
Lecture 15

Rounding SDPs for CSPs∗

Recall the canonical SDP relaxation for an instance C of CSP(Γ):

max
∑

C=(R,S)∈C

wC Pr
L∼λC

[L(S) satisfies R],

subject to the following conditions:

• for all C, λC is a probability distribution on assignments S → D;

• (Iv[`])v∈V,`∈D are joint random variables (which can be thought of as vectors), called
“pseudoindicators,” that satisfy:

1. [optional] for all C ∈ C, for all v ∈ C, and for all ` ∈ D,

E
[
Iv[`]

]
= Pr

L∼λC
[L(v) = `];

2. for all C ∈ C, for all v ∈ C, for all ` ∈ D, for all v′ ∈ V , and for all `′ ∈ D,

E
[
Iv[`] · Iv′ [`′]

]
= Pr

L∼λC
[L(v) = ` and L(v′) = `′].

Also recall the following equivalent perspectives on the canonical SDP relaxation for a
CSP:

• pseudoindicator random variables satisfying conditions 1 and 2 above;

• pseudoindicator random variables satisfying condition 2 above;

• a vector solution satisfying conditions 1 and 2 above (when viewed as a collection of
pseudoindicator random variables);

• jointly Gaussian pseudoindicators satisfying conditions 1 and 2 above.

*Lecturer: Ryan O’Donnell. Scribe: Brian Kell.

1

15.1 Jointly Gaussian pseudoindicators

For this section, let N = |V | · |D|. [Is this what N is supposed to mean, or is N arbitrary?]

Definition 15.1. Random variables Z1, Z2, . . . , ZN are said to be jointly Gaussian if
Z1

Z2
...
ZN

 =

µ1

µ2
...
µN

+ L

X1

X2
...

XM

 ,
where L is an N×M matrix and X1, X2, . . . , XM are mutually independent standard normal
random variables (that is, normal random variables with mean 0 and standard deviation 1).
The covariance matrix Σ is the matrix (Σij)

N
i=1

N
j=1, where Σij = Cov[Zi, Zj].

Fact 15.2. The covariance matrix is given by Σ = LL>.

Figure 15.1: Density of joint Gaussian random variables X and Y with Var(X) = 2,
Var(Y) = 1, and Cov(X, Y) = −1. [From PlanetMath.org]

Proposition 15.3. We can assume (computationally efficiently) that the pseudoindicators
are jointly Gaussian. In other words, given a vector solution satisfying conditions 1 and 2,
we can efficiently produce jointly Gaussian pseudoindicators satisfying conditions 1 and 2.

Proof. We start with a vector solution ~yv,` ∈ R
N satisfying conditions 1 and 2. Let

Z1, . . . , ZN be mutually independent standard normal random variables.

2

As a first attempt, we define a collection of jointly distributed random variables (Gv[`])v,`
as follows: To get one draw from (all of) the Gv[`], pick i ∈ [N] uniformly at random and
output Gv[`] = Zi(~yv,`)i. Then the Gv[`] are jointly Gaussian. [Why?] Moreover, they satisfy
condition 2:

E
Z,i

[
Gv[`]Gv′ [`

′]
]

= E
Z

[∑
i

1

N
Zi(~yv,`)i ·Zi(~yv′,`′)i

]
=

1

N

∑
i

(~yv,`)i(~yv′,`′)i ·��
��*

1
E[Z2

i] =: 〈〈~yv,`, ~yv′,`′〉〉.

However, when we check to see that they satisfy condition 1, we find that we have

E
Z,i

[
Gv[`]

]
= E

Z

[∑
i

1

N
Zi(~yv,`)i

]
=

1

N

∑
i

(~yv,`)i ·��
��*0

E[Zi] = 0.

To fix this problem, we instead output

Gv[`] = avg
j

(~yv,`)j + Zi
(
(~yv,`)i − avg

j
(~yv,`)j

)
.

This definition of Gv[`] satisfies both conditions 1 and 2. [Why? And why are these new
Gv[`] jointly Gaussian?]

15.2 Goemans–Williamson for Max-Cut, redux

The Goemans–Williamson algorithm for Max-Cut can be viewed as follows:

1. Solve the SDP and get jointly Gaussian pseudoindicators (Gv[0], Gv[1])v∈V .

2. Draw once from them to obtain numbers (gv[0], gv[1])v∈V .

3. Output the assignment F (v) = argmax`∈{0,1}{gv[`]}.

[Why can GW be viewed this way?]
The analysis of this algorithm uses the following fact, proved by Sheppard in 1899 [She99] [Is
this the right reference?]: If Z and Z ′ are standard normal random variables and E[ZZ ′] = ρ,
then

Pr[sgn(Z) = sgn(Z ′)] =
1

2
− 1

π
cos−1 ρ.

