
15-859FF: Coping with Intractability CMU, Fall 2019
Lecture #1: Intro and Vertex Cover September 4, 2019
Lecturer: Venkatesan Guruswami Scribe: C.J. Argue

1 How do we cope with intractability?

• Heuristics are often used in practice.

• Approximation algorithms.

– Efficient, but suboptimal.

– Answer may be off by a multiplicative factor α > 1.

• New lens on tractability.

– Polynomial time vs. non-polynoimal time is a coarse lens.

– E.g. Hamilton cycle can be solved by brute force in O(n!) time, but a more clever
algorithm runs in O(2n) time. While neither is polynomial-time, the latter is much
better.

This course will focus primarily on the last option.

1.1 Fine-Grained Complexity

• cn time for c as small as possible.

– Any improvement in c is an exponential improvement in runtime.

– Subexponential, e.g. 2
√
n can be much better in practice.

• Analyze runtime in finer detail to capture dependence on one or more parameter.

– Usually one parameter, denoted k.

– E.g. T (n, k) = 2max-degree(G)n2 or T (n, k) = kkn3.

• Hardness results in fine-grained complexity.

– Reductions must respect the granularity of runtimes.

– For example, if we assume 3-SAT has no O(1.2n) time exact algorithm, and reduce a
3-SAT instance to a 3-COL instance with n3 vertices, then we can only assume that
3-COL has no O(1.2

3√n) time algorithm.

1.2 Why this course? Why now?

• Practical considerations may demand an exact answer. Even if it cannot be done in polyno-
mial time, we want it to be “fast enough.”

• Explosion of interest in the last ∼ 10 years.

– Beautiful algorithmic ideas.

– Emerging algorithmic paradigms. “A theory is building.”

– Ideas that influence complexity more broadly

– Combines with other topics, e.g. approximation algorithms.

1

2 Introduction by Example – Vertex Cover

Definition 1.1. A vertex cover in a graph G = (V,E) is a set U ⊆ V such that every e ∈ E has a
vertex in U , namely e ∩ U 6= ∅.

Vertex cover (VC) is a classic NP-hard problem, so there is no poly(n, k)-time algorithm unless
P = NP.

A maximal matching is a 2-approximate vertex cover and can be found in O(n+m) time. In fact,
this simple algorithm is believed to be essentially optimal. There is likely1 no (2−ε)-approximation
algorithm that runs in poly(n, k)-time [?].

But what if we want an exact algorithm? Naively, we can check all
(
n
k

)
subsets of k vertices by

brute force. But
(
n
k

)
≈ nk, and we’d like a much faster algorithm.

2.1 Kernelization algorithm

A first algorithm is motivated by the following observation: given a vertex cover S and vertex v,
either v ∈ S or S contains all u ∼ v. Therefore, any vertex cover of size k must contain all vertices
v such that degG(v) ≥ k + 1. The high-level algorithm is simple: add a high-degree vertex to the
vertex cover, delete it, repeat until there are no high-degree vertices, then use brute force.

Algorithm 1 Kernelization-VC(G, k)

1: S ← ∅
2: H ← G
3: k′ ← k
4: while ∆(G) > k′ do
5: v ← any vertex s.t. degH(v) > k′

6: S ← S ∪ {v}
7: H ← H − v
8: k′ ← k′ − 1
9: end while

10: if |S| > k then return NO
11: else if E(H) = ∅ then return YES
12: else
13: if |E(H)| > (k′)2 then return NO
14: else
15: Remove isolated vertices from H.
16: S′ ← Minimum vertex cover of H . Use brute force
17: if |S|+ |S′| ≤ k then return YES
18: else return NO
19: end if
20: end if
21: end if

2.1.1 Analysis

Correctness. When the while loop in lines 4− 9 terminates, any vertex cover T such that |T | ≤ k
contains S. If |S| > k, there can be no such T . If E(H) = ∅ and |S| ≤ k, then S itself is a vertex

1I.e. unless the Unique Games Conjecture is false.

2

cover of size ≤ k.

At line 12, H is nonempty and has max-degree at most k′. Each vertex can only cover k′ edges,
so a vertex cover of size at most k′ is only possible if |E(H)| ≤ (k′)2. In this case, brute force
guarantees that we find the minimum vertex cover of H. If |S|+ |S′| <≤ k, then S ∪ S′ is a vertex
cover of size k. Otherwise, there can be no vertex cover of size at most k.. Indded, since any vertex
cover of size at most k must contain S and cover H, its size must be at least |S|+ |S′| > k.

