15-859FF: Coping with Intractability CMU, Fall 2019
Lecture #1: Intro and Vertex Cover September 4, 2019
Lecturer: Venkatesan Guruswami Scribe: C.J. Argue

1 How do we cope with intractability?

e Heuristics are often used in practice.

e Approximation algorithms.
— Efficient, but suboptimal.
— Answer may be off by a multiplicative factor a > 1.
e New lens on tractability.
— Polynomial time vs. non-polynoimal time is a coarse lens.

— E.g. Hamilton cycle can be solved by brute force in O(n!) time, but a more clever
algorithm runs in O(2") time. While neither is polynomial-time, the latter is much
better.

This course will focus primarily on the last option.
1.1 Fine-Grained Complexity

e (" time for ¢ as small as possible.
— Any improvement in ¢ is an exponential improvement in runtime.

— Subexponential, e.g. 2V™ can be much better in practice.

e Analyze runtime in finer detail to capture dependence on one or more parameter.

— Usually one parameter, denoted k.
— E.g. T(n, k) = 2maxdegree(G)p2 op T(p k) = kFns.
e Hardness results in fine-grained complexity.
— Reductions must respect the granularity of runtimes.

— For example, if we assume 3-SAT has no O(1.2") time exact algorithm, and reduce a
3-SAT instance to a 3-COL instance with n3 vertices, then we can only assume that
3-COL has no O(1.2¥7) time algorithm.

1.2 Why this course? Why now?

e Practical considerations may demand an exact answer. Even if it cannot be done in polyno-
mial time, we want it to be “fast enough.”

e Explosion of interest in the last ~ 10 years.

Beautiful algorithmic ideas.

— Emerging algorithmic paradigms. “A theory is building.”

Ideas that influence complexity more broadly

Combines with other topics, e.g. approximation algorithms.

1

2 Introduction by Example — Vertex Cover

Definition 1.1. A vertex cover in a graph G = (V, E) is a set U C V such that every e € E has a
vertex in U, namely e N U # 0.

Vertex cover (VC) is a classic NP-hard problem, so there is no poly(n, k)-time algorithm unless
P =NP.

A maximal matching is a 2-approximate vertex cover and can be found in O(n + m) time. In fact,
this simple algorithm is believed to be essentially optimal. There is likely' no (2 —¢)-approximation
algorithm that runs in poly(n, k)-time [?].

But what if we want an exact algorithm? Naively, we can check all (Z) subsets of k vertices by
brute force. But (Z) ~ n¥, and we’d like a much faster algorithm.

2.1 Kernelization algorithm

A first algorithm is motivated by the following observation: given a vertex cover S and vertex v,
either v € S or S contains all © ~ v. Therefore, any vertex cover of size k must contain all vertices
v such that deg,(v) > k 4+ 1. The high-level algorithm is simple: add a high-degree vertex to the
vertex cover, delete it, repeat until there are no high-degree vertices, then use brute force.

Algorithm 1 Kernelization-VC(G, k)

S+ 0
H+ G
K+ k
while A(G) > k' do
v any vertex s.t. degy(v) > K
S« Su{v}
H<+ H-—v
K+ kK —1
end while
if |S| > k then return NO
. else if E(H) =0 then return YES
: else
if |[E(H)| > (K')? then return NO
14: else
15: Remove isolated vertices from H.
16: S’ <~ Minimum vertex cover of H > Use brute force
17: if |S| +|9’| < k then return YES
18: else return NO
19: end if
20: end if
21: end if

—_ =
w2

2.1.1 Analysis

Correctness. When the while loop in lines 4 — 9 terminates, any vertex cover T' such that |T'| < k
contains S. If |S| > k, there can be no such 7. If E(H) = () and |S| < k, then S itself is a vertex

T.e. unless the Unique Games Conjecture is false.

cover of size < k.

