

1 How do we cope with intractability?

- Heuristics are often used in practice.
- Approximation algorithms.
 - Efficient, but suboptimal.
 - Answer may be off by a multiplicative factor $\alpha > 1$.
- New lens on tractability.
 - Polynomial time vs. non-polynomial time is a coarse lens.
 - E.g. Hamilton cycle can be solved by brute force in $O(n!)$ time, but a more clever algorithm runs in $O(2^n)$ time. While neither is polynomial-time, the latter is much better.

This course will focus primarily on the last option.

1.1 Fine-Grained Complexity

- c^n time for c as small as possible.
 - Any improvement in c is an exponential improvement in runtime.
 - Subexponential, e.g. $2^{\sqrt{n}}$ can be much better in practice.
- Analyze runtime in finer detail to capture dependence on one or more parameter.
 - Usually one parameter, denoted k .
 - E.g. $T(n, k) = 2^{\max\text{-degree}(G)}n^2$ or $T(n, k) = k^k n^3$.
- Hardness results in fine-grained complexity.
 - Reductions must respect the granularity of runtimes.
 - For example, if we assume 3-SAT has no $O(1.2^n)$ time exact algorithm, and reduce a 3-SAT instance to a 3-COL instance with n^3 vertices, then we can only assume that 3-COL has no $O(1.2^{\sqrt[3]{n}})$ time algorithm.

1.2 Why this course? Why now?

- Practical considerations may demand an exact answer. Even if it cannot be done in polynomial time, we want it to be “fast enough.”
- Explosion of interest in the last ~ 10 years.
 - Beautiful algorithmic ideas.
 - Emerging algorithmic paradigms. “A theory is building.”
 - Ideas that influence complexity more broadly
 - Combines with other topics, e.g. approximation algorithms.

2 Introduction by Example – Vertex Cover

Definition 1.1. A *vertex cover* in a graph $G = (V, E)$ is a set $U \subseteq V$ such that every $e \in E$ has a vertex in U , namely $e \cap U \neq \emptyset$.

Vertex cover (VC) is a classic NP-hard problem, so there is no $\text{poly}(n, k)$ -time algorithm unless $\mathbf{P} = \mathbf{NP}$.

A maximal matching is a 2-approximate vertex cover and can be found in $O(n + m)$ time. In fact, this simple algorithm is believed to be essentially optimal. There is likely¹ no $(2 - \varepsilon)$ -approximation algorithm that runs in $\text{poly}(n, k)$ -time [?].

But what if we want an exact algorithm? Naively, we can check all $\binom{n}{k}$ subsets of k vertices by brute force. But $\binom{n}{k} \approx n^k$, and we'd like a much faster algorithm.

2.1 Kernelization algorithm

A first algorithm is motivated by the following observation: given a vertex cover S and vertex v , either $v \in S$ or S contains all $u \sim v$. Therefore, any vertex cover of size k must contain all vertices v such that $\deg_G(v) \geq k + 1$. The high-level algorithm is simple: add a high-degree vertex to the vertex cover, delete it, repeat until there are no high-degree vertices, then use brute force.

Algorithm 1 Kernelization-VC(G, k)

```

1:  $S \leftarrow \emptyset$ 
2:  $H \leftarrow G$ 
3:  $k' \leftarrow k$ 
4: while  $\Delta(G) > k'$  do
5:    $v \leftarrow$  any vertex s.t.  $\deg_H(v) > k'$ 
6:    $S \leftarrow S \cup \{v\}$ 
7:    $H \leftarrow H - v$ 
8:    $k' \leftarrow k' - 1$ 
9: end while
10: if  $|S| > k$  then return NO
11: else if  $E(H) = \emptyset$  then return YES
12: else
13:   if  $|E(H)| > (k')^2$  then return NO
14:   else
15:     Remove isolated vertices from  $H$ .
16:      $S' \leftarrow$  Minimum vertex cover of  $H$                                  $\triangleright$  Use brute force
17:     if  $|S| + |S'| \leq k$  then return YES
18:     else return NO
19:   end if
20: end if
21: end if

```

2.1.1 Analysis

Correctness. When the while loop in lines 4 – 9 terminates, any vertex cover T such that $|T| \leq k$ contains S . If $|S| > k$, there can be no such T . If $E(H) = \emptyset$ and $|S| \leq k$, then S itself is a vertex

¹I.e. unless the Unique Games Conjecture is false.

cover of size $\leq k$.