15.3 The Unique Games Conjecture

Definition 15.4. The problem Unique-Gamesq, abbreviated UGq, is a 2-CSP over the
domain D = {0, 1, 2, . . . , q − 1}, for which

Γ =
{
R : D2 → {0, 1}

∣∣ ∃ permutation π of D s.t. R(a, b) = 1 iff π(a) = b
}

;

in other words, the only allowable constraints in an instance of UGq are bijective constraints
of arity 2.

3

Example 15.5. Max-Cut is a subproblem of UG2. In an instance of Max-Cut, every
edge (i, j) in the graph has a corresponding constraint xi 6= xj, that is, the allowable as-
signments are

{
{xi = 0, xj = 1}, {xi = 1, xj = 0}

}
. If the graph is bipartite, then all of

these constraints are simultaneously satisfiable; otherwise, the objective of Max-Cut is to
maximize the fraction of constraints that are satisfied.

Remark 15.6. For UG2, the greedy algorithm (local propagation) is a (1, 1)-approximation
algorithm. This is like 2-coloring a bipartite graph (2-coloring is a subproblem of UG2). In
an instance of UG2, the domain is D = {0, 1}, and all constraints are of the form xi = xj
or of the form xi 6= xj. If it is possible to simultaneously satisfy all of these constraints
(that is, if Opt = 1), then we can easily find a satisfying assignment by arbitrarily choosing
a starting variable and arbitrarily assigning it either 0 or 1; from then on, the value of any
unassigned variable that shares a constraint with a variable that has already been assigned
is determined by the constraint. The arbitrary choices we made at the beginning are not
important, because the “complement” assignment of any satisfying assignment is also a
satisfying assignment.

Conjecture 15.7. Unique Games Conjecture [Kho02]. For every ε > 0 there exists a
value of q such that (1/2, 1 − ε)-approximating UGq is NP-hard. [Any α ∈ (0, 1) can be
substituted for 1/2 here.]

Remark 15.8. The Unique Games Conjecture implies many other optimal inapproximabil-
ity results.

On the other hand, we can get a (1/2, 1 − ε)-approximation by solving an SDP of size

exp(qnε
Θ(1)

) [ABS10], [BRS11].
We can

(
1−O(

√
log q
√
ε), 1− ε)-approximate UGq by SDP rounding [CMM06]. We can

do the following:

1. Solve the canonical SDP relaxation to get a collection of jointly Gaussian pseudoindi-
cators (Gv[`])v∈V,`∈{0,...,q−1}.

2. Draw once from them to obtain numbers (gv[0], gv[1], . . . , gv[q − 1])v∈V .

3. Output the assignment F (v) = argmax`{gv[`]}.

Note that this is a randomized algorithm.

“Theorem” 15.9. If SDPOpt(C) ≥ 1− ε, then

E
F

[ValC(F)] ≥ 1−O(
√

log q
√
ε).

The proof of this “theorem” is left as an exercise (and could probably be published as a
paper). It should be noted that CMM did something slightly different.

4

15.4 (α, β)-decision algorithms

Recall that an algorithm is said to (α, β)-approximate CSP(Γ) if whenever Opt(C) ≥ β the
algorithm produces a solution with value at least α. [For a proposed rounding algorithm,
we often prove a theorem that looks something like: If SDPOpt(C) ≥ β, then our rounding
algorithm produces a solution with value at least α. In particular, this kind of theorem
shows that there exists a solution with value at least α.]

Definition 15.10. An algorithm (α, β)-decides CSP(Γ) if:

• on instances C with Opt(C) ≥ β, the algorithm outputs YES;

• on instances C with Opt(C) < α, the algorithm outputs NO.

Note that (α, β)-deciding CSP(Γ) is strictly easier than (α, β)-approximating it. If we have an
algorithm to (α, β)-approximate CSP(Γ), then we can (α, β)-decide it by doing the following:

Given an instance C, run the (α, β)-approximation algorithm on C to get a solu-
tion S. If Val(S) ≥ α, output YES; if Val(S) < α, output NO.

This is an (α, β)-decision algorithm: If Opt(C) ≥ β, then Val(S) ≥ α, so we output YES. If
Opt(C) < α, then Val(S) ≤ Opt(C) < α, so we output NO. On the other hand, there is no
way to make an (α, β)-approximation algorithm from an (α, β)-decision algorithm, because
if Opt(C) ≥ β then the (α, β)-decision algorithm will just say YES and will give no useful
information.

A potentially good (α, β)-decision algorithm for CSP(Γ) is the following:

(?) Given an instance C, solve the canonical SDP relaxation. If SDPOpt ≥ β, output
YES; if SDPOpt < β, output NO.

