Fun with Path Compression

Raimund Seidel

Universität des Saarlandes
In 1975 Bob Tarjan published

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$
With the introduction of $\alpha()$ into algorithm analysis Bob became the
With the introduction of $\alpha()$ into algorithm analysis Bob became the α-male of algorithms research.
With the introduction of $\alpha(\)$ into algorithm analysis Bob became the α-male of algorithms research.
With the introduction of $\alpha(\)$ into algorithm analysis Bob became the \textit{\textbf{\textalpha{}-male}} of algorithms research.
A two-parameter variation of the inverse Ackermann function can be defined as follows:

\[\alpha(m, n) = \min\{i \geq 1 : A(i, \lfloor m/n \rfloor) \geq \log_2 n\}. \]

This function arises in more precise analyses of the algorithms mentioned above, and gives a more refined time bound. In the disjoint-set data structure, \(m \) represents the number of operations while \(n \) represents the number of elements; in the minimum spanning tree algorithm, \(m \) represents the number of edges while \(n \) represents the number of vertices. Several slightly different definitions of \(\alpha(m, n) \) exist; for example, \(\log_2 n \) is sometimes replaced by \(n \), and the floor function is sometimes replaced by a ceiling.
Definition and properties

The Ackermann function is defined recursively for non-negative integers \(m \) and \(n \) as follows:

\[
A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0.
\end{cases}
\]

The Ackermann function can be calculated by a simple function based directly on the definition:
General path compression in forest \mathcal{F}

compress(x, y)
General path compression in forest \mathcal{F}

compress(x, y)
General path compression in forest \mathcal{F}

Definition:

$\text{compress}(x, y) = \# \text{ of nodes that get a new parent}$

Diagram:

[Diagram showing the process of path compression with nodes and arrows indicating parent-child relationships.]
Problem formulation

\(\mathcal{F} \) forest on node set \(X \)

\(C \) sequence of compress operations on \(\mathcal{F} \)

|\(C \)| = \# of true compress operations in \(C \)

\[
\text{cost}(C) = \sum(\text{cost of individual operations})
\]

How large can \(\text{cost}(C) \) be at most, in terms of \(|X| \) and \(|C| \) ?
Dissection of a forest \mathcal{F} with node set X:

- partition of X into “top part” X_t
 and “bottom part” X_b

so that top part X_t is “upwards closed”,

i.e. $x \in X_t \Rightarrow$ every ancestor of x is in X_t also
Dissection of a forest \mathcal{F} with node set X:

partition of X into “top part” X_t
and “bottom part” X_b

so that top part X_t is “upwards closed”,

i.e. $x \in X_t \Rightarrow$ every ancestor of x is in X_t also
Dissection of a forest \mathcal{F} with node set X:

- partition of X into “top part” X_t and “bottom part” X_b

so that top part X_t is “upwards closed”, i.e. $x \in X_t \Rightarrow$ every ancestor of x is in X_t also

Note: X_t, X_b dissection for \mathcal{F}

\mathcal{F}' obtained from \mathcal{F} by sequence of path compressions \Rightarrow X_t, X_b is dissection for \mathcal{F}'
Main Lemma:

C ... sequence of operations on F with node set X

X_t, X_b dissection for F inducing subforests F_t, F_b
Main Lemma:

C sequence of operations on \mathcal{F} with node set X

X_t, X_b dissection for \mathcal{F} inducing subforests $\mathcal{F}_t, \mathcal{F}_b$

$\Rightarrow \exists$ compression sequences

C_b for \mathcal{F}_b and C_t for \mathcal{F}_t

with

$$|C_b| + |C_t| \leq |C|$$

and

$$\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t|$$
Proof: 1) How to get C_b and C_+ from C:
Proof: 1) How to get C_b and C_t from C:

compression paths from C

case 1: $\uparrow \downarrow$ into C_t
Proof: 1) How to get C_b and C_+ from C:

compression paths from C

\begin{align*}
\text{case 1:} & & Y & & Y & & \text{into } C_+ \\
& & \downarrow & & \downarrow & & \\
& & X & & X & & \\
\text{case 2:} & & Y & & Y & & \text{into } C_b \\
& & \downarrow & & \downarrow & & \\
& & X & & X & &
\end{align*}
Proof: 1) How to get C_b and C_t from C:

compression paths from C

case 1: Y \downarrow X \downarrow X into C_t

case 2: Y \downarrow X into C_b

case 3: Y \downarrow X' into C_t

∞ into C_b
“rootpath compress”

compress(\(x, \infty\))
“rootpath compress”

\[
\text{compress}(x, \infty) = \text{# of nodes that get a new parent}
\]

\[= 0\]
Proof:

\[|C_b| + |C_t| \leq |C| \]

compression paths from \(C \)

case 1:

\[\text{into } C_t \]

case 2:

\[\text{into } C_b \]

case 3:

\[\text{into } C_b \]
\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| \]