At line 12, H is nonempty and has max-degree at most k' . Each vertex can only cover k' edges, so a vertex cover of size at most k' is only possible if $|E(H)| \leq (k')^2$. In this case, brute force guarantees that we find the minimum vertex cover of H . If $|S| + |S'| < \leq k$, then $S \cup S'$ is a vertex cover of size k . Otherwise, there can be no vertex cover of size at most k . Indeed, since any vertex cover of size at most k must contain S and cover H , its size must be at least $|S| + |S'| > k$. \square

Runtime. Each iteration of the while loop can be executed in $O(n + m)$ time, so the entire while loop takes at most $O(k(n + m))$ time. If $|E(H)| \leq (k')^2$, then

$$|V(H)| \leq 2|E(H)| \leq 2(k')^2 \leq 2k^2.$$

In line 15, there are $\binom{2k^2}{k} \leq k^{O(k)}$ candidate vertex covers of size k to consider. Each candidate can be verified as a vertex cover or not in $O(k^2)$ time.

The total runtime is bounded by $k^{O(k)} + O(k(n + m))$. \square

Note. This algorithm used compression (Kernelization) in that it made a $\text{poly}(n, k)$ -time reduction

$$\langle G, k \rangle \rightarrow \langle H, k' \rangle,$$

where H has size independent of n , $k' < k$ and $\langle G, k \rangle \in VC$ if and only if $\langle H, k' \rangle \in VC$.

2.2 Branching Algorithm

A second algorithm is motivated by the observation that given an edge uv and vertex cover S , either $u \in S$ or $v \in S$. We can branch on these two choices and iterate this process. In doing so, we create a search tree for a minimal vertex cover. The minimal depth of a leaf in this tree is the size of a minimum vertex cover.

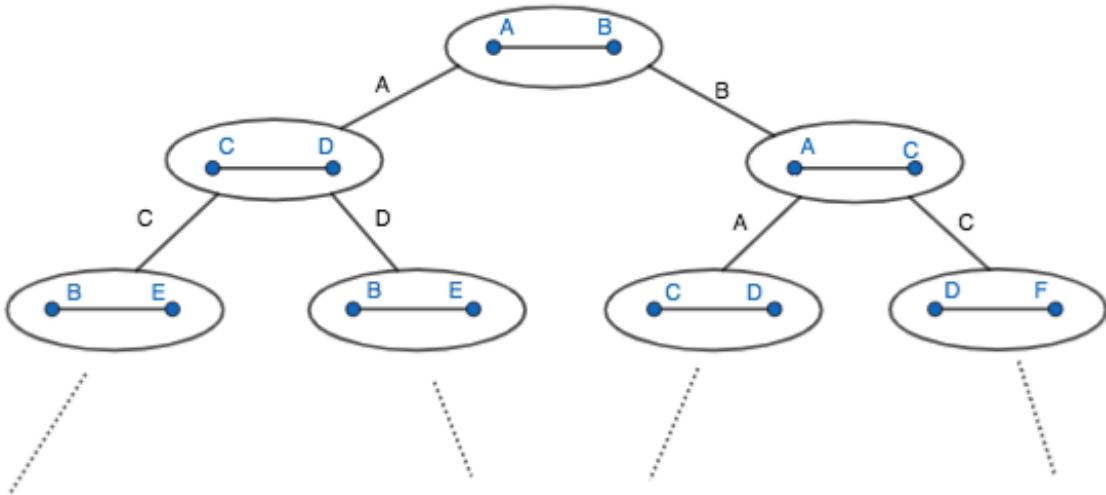


Figure 1.1: Search tree for Branching Algorithm

This can be formalized a recursive algorithm.