Certainly if Opt(C) ≥ β, then SDPOpt(C) ≥ Opt(C) ≥ β, so this algorithm outputs YES.
If we additionally know that whenever Opt(C) < α we have SDPOpt(C) < β, then this
algorithm will correctly output NO whenever Opt(C) < α; however, if there is an instance C
with Opt(C) < α but SDPOpt(C) ≥ β, then this algorithm will incorrectly output YES for
that instance.

Definition 15.11. An instance C of CSP(Γ) is an (α, β)-SDP-gap instance if SDPOpt(C) ≥
β but Opt(C) < α.

As observed above, the existence of such an instance is a barrier to the SDP algorithm (?)
being an (α, β)-decision algorithm. In other words, there exists an (α, β)-SDP-gap instance
if and only if the algorithm (?) is not an (α, β)-decision algorithm.

Definition 15.12.

SDPGapΓ(β) = inf{Opt(C) | C is an instance of CSP(Γ) with SDPOpt(C) ≥ β }.

5

Remark 15.13. Tautologically, for every β, the SDP algorithm (?) is an
(
SDPGapΓ(β), β

)
-

decision algorithm.

Theorem 15.14. [Rag08], [RS09] [Are these the right references?] Assume the Unique
Games Conjecture. Then for every ε > 0,

(
SDPGapΓ(β − ε) + ε, β − ε

)
-deciding CSP(Γ) is

NP-hard.

Essentially, doing better than the algorithm (?) is NP-hard. Also, in particular, we see
that

(
SDPGapΓ(β−ε)+ε, β−ε

)
-approximating is NP-hard. However, the following theorem

says that this is the exact threshold, because
(
SDPGapΓ(β−ε)−ε, β

)
-approximating is in P.

Theorem 15.15. [Rag08], [RS09] [Are these the right references?] For every constraint
satisfaction problem CSP(Γ), for every ε > 0, and for every β, there exists an SDP round-
ing algorithm which

(
SDPGapΓ(β − ε) − ε, β

)
-approximates the CSP and is poly(n)-time.

[However, it is exp(exp(poly(kq/ε)))-time, where k is the maximum arity of the relations in
the constraints and q is the size of the domain.]

Proof. [This needs to be cleaned up and more fully explained.] An outline of the algorithm:

1. Given C with Opt(C) ≥ β, find an optimal SDP solution S.

2. Drop an ε-fraction of the constraints to get C ′, and get an SDP vector solution S ′ for C ′
with

SDPValC′(S ′) ≥ SDPVal(S)−O(ε) = SDPOpt(C)−O(ε) ≥ Opt(C)−O(ε) ≥ β−O(ε),

with vectors in Rd, where d = poly(kq/ε).

3. Losing another O(ε) on SDPVal(S ′), discretize the coordinates of these vectors to
poly(ε/kq). (From now on, S ′ will refer to these discretized vectors.) Now for every
v ∈ V , there are only exp(poly(kq/ε)) many possible vectors ~yv,` ∈ S ′.

4. For any v, v′ ∈ C ′ with identical vectors (~yv,`)`∈D, identify them, forming C ′′, on
exp(poly(kq/ε)) many variables. [There is a potential problem here: Is C ′′ really an
instance of CSP(Γ)? There is a fix for this problem.]

5. Solve C ′′ in time exp(exp(poly(kq/ε))) to get F ′′ : V ′′ → D with ValC′′(F
′′) = Opt(C ′′).

Unfold this to F ′ : V → D for C ′. Then ValC′(F
′) = Opt(C ′′), so ValC(F

′) ≥ Opt(C ′′)−
O(ε). Hence

SDPOpt(C ′′) ≥ SDPValC′′(S ′) = SDPValC′(S ′) ≥ SDPValC(S)−O(ε) ≥ · · · ≥ β − ε.

Therefore, by definition, Opt(C ′′) ≥ SDPGapΓ(β − ε).

6

Bibliography

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
Unique Games and related problems. In Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science, pages 563–572, 2010. 15.3

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In Proceedings of the 52nd Annual
IEEE Symposium on Foundations of Computer Science, 2011. 15.3

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal
algorithms for Unique Games. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, pages 205–214, 2006. 15.3

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing, pages 767–775. ACM
Press, 2002. 15.7

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 245–254, 2008. 15.14, 15.15

[RS09] P. Raghavendra and D. Steurer. Integrality gaps for strong SDP relaxations of
Unique Games. In Foundations of Computer Science, 2009. FOCS ’09. 50th Annual
IEEE Symposium on, pages 575–585, oct. 2009. 15.14, 15.15

[She99] W. F. Sheppard. On the application of the theory of error to cases of normal distri-
bution and normal correlation. Royal Society of London Philosophical Transactions
Series A, 192:101–167, 1899. 15.2

7

	Rounding SDPs for CSPs
	Jointly Gaussian pseudoindicators
	Goemans–Williamson for Max-Cut, redux
	The Unique Games Conjecture
	(,)-decision algorithms

