
Advanced Algorithms (Gupta/Sleator) Homework 1
Date: Sept 30, 2009 Due: October 12, 2009

Please solve Problem 1, and any two of the remaining problems. Note that problems 2 & 3 naturally go
together, as do 4 & 5. If you want to solve 3 or 5 without solving 2 or 4, you can assume any results you
need from the other problem.

1. Bottleneck Paths. Given a graph with edge weights we, the bottleneck of a path P from s to t is
the edge with the smallest weight. The goal of the bottleneck-path problem is to find a path P such
that the bottleneck is as large as possible.

(a) (Don’t hand in) Show how to modify Dijkstra’s algorithm to compute the single-source bottleneck-
path problem on directed graphs in time O(m+ n log n).

(b) Given an undirected graph G and a pair s, t, show how to solve the s-t bottleneck-path problem
on G in deterministic O(m+ n) time. (Hint: Use medians.)

(c) Given an undirected graph G, show how to solve the all-pairs bottleneck-path problem on G in
near-linear deterministic time or expected linear randomized time.

2. Ackermann Shortcuts. You are given a directed path 〈v0, v1, . . . , vn〉 with n arcs, all arcs pointing
from left to right. You are allowed to add m more arcs (also going from left to right), which should
ensure that for any i < j, you can go from vi to vj using at most k arcs. (If a set of arcs achieves this
property, we say the resulting graph has “di-diameter” k.) The goal is to explore the trade-off between
the di-diameter k and the number of edges needed to achieve this di-diameter.

(a) (Don’t hand in) If k = 1, observe that you need to add in m1(n) :=
(
n+1

2

)
− n arcs.

(b) Give a solution where adding in m2(n) = n log2 n arcs guarantees a di-diameter of 2. (Hint: divide
and conquer.)

(c) Suppose you can achieve di-diameter k using mk(n) edges for some even value k ≥ 2. Show that
for any 1 < t < n, you can get

mk+2(n) ≤ 2n+mk(n/t) + (n/t) ·mk+2(t).

(d) Use the above recurrence to show that m4(n) ≤ 3n log∗ n.

(e) Recall that for a non-decreasing function g such that g(x) < x, we define

g∗(x) = min{t | g(t)(x) < 1}.

Show that if
m`(n) ≤ (2`− 1) · n · g(n)

then
m`+2(n) ≤ (2`+ 1) · n · g∗(n).

(f) define α(n) = min{k | log∗∗···∗(n) ≤ 2}, where the number of stars is k. Show that you can achieve
di-diameter α(n) by adding at most O(nα(n)) arcs.

3. LCAs, Semigroups and Partial Sums. A semigroup is a set S of elements with an associative
binary operation ◦ : S × S → S.

(a) (Don’t hand in) Given any set S with a total order defined on it, show that (S,min), (S,max) are
semigroups.

1



(b) Suppose you are given an array A[1..n] where each position contains an element from a semigroup.
You want to construct a data structure that does some preprocessing and then answers queries
of the form: given i < j, what is A[i] ◦A[i+ 1] ◦ . . . ◦A[j]? (These are called partial sum queries
over semigroups.
Show how to use the construction of good short-cutting schemes from the previous problem to
give a solution that has O(nα) preprocessing time and that answers partial sum-queries in O(α)
time per query. (You should not assume that the operation is commutative.)

(c) Given a tree T = (V,E) rooted at r ∈ V , show how you can use the data structure above to
quickly answer queries of the form: given x, y ∈ T , which node is the least common ancestor of
(x, y) in T? (Hint: Euler tour.)

4. The Boolean Product Witness Matrix problem. The input to the BPWM problem consists of
two n× n Boolean matrices A,B. The output is an integer valued matrix W such that for any integer
k > 0,

Wij = k =⇒ Aik = 1 and Bkj = 1.

I.e., Wij tells us which which entry in the ith row of A, and in the jth column of B would give us a 1
in (AB)ij .

(a) The Single Witness case. Suppose for some i, j, there is a single value k such that Aik = Bkj = 1.
For each t ∈ 1 . . . n, multiply all entries of the tth column of A by t; call the resulting matrix Â.
Show that (ÂB)ij contains the witness for the pair i, j. Conclude that for all pairs i, j which have
a single witness, this witness can be found using a single matrix multiply.

(b) Multiple Witnesses. Suppose for some i, j, the number of witnesses lies in some range [2s, 2s+1).
Consider a uniformly random subset I ⊆ [n] of size n/2s, and let AI be the matrix formed by
choosing the columns of A whose indices lie in I. Similarly let BI be the matrix formed by B
whose rows lie in I.

i. Show that for i, j, with constant probability there is a unique index k′ such that Aik′ = 1
and Bk′j = 1.

ii. By using the idea from the previous part, give an algorithm that succeeds in finding the
witness for any such pair i, j (that has about 2s witnesses) with constant probability.

iii. Suppose we know how to multiply two square N × N matrices in Nω time for all N . How
much time would it take to multiply an n× k by k×n matrix? Hence, how much time would
the above witness-finding step take?

iv. Repeat the process Θ(log n) times for this value of s. Show that with high probability, we
would have found witnesses for all pairs i, j that have ≈ 2s witnesses.

(c) Using the above two parts, and the fact that the number of witnesses for any i, j pair lies between
1 and n, give an algorithm that solves the BPWM problem in expected O(nω log n) time. You
may assume that ω > 2 for this problem.

5. Seidel’s Algorithm: Finding Paths. In this problem we will develop an algorithm to find (an
implicit) representation of all-pairs shortest paths in unweighted undirected graphs.

Since there could be graphs such that the total lengths of the
(
n
2

)
shortest paths is Ω(n3), and we want

to run in O(M(n) poly log n) = o(n3) time, we want merely want to build a successor matrix S, such
that Sij = k if a i-j shortest path is obtained by the arc (i, k) concatenated with the k-j shortest path.
We assume that we have already used the UUAPSP algorithm to compute the shortest-path distances
(dij) in G.

(a) Suppose dij = r. Show that if we set A to be adjacency matrix for G, and B to be the matrix
Bpq = 1(dpq=r−1), and W ← BPWM(A,B), then Wij is indeed the next hop in the shortest-path
from i to j.

2



(b) If the largest distance between any two nodes in G is ∆, show how ∆ − 1 BPWM computation
suffice to compute the successor matrix.

(c) Now to do better. Suppose dij = 1 (mod 3). Show that if we set A to be adjacency matrix for
G, and B to be the matrix Bpq = 1(dpq=0 (mod 3)), and W ← BPWM(A,B), then Wij is still the
next hop in the shortest-path from i to j.

(d) Use this idea to show that 3 BPWM computations suffice to compute the successor matrix.

Hence if each BPWM computation takes O(nω log n) time (as we showed in Problem #4, this problem
has shown that we can compute the successor matrix in aymptotically the same amount of time as the
time to compute the shortest path distances.

3


