Lecture 4: Randomized Methods / Color Coding

Previous lecture: VC (via Kernelization, Bonded Search) d-regular set.
also reductions. Clique not in NL. \rightarrow Statement not in \text{WP}

today: Feedback Vertex Set
Longest path.

(FVS) multigraph \(G \), want to hit all cycles. Equiv. \(\text{XCSP} + G[V\setminus X] \text{ is linear} \)
\((G[V] \subseteq G[V\setminus X] \text{ has no edge}) \).

Some reduction rules:
\((G, k) \Rightarrow G \text{ has a } \text{FVS} \).
\(\begin{align*}
1. & \text{ if self-loop contain } v \Rightarrow (G - v, k - 1) \\
2. & \text{ drop degree 1 nodes } v \Rightarrow (G - v, k) \\
3. & \text{ if } G \Rightarrow \text{ has more than 2 parallel edges, drop all but 2.} \\
4. & \text{ if } v \text{ has degree 2, say } v \rightarrow w \Rightarrow \text{contraction of these edges.} \\
5. & \text{ if } k < 0 \Rightarrow \text{answer NO.}
\end{align*} \)

at the end, left with multigraph
\(G \) with min degree \(\geq 3. \)
\(\text{no self-loops, at most 2 parallel edges.} \)

Claim: at least \(\frac{1}{2} \) the edges of \(G \) have at least one endpoint in OPT.

Pf: Spes \(X \) in FVS of size \(< k \).
\(H = G[V\setminus X] \)

Want:
\(\# \text{edges incident on } \bar{X} \ CGPoint{\text{ of other edges}} \)
\(|\bar{J}| \geq |\bar{Y} \setminus X| \)

Let \(V_1, V_2, V_3 \) be partition of \(V \setminus X \) with degree (in \(H \) be \(k \))
\(\leq 1, \geq 2, \geq 3 \)
then since any degree in \(H \leq 2 \Rightarrow \leq 1|V_1| > |V_3| \geq 3 \)
but \(|\bar{J}| \geq 2|V_3| + 1, |V_2| \) (because degree \(\geq 3 \))
\(\geq |V_1| + |V_2| + |V_3| = |V\setminus X| \).
Algorithm: Recursive FVS (G, k)

- apply 5 rules to get (G', k'). Let X_0 be self-loop return.
- pick random edge, random endpoint.

$X_{rec} \leftarrow$ Recursive FVS (G', k').

if $1 \leq k$ return NO. else return $X_{rec} \cup X_0$.

Success up $(\frac{1}{4})^{k-1}(\frac{1}{4}) \geq (\frac{1}{4})^k$.

\Rightarrow time $= \Theta(k^3 \text{poly}(n))$.

Q: determinist (yes, later?)

Q: kernel size $O(k^3)$ later?

Longest Path

- clearly in $	ext{XP}$.
- easy for bounded degree graphs.

1. color vertices with k colors randomly.
 - the OPT path will be colored 1, 2, ..., k (in mat order) up.
 - and we can find it in linear time.

\Rightarrow time $= O(\frac{k^1 \text{poly}(n)}{k^k})$.

2. the OPT path will be rainbow-colored up
 - $\frac{k^1}{k^k} \gg \frac{\binom{k}{2} k^{1}}{k^k} = \frac{1}{k} k^k$.
 - And can find a rainbow path of length k in time $2^k \cdot \text{poly}(n)$.

Simple DP: $T(S, v)$: does \exists path with colored S end at v?

- $T(S, w, u) = \max_{u \in S}$.
- $T(S, v) = \max_{u \in S} (T(S \setminus \{v\}, u))$.

So get $\left(2e\right)^{k^3 \cdot \text{poly}(n)}$.

Q: better? Yes, $4^k \cdot \text{poly}(n)$ using divide and conquer + color only.

Q: do? Later?

Q: improve? $2^k \cdot \text{poly}(n)$ by Williams [Koutis' paper works]?

Q: $16k$ by B. Lundt (undirected) yes, later?
Subgraph isomorphism: Given \(G, (n^4 + x^5) \), \(H \) (pattern, k-vertex)

- \(H \) is "simple" (path, tree, low tree-width)
 can do in time \(f(k) \cdot \text{poly}(n) \)
 degree depends on treewidth

- \(H \) is aliged to \(WJ \) hard.

What about bounded degree \(G \)? = max degree

- Can get an \(O(2^{\text{poly}(\log n)}) \) algorithm [AJW]

Here simple: \(2^{dk} \cdot \text{poly}(n) \) algo.

- Color each edge red or blue. (red = "deleted" edges)
 - Make 3 copy of \(H \). then edges in \(\mathcal{W} \leq dk \). All red up \(\frac{1}{2} dk \)
 - Each copy of \(H \) them via \(H \) (w/2-dk prob)
 - So spend \(k! \cdot \text{time for each component. At most } O(n, k! \cdot \text{time}) \) for checking

- \(O(2^{dk} \cdot n, k!) \cdot \text{time} \)

Derandomization:

Idea: instead of considering all coloyages \(T \) \(\rightarrow \) \(\mathcal{D} \). Consider some "small" set

- Fix one of such \(T \) by \(\mathcal{D} \). Consider some "small" set

Folows st.

- Is a "good" function \(f : \mathcal{D} \rightarrow \mathcal{F} \) for whatever property we want.
 - Often, if success prob is \(p(k) \) then get \(|\mathcal{D}| = O(1/p(k) \cdot \log n) \).

\[\left(m, k, \mathcal{D} \right) \text{ splitter is a family of functions from } \mathcal{D} \rightarrow \mathcal{F} \text{ if every set } S \text{ of size } k \text{ for } F \text{ s.t. } \# \text{elements in } S \text{ colored } c \text{ by } f \leq 1 \]

Thm: \((m, k, \mathcal{D}) \) splitter of size \(\Omega \left(\frac{k \cdot \log k}{m} \right) \cdot \log n \) that can be constructed in

- \(O(n^4 + x^5) \cdot \text{time} \), \(O(k \cdot \log k) \cdot \text{time} \).

Observe: enumerate all these functions. One gives multicolored path. DP solves the rest.
(m,k) universal set is a family of subsets of [n] such that \(\forall S \subseteq [n], |S| \leq k \),

\[S \text{ is shattered by } U \iff 2^{\binom{n}{k}} \leq 2^k \text{ has all } 2^k \text{ subsets.} \]

Theorem: Construction of universes of size \(\leq 2^k \) occurs within \(2^{2^k} \) steps.

This can be used for the *random separation* algorithm.