Runtime. Each iteration of the while loop can be executed in O(n + m) time, so the enitre while
loop takes at most O(k(n+m)) time. If |E(H)| ≤ (k′)2, then

|V (H)| ≤ 2|E(H)| ≤ 2(k′)2 ≤ 2k2.

In line 15, there are
(
2k2

k

)
≤ kO(k) candidate vertex covers of size k to consider. Each candidate

can be verified as a vertex cover or not in O(k2) time.

The total runtime is bounded by kO(k) +O(k(n+m)).

Note. This algorithm used compression (Kernelization) in that it made a poly(n, k)-time reduction

〈G, k〉 → 〈H, k′〉,

where H has size independent of n, k′ < k and 〈G, k〉 ∈ V C if and only if 〈H, k′〉 ∈ V C.

2.2 Branching Algorithm

A second algorithm is motivated by the observation that given an edge uv and vertex cover S,
either u ∈ S or v ∈ S. We can branch on these two choices and iterate this process. In doing so,
we create a search tree for a minimal vertex cover. The minimal depth of a leaf in this tree is the
size of a minimum vertex cover.

Figure 1.1: Search tree for Branching Algorithm

3

This can be formalized a recursive algorithm.

Algorithm 2 Branching-VC(G, k)

1: if E(G) = ∅ then return YES
2: else if k = 0 then return NO
3: end if
4: e← arbitrary uv ∈ E(G)
5: Gu ← G− u;Gv ← G− v
6: ansu ←Branching-VC(Gu, k − 1); ansv ← Branching-VC(Gv, k − 1)
7: return (ansu OR ansv)

2.3 Analysis

Correctness. If G has no vertex cover of size at most k, then after deleting any k vertices, the graph
will remain nonempty and the algorithm will always return NO.

If G has a vertex cover S of size at most k, then at each step in the recursion, (at least) one of the
two choices will be a vertex in S. After |S| ≤ k steps, some path in the recursion will have chosen
every vertex in S, and therefore will return YES.

Runtime. Branching-VC(G, k) is called at most 2k times, each call takes O(m+n) time, for a total
of O(2k(m+ n)).

3 Complexity Classes

3.1 Remarks on Complexity

• Note that in both algorithms, for a fixed k, the runtime is linear.

• Combinatorial explosion is restricted to the parameter k.

• In general, we consider two possibilities.

– Runtime f(k) · ng(k) is slice-wise polynomial (XP).

– Runtime f(k)·nc for some fixed c independent of n, k is fixed-parameter tractable (FPT).
Such an algorithm is called a fixed parameter algorithm.

– Note that P ⊆ FPT ⊆ XP.

To finish, we finally give a few formal definitions.

Definition 1.2. A parametrized problem is L ⊆ Σ∗ ×N. An instance is (x, k) ∈ Σ∗ ×N, and k is
a parameter. L ∈ FPT if there is are

1. An algorithm A,

2. A computable (non-decreasing) function f : N→ N,

3. A constant c ∈ R,

such that given (x, k) ∈ Σ∗×N, A runs in time f(k) · |(x, k)|c and correctly tells whether (x, k) ∈ L.

4

Lastly, a few examples.

1. V C ∈ FPT.

2. Let Coloring(G, k) be the problem of determining whether the input graph G is k-colorable.
The natural parameter here is k, the number of colors. The fact that 3Coloring ∈ NP
implies that Coloring /∈ FPT with parameter k (unless P=NP). Indeed, if it were, we
would have an algorithm with runtime f(k)nc, and plugging in k = 3 would give us a poly-
time algorithm for 3Coloring. Indeed, this shows that 3Coloring is not in XP, either.

3. Let Clique(G, k) be the problem of determining whether the input graph G has a k-clique,
i.e., a set of k vertices which are all connected to each other. Again the parameter is k, the size
of the clique. Then Clique ∈ XP, since we can easily check if any set of k vertices induces a
clique in

(
n
k

)
n2 time. But, as we will see later in the course, it is likely that Clique 6∈ FPT,

unless the Exponential Time Hypothesis is false.

5

	How do we cope with intractability?
	Fine-Grained Complexity
	Why this course? Why now?

	Introduction by Example – Vertex Cover
	Kernelization algorithm
	Analysis

	Branching Algorithm
	Analysis

	Complexity Classes
	Remarks on Complexity