At line 12, H is nonempty and has max-degree at most k’. Each vertex can only cover k' edges,
so a vertex cover of size at most k’ is only possible if |[E(H)| < (k’)?. In this case, brute force
guarantees that we find the minimum vertex cover of H. If | S|+ |S’| << k, then SU S’ is a vertex
cover of size k. Otherwise, there can be no vertex cover of size at most k.. Indded, since any vertex
cover of size at most k& must contain S and cover H, its size must be at least |S| + |S’| > k. O

Runtime. Each iteration of the while loop can be executed in O(n + m) time, so the enitre while
loop takes at most O(k(n +m)) time. If |E(H)| < (k')?, then

|V(H)| <2|E(H)| < 2(k)? < 2k%

In line 15, there are (2]]22) < kO®) candidate vertex covers of size k to consider. Each candidate
can be verified as a vertex cover or not in O(k?) time.

The total runtime is bounded by k°%*) + O(k(n + m)). O
Note. This algorithm used compression (Kernelization) in that it made a poly(n, k)-time reduction
(G, k) — (H, K'Y,
where H has size independent of n, k¥’ < k and (G, k) € VC if and only if (H, k") € VC.

2.2 Branching Algorithm

A second algorithm is motivated by the observation that given an edge uv and vertex cover S,
either u € S or v € S. We can branch on these two choices and iterate this process. In doing so,
we create a search tree for a minimal vertex cover. The minimal depth of a leaf in this tree is the
size of a minimum vertex cover.

Figure 1.1: Search tree for Branching Algorithm

This can be formalized a recursive algorithm.

Algorithm 2 Branching-VC(G, k)

if F(G) =0 then return YES

else if k£ = 0 then return NO

end if

e + arbitrary uv € E(QG)

Gyu+ G—u;Gy+ G-

ans,, < Branching-VC(G,, k — 1); ans, < Branching-VC(G,,k — 1)
return (ans, OR ans,)

2.3 Analysis

Correctness. If G has no vertex cover of size at most k, then after deleting any k vertices, the graph
will remain nonempty and the algorithm will always return NO.

If G has a vertex cover S of size at most k, then at each step in the recursion, (at least) one of the
two choices will be a vertex in S. After |S| < k steps, some path in the recursion will have chosen
every vertex in S, and therefore will return YES.

Runtime. Branching-VC(G, k) is called at most 2" times, each call takes O(m +n) time, for a total
of O(2F(m +n)).

3 Complexity Classes

3.1 Remarks on Complexity
e Note that in both algorithms, for a fixed k, the runtime is linear.
e Combinatorial explosion is restricted to the parameter k.
e In general, we consider two possibilities.

— Runtime f(k) - n9®) is slice-wise polynomial (XP).

— Runtime f(k)-n for some fixed c independent of n, k is fized-parameter tractable (FPT).
Such an algorithm is called a fized parameter algorithm.

— Note that P C FPT C XP.

To finish, we finally give a few formal definitions.

Definition 1.2. A parametrized problem is L C ¥* x N. An instance is (xz,k) € ¥* x N, and k is
a parameter. L € FPT if there is are

1. An algorithm A,
2. A computable (non-decreasing) function f : N — N,

3. A constant ¢ € R,

such that given (z, k) € ¥* x N, A runs in time f(k)-|(x, k)| and correctly tells whether (z,k) € L.

4

Lastly, a few examples.

1. VC € FPT.

2. Let COLORING(G, k) be the problem of determining whether the input graph G is k-colorable.
The natural parameter here is k, the number of colors. The fact that 3COLORING € NP
implies that COLORING ¢ FPT with parameter k (unless P=NP). Indeed, if it were, we
would have an algorithm with runtime f(k)n¢, and plugging in k& = 3 would give us a poly-
time algorithm for 3COLORING. Indeed, this shows that 3COLORING is not in XP, either.

3. Let CLIQUE(G, k) be the problem of determining whether the input graph G has a k-clique,
i.e., a set of k vertices which are all connected to each other. Again the parameter is k, the size
of the clique. Then CLIQUE € XP, since we can easily check if any set of k vertices induces a
clique in (Z) n? time. But, as we will see later in the course, it is likely that CLIQUE ¢ FPT,
unless the Exponential Time Hypothesis is false.

	How do we cope with intractability?
	Fine-Grained Complexity
	Why this course? Why now?

	Introduction by Example – Vertex Cover
	Kernelization algorithm
	Analysis

	Branching Algorithm
	Analysis

	Complexity Classes
	Remarks on Complexity

