z+ and Z−:

∑
zu =

∑
z+u +

∑
z−u

2

If either Z+ or Z− is suboptimal, it must have a lower objective function value than Z. However,
this means the other must have a higher objective function value than Z. This is impossible, since
it contradicts optimality of Z, so Z+ and Z− must also be optimal.

Therefore, we can find a half-integral solution via picking either Z+ or Z−, whichever decreases
the number of incorrectly valued vertices, and then repeating the process using this new optimal
solution. Because the number of incorrect vertices decreases by at least 1 each time, this process
must terminate, producing the desired half-integral solution.

Now, we return to the kernelization algorithm.

Given an input (G, k), G = (V,E), we first solve the LP, and then convert our optimal solution
into a half-integral one as above.

3

Now, we can separate the vertices by their value in the optimal solution: let V0 = {u|xu = 0},
V1 = {u|xu = 1}, V1/2 = {u|xu = 1

2}.
We will output (G[V1/2], k − |V1|) as our kernel, where G[V1/2] is the subgraph induced by V1/2.
Intuitively, we fix all vertices in V1 to be in the vertex cover, all the vertices in V0 to be outside
the vertex cover, and we check to see whether we can cover the remaining edges with the correct
number of vertices from V1/2.

Observe that |V1/2| ≤ 2k (
∑
xu is at most k, because otherwise we know immediately that there is

no k vertex cover, and can output a trivial no instance, so no more than 2k vertices can have value
1
2). Therefore, the size of G[V1/2] depends only on k, and thus our kernel satisfies the size property.

(Note that while G[V1/2] has O(k) vertices, it may have O(k2) edges. In fact, we can prove that no
kernel with a number of edges subquadratic in k can exist under standard complexity assumptions.
[FR08])

Observe additionally that this kernel was produced in polynomial time: LPs can be solved in
polytime.

Therefore, it remains only to justify correctness.

We need to show that G has a vertex cover of size k if and only if G[V1/2] has a vertex cover of size
k − |V1|. To do this, we need the following lemma.

Lemma 2.5. Given an LP solution with V1, V0, and V1/2 as defined above, there exists an optimal
vertex cover S ⊆ V of G such that V1 ⊆ S and S ∩ V0 = ∅.

Proof. Take an arbitrary optimal vertex cover S of G.

Consider S′ = (S ∪V1) \ (S ∩V0), the set resulting from adding V1 to S and removing any elements
of V0.

S′ is still a vertex cover: all edges with an endpoint in V0 must have had their other endpoint in
V1, so any edges that would have been left uncovered by removing V0 must have been covered by
adding V1.

We want to show that S′ is still an optimal vertex cover: |S′| ≤ |S|. To show this, we will show
that we removed at least as many vertices from S as we added in.

Claim 2.6. |S ∩ V0| ≥ |V1 \ S|

Proof. Construct a new LP solution where all vertices in S ∩ V0 and V1 \ S are set to 1
2 . This is

still a valid solution: the only concern is that we are decreasing the values of V1 \ S, so if there
was an edge to V0 \ S, its other endpoint would not be increased to compensate for this decrease.
However, we know no such edges can exist, because S is a vertex cover, and such an edge would
have neither endpoint in S. This new solution’s objective function differs from that of the original
by 1

2 |S ∩V0|−
1
2 |V1 \S|. Since the original solution was optimal, this difference cannot be negative.

Thus, we have

1

2
|S ∩ V0| −

1

2
|V1 \ S| ≥ 0

|S ∩ V0| ≥ |V1 \ S|

4

This finishes the proof of the lemma.

Now, we can finally conclude by arguing correctness of our kernel.

First, suppose S′ is a vertex cover of G[V1/2] of size k − |V1|. We claim S′ ∪ V1 is a vertex cover of
size k in G. The only potentially uncovered edges would be from V0 to V1/2; however, no such edge
can exist, because it would violate the LP’s constraint. Thus, we have a valid vertex cover.

Now, suppose S is a vertex cover of G of size k. By the Lemma 2.5 above, assume S contains V1
and does not contain any elements of V0. Then, S ∩ V1/2 is the desired k − |V1| vertex cover of
G[V1/2].

3 d-Hitting Set

We’ll now briefly introduce a related problem, to be further discussed in future lectures. d-Hitting
set is a generalization of the vertex cover problem to d-hypergraphs.

More precisely, given an instance H = (V, F), a d-hypergraph (meaning F contains subsets of
vertices, each of size at most d), we ask the following question: is there a hitting set of size k, i.e.
does there a exist a subset of the vertices of size at k that nontrivially intersects with every S in
F?

Figure 2.1: An instance of d-hitting set for d = 4. {a, e, g} is a hitting set

Exercise. Show that d-Hitting set is in FPT by providing a dkpoly(n) algorithm. (Hint: recall
the decision tree algorithm for vertex cover discussed in Lecture #1)

References

[FR08] L. Fortnow and Santhanam R. Infeasibility of instance compression and succinct PCPs for
NP. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
133–142, 2008. 2

[NL75] G.L. Nemhauser and Trotter L.E. Vertex packings: Structural properties and algorithms.
Mathematical Programming, 8:232–248, 1975. 2.3

5

	Kernelization Algorithms
	LP Kernel for Vertex Cover
	d-Hitting Set

