Planar graphs have treewidth $O(\sqrt{n})$.

Tight: $\sqrt{n} \times \sqrt{n}$ grid has treewidth \sqrt{n}.

Idea: recursive separators

1. Every vertex in G belongs.
2. For each edge in G, there is a bag containing both of its endpoints.

Fix edge (u,v).
Consider node t_u: highest node cont. u
tv: " " " " v.

Claim: either $t_u = tv$, or one is descendant of the other.

Pf: sp not! v lowest common ancestor
For each vertex \(v \), set of bags - ✓

4 width = \(O(\sqrt{n \log n}) \).

Grid minors and bidimensionality

"Certificates" for large treewidth?

1. Cliques: if \(G \) has \(K_t \) as a minor, then \(tw(G) \geq tw(K_t) = t-1 \).

"Converse"? Ideally: if \(tw(G) \geq f(t) \) then

G has \(K_t \) as a minor?

False: Define \(\mathbb{T}_t := t \times t \) grid.

\(tw(\mathbb{T}_t) = t \), but excludes \(K_5 \) as a minor (since planar).

2. Grids? If \(G \) has \(\mathbb{T}_t \) as a minor, then \(tw(G) \geq tw(\mathbb{T}_t) = t \).

"Converse"?

Polynomial Grid Minor Theorem:

[Chekuri, Chuzhoy '13 + improvements];

If \(tw(G) \geq \Omega(t^9 \text{ polylog } t) \), then \(G \) has \(\mathbb{T}_t \) as a minor,
and there's a polynomial \((n,t)\) time algo to find one.

Solve the FPT problems with Grid Minor Theorem.
Solving FPT problems with Grid Minor Theorem.

Min Vertex Cover

1. \(\text{min VC of } K_t \text{ is } \Omega(t^2) \).
 \[
 \Rightarrow \text{ every VC size } \Omega(t^2)
 \]

2. If \(G \) has \(K_t \) as a minor, then \(\text{minVC}(G) \geq \Omega(t^2) \).

\[
\Rightarrow \text{ if } \text{tw}(G) \gg k^{4.5}, \text{ then } G \text{ has } K_{10,10k} \text{ as a minor}
\]
\[
\Rightarrow \text{minVC}(G) > k
\]

So if \(\text{minVC}(G) \leq k \), then \(\text{tw}(G) \leq \tilde{O}(k^{4.5}) \)

3. Compute tw-decomp of \(G \) of width \(\tilde{O}(k^{4.5}) \)
 - If cannot, then output NO.
 - Else, solve minVC on tw-decomp in time \(\tilde{O}(k^{4.5}) \).

Planar Grid Minor Theorem [Robertson, Seymour, Thomas]

If \(G \) is planar and \(\text{tw}(G) \geq 5t \), then \(G \) has \(K_t \) as a minor.
If G is planar and $tw(G) = 5K$ then G has H_t as a minor.

If $tw(G) \geq 50K$, then G has H_{out} as a minor.

\Rightarrow NO.

Algorithm: compute tw decomp of G of width $O(5K)$.

If cannot, then output NO.

Else, solve min VC $2^{O(5K)}$.

Bidimensionality: $2^{O(5K)}$ time FPT algs on planar graphs:

1. Size of solution on H_t is $L(t^2)$.
2. If H minor of G and H has soln size k, then G also has soln size k.
3. Given a tree decomp of width t, can solve problem in $2^{O(t)} n^{O(1)}$ time.

Ex: Longest path

3. $2^{O(5K \log K)}$ time

Ex: MaxIS: violate 2! Addly an edge can destroy IS. Can be fixed by

2. If H is a contraction of G