Algorithm 2 Branching-VC(G, k)

```

1: if  $E(G) = \emptyset$  then return YES
2: else if  $k = 0$  then return NO
3: end if
4:  $e \leftarrow$  arbitrary  $uv \in E(G)$ 
5:  $G_u \leftarrow G - u; G_v \leftarrow G - v$ 
6:  $\text{ans}_u \leftarrow \text{Branching-VC}(G_u, k - 1); \text{ans}_v \leftarrow \text{Branching-VC}(G_v, k - 1)$ 
7: return ( $\text{ans}_u$  OR  $\text{ans}_v$ )

```

2.3 Analysis

Correctness. If G has no vertex cover of size at most k , then after deleting any k vertices, the graph will remain nonempty and the algorithm will always return NO.

If G has a vertex cover S of size at most k , then at each step in the recursion, (at least) one of the two choices will be a vertex in S . After $|S| \leq k$ steps, some path in the recursion will have chosen every vertex in S , and therefore will return YES.

Runtime. Branching-VC(G, k) is called at most 2^k times, each call takes $O(m + n)$ time, for a total of $O(2^k(m + n))$.

3 Complexity Classes

3.1 Remarks on Complexity

- Note that in both algorithms, for a fixed k , the runtime is linear.
- Combinatorial explosion is restricted to the parameter k .
- In general, we consider two possibilities.
 - Runtime $f(k) \cdot n^{g(k)}$ is *slice-wise polynomial* (**XP**).
 - Runtime $f(k) \cdot n^c$ for some fixed c independent of n, k is *fixed-parameter tractable* (**FPT**). Such an algorithm is called a *fixed parameter algorithm*.
 - Note that **P** \subseteq **FPT** \subseteq **XP**.

To finish, we finally give a few formal definitions.

Definition 1.2. A *parametrized problem* is $L \subseteq \Sigma^* \times \mathbb{N}$. An *instance* is $(x, k) \in \Sigma^* \times \mathbb{N}$, and k is a *parameter*. $L \in \mathbf{FPT}$ if there is are

1. An algorithm \mathcal{A} ,
2. A computable (non-decreasing) function $f : \mathbb{N} \rightarrow \mathbb{N}$,
3. A constant $c \in \mathbb{R}$,

such that given $(x, k) \in \Sigma^* \times \mathbb{N}$, \mathcal{A} runs in time $f(k) \cdot |(x, k)|^c$ and correctly tells whether $(x, k) \in L$.

Lastly, a few examples.

1. $VC \in \mathbf{FPT}$.
2. Let $\text{COLORING}(G, k)$ be the problem of determining whether the input graph G is k -colorable. The natural parameter here is k , the number of colors. The fact that $3\text{COLORING} \in \mathbf{NP}$ implies that $\text{COLORING} \notin \mathbf{FPT}$ with parameter k (unless $\mathbf{P}=\mathbf{NP}$). Indeed, if it were, we would have an algorithm with runtime $f(k)n^c$, and plugging in $k = 3$ would give us a polytime algorithm for 3COLORING . Indeed, this shows that 3COLORING is not in \mathbf{XP} , either.
3. Let $\text{CLIQUE}(G, k)$ be the problem of determining whether the input graph G has a k -clique, i.e., a set of k vertices which are all connected to each other. Again the parameter is k , the size of the clique. Then $\text{CLIQUE} \in \mathbf{XP}$, since we can easily check if any set of k vertices induces a clique in $\binom{n}{k} n^2$ time. But, as we will see later in the course, it is likely that $\text{CLIQUE} \notin \mathbf{FPT}$, unless the Exponential Time Hypothesis is false.