- **Green node gets new green parent:** accounted by \(\text{cost}(C_t) \)
- **Brown node gets new brown parent:** accounted by \(\text{cost}(C_b) \)
- **Brown node gets new green parent:** accounted by \(|X_b| \)
- **Brown node gets new green parent:** accounted by \(|C_t| \)

- **For the first time**
- **Again**
\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| \]

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time

brown node gets new green parent: again

accounted by \text{cost}(C_t)

accounted by \text{cost}(C_b)

accounted by \ |X_b| - \#\text{roots}(F_b)

accounted by \ |C_t|
\[
\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| - \#\text{roots}(\mathcal{F}_b) + |C_t|
\]

green node gets new green parent: accounted by \text{cost}(C_t)

brown node gets new brown parent: accounted by \text{cost}(C_b)

brown node gets new green parent: accounted by \(|X_b| - \#\text{roots}(\mathcal{F}_b)|

brown node gets new green parent: for the first time

brown node gets new green parent: again accounted by \(|C_t|\)
Main Lemma':

\(C \) ... sequence of operations on \(\mathcal{F} \) with node set \(X \)
\(X_t, X_b \) dissection for \(\mathcal{F} \) inducing subforests \(\mathcal{F}_t, \mathcal{F}_b \)

\[\Rightarrow \exists \text{ compression sequences} \]
\[C_b \text{ for } \mathcal{F}_b \text{ and } C_t \text{ for } \mathcal{F}_t \]
with

\[|C_b| + |C_t| \leq |C| \]

and

\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| - \#\text{roots}(\mathcal{F}_b) + |C_t| \]
Path compression and union by rank

Def: \(F \) forest, \(x \) node in \(F \)
 \(r(x) = \) height of subtree rooted at \(x \)
 \((r(leaf) = 0) \)

\(F \) is a rank forest, if

for every node \(x \)
 for every \(i \) with \(0 \leq i < r(x) \),
 there is a child \(y_i \) of \(x \) with \(r(y_i) = i \).
Path compression and union by rank

Def: \mathcal{F} forest, x node in \mathcal{F}

\[r(x) = \text{height of subtree rooted at } x \]

($r(\text{leaf}) = 0$)

\mathcal{F} is a rank forest, if

for every node x

for every i with $0 \leq i < r(x)$,

there is a child y_i of x with $r(y_i) = i$.

Note: Union by rank produces rank forests!
Path compression and union by rank

Def: \(\mathcal{F} \) forest, \(x \) node in \(\mathcal{F} \)
\[
\begin{align*}
r(x) &= \text{height of subtree rooted at } x \\
&= 0 \quad \text{(leaf)}
\end{align*}
\]

\(\mathcal{F} \) is a **rank forest**, if

for every node \(x \)

for every \(i \) with \(0 \leq i < r(x) \),

there is a child \(y_i \) of \(x \) with \(r(y_i) = i \).

Note: Union by rank produces rank forests!

Lemma: \(r(x) = r \Rightarrow x \) has at least \(r \) children.
Path compression and union by rank

Def: \(\mathcal{F} \) forest, \(x \) node in \(\mathcal{F} \)

\[r(x) = \text{height of subtree rooted at } x \]

(\(r(\text{leaf}) = 0 \))

\(\mathcal{F} \) is a rank forest, if

for every node \(x \)

for every \(i \) with \(0 \leq i < r(x) \),

there is a child \(y_i \) of \(x \) with \(r(y_i) = i \).

Note: Union by rank produces rank forests!

Lemma: \(r(x) = r \) \(\Rightarrow \) \(x \) has at least \(r \) children and \(\geq 2^r \) descendants.
Inheritance Lemma:

\mathcal{F} rank forest with maximum rank r and node set X

$s \in \mathbb{N}$:

$X_{>s} = \{ x \in X \mid r(x) > s \}$ \quad $\mathcal{F}_{>s}$

$X_{\leq s} = \{ x \in X \mid r(x) \leq s \}$ \quad $\mathcal{F}_{\leq s}$

induced forests
Inheritance Lemma:

$$\mathcal{F}$$ rank forest with maximum rank \(r \) and node set \(X \)

\[
\begin{align*}
 s \in \mathbb{N}: & \quad X_{>s} = \{ x \in X \mid r(x) > s \} & \mathcal{F}_{>s} & \text{induced forests} \\
 X_{\leq s} = \{ x \in X \mid r(x) \leq s \} & \mathcal{F}_{\leq s}
\end{align*}
\]

i) \(X_{\leq s} , X_{>s} \) is a dissection for \(\mathcal{F} \)

ii) \(\mathcal{F}_{\leq s} \) is a rank forest with maximum rank \(\leq s \)

iii) \(\mathcal{F}_{>s} \) is a rank forest with maximum rank \(\leq r-s-1 \)

iv) \(|X_{>s}| \leq |X| / 2^{s+1} \)
Inheritance Lemma:

\(F \) rank forest with maximum rank \(r \) and node set \(X \)

\(s \in \mathbb{N} \):

\[X_{>s} = \{ x \in X \mid r(x) > s \} \quad F_{>s} \quad \text{induced forests} \]

\[X_{\leq s} = \{ x \in X \mid r(x) \leq s \} \quad F_{\leq s} \]

i) \(X_{\leq s}, X_{>s} \) is a dissection for \(F \)

ii) \(F_{\leq s} \) is a rank forest with maximum rank \(\leq s \)

iii) \(F_{>s} \) is a rank forest with maximum rank \(\leq r-s-1 \)
$f(m,n,r) =$ maximum cost of any compression sequence C, with $|C|=m$, in rank forest \mathcal{F} with n nodes and maximum rank r.
\[f(m, n, r) = \text{maximum cost of any compression sequence } C, \text{ with } |C| = m, \text{ in rank forest } \mathcal{F} \text{ with } n \text{ nodes and maximum rank } r. \]

Trivial bounds:

\[f(m, n, r) \leq (r-1) \cdot n \]
\[f(m, n, r) \leq (r-1) \cdot m \]
\[
\text{cost}(C) \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \nats(F_b) + |C_t|
\]
\[
\begin{align*}
\text{cost}(C) & \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(F_b) + |C_t| \\
& \leq f(m_t, n_t, r-s-1) +
\end{align*}
\]
\[
\begin{align*}
\text{cost}(C) & \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(\mathcal{F}_b) + |C_t| \\
& \leq f(m_t, n_t, r-s-1) + f(m_b, n_b, s) +
\end{align*}
\]
\[
\begin{aligned}
\text{cost}(C) & \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(F_b) + |C_t| \\
& \leq f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t -
\end{aligned}
\]
\[
\text{cost}\left(C \right) \leq \text{cost}\left(C_t \right) + \text{cost}\left(C_b \right) + |X_b| - \#\text{rts}(F_b) + |C_t|
\]

\[
\leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n-n_t - (s+1)n_t +
\]
\[
\begin{align*}
\text{cost}(C) & \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(F_b) + |C_t| \\
& \leq f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1)n_t + \\
\end{align*}
\]

Each node in \(F_t \) has at least \(s+1 \) children in \(F_b \), and they must all be different roots of \(F_b \).
\[\begin{align*}
 r & \left\{ \begin{array}{l}
 \mathcal{F}_t \\
 \mathcal{F}_b \\
 \end{array} \right\} \begin{array}{l}
 r - s - 1 < r \\
 s \\
 \end{array} \quad |X_{> s}| = n_t \\
 |X_{\leq s}| = n_b = n - n_t \\
 |C_t| = m_t \\
 |C_b| = m_b
 \end{align*} \]

\[
 \text{cost}(C) \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(\mathcal{F}_b) + |C_t|
\]

\[
 \leq f(m_t, n_t, r - s - 1) + f(m_b, n_b, s) + n - n_t - (s + 1) \cdot n_t + m_t
\]

Each node in \(\mathcal{F}_t \) has at least \(s + 1 \) children in \(\mathcal{F}_b \), and they must all be different roots of \(\mathcal{F}_b \).
\[\begin{align*}
\text{cost}(C) & \leq \text{cost}(C_t) + \text{cost}(C_b) + |X_b| - \#\text{rts}(F_b) + |C_t| \\
& \leq f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n - n_t - (s+1) \cdot n_t + m_t
\end{align*}\]

Each node in \(F_t\) has at least \(s+1\) children in \(F_b\), and they must all be different roots of \(F_b\).

\[f(m, n, r) \leq f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n - (s+2) \cdot n_t + m_t\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]
\[f(m,n,r) \leq f(m_+,n_+,r-s-1) + f(m_-,n_-,s) + n - (s+2) \cdot n_+ + m_+ \]

\[n_+ + n_- = n \]
\[m_+ + m_- \leq m \]
\[0 \leq s < r \]

Assume: \[f(\mu,\nu,\rho) \leq k \cdot \mu + \nu \cdot g(\rho) \]
\[
\begin{align*}
f(m,n,r) &\leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \\
\text{Assume: } &\quad f(\mu,\nu,\rho) \leq k \cdot \mu + \nu \cdot g(\rho) \\
f(m,n,r) &\leq k \cdot m_t + n_t \cdot g(r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \\
&\leq k \cdot m_t + n_t \cdot g(r) + f(m_b,n_b,s) + n - s \cdot n_t + m_t
\end{align*}
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m \\
0 &\leq s < r
\end{align*}
\]

Assume: \(f(\mu,\nu,\rho) \leq k \cdot \mu + \nu \cdot g(\rho) \)

\[f(m,n,r) \leq k \cdot m_t + n_t \cdot g(r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[\leq k \cdot m_t + n_t \cdot g(r) + f(m_b,n_b,s) + n - s \cdot n_t + m_t \]

choose \(s = g(r) \)
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]

Assume: \(f(\mu,\nu,\rho) \leq k \cdot \mu + \nu \cdot g(\rho) \)

\[f(m,n,r) \leq k \cdot m_t + n_t \cdot g(r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]
\[\leq k \cdot m_t + n_t \cdot g(r) + f(m_b,n_b,s) + n - s \cdot n_t + m_t \]

choose \(s = g(r) \)
\[f(m,n,r) \leq (k+1) \cdot m_t + f(m_b,n_b,s) + n \]
\[\leq (k+1) \cdot m_t + f(m_b,n,s) + n \]
\[s = g(r) \]

\[f(m, n, r) \leq (k+1) \cdot m + f(m_b, n, s) + n \]
\[s = g(r) \]
\[f(m, n, r) \leq (k+1) \cdot m_\perp + f(m_b, n, s) + n \quad \text{if} \quad -(k+1) \cdot (m_b + m_\perp) \]
\[s = g(r) \]

\[f(m, n, r) \leq (k+1) \cdot m_+ + f(m_b, n, s) + n \quad \text{for} \quad -(k+1) \cdot (m_b + m_+) \]
\[s = g(r) \]

\[f(m, n, r) \leq (k+1) \cdot m + f(m_b, n, s) + n \]

\[-(k+1) \cdot (m_b + m) \]

\[f(m, n, r) - (k+1) \cdot m \leq f(m_b, n, s) - (k+1) \cdot m_b + n \]
\[s = g(r) \]

\[f(m,n,r) \leq (k+1) \cdot m + f(m_b,n,s) + n \quad \text{-(k+1)} \cdot (m_b + m_t) \]

\[f(m,n,r) - (k+1) \cdot m \leq f(m_b,n,s) - (k+1) \cdot m_b + n \]

\[\phi(m,n,r) \leq \phi(m_b,n,g(r)) + n \]
\[s = g(r) \]

\[
f(m,n,r) \leq (k+1) \cdot m_+ + f(m_b,n,s) + n \quad - (k+1) \cdot (m_b + m_+) \]

\[
f(m,n,r) - (k+1) \cdot m \leq f(m_b,n,s) - (k+1) \cdot m_b + n
\]

\[
\phi(m,n,r) \leq \phi(m_b,n,g(r)) + n
\]

\[
\phi(m,n,r) \leq n \cdot g^*(r)
\]
\[s = g(r) \]

\[f(m, n, r) \leq (k+1) \cdot m_t + f(m_b, n, s) + n \]

\[-(k+1) \cdot (m_b + m_t) \]

\[f(m, n, r) - (k+1) \cdot m \leq f(m_b, n, s) - (k+1) \cdot m_b + n \]

\[\phi(m, n, r) \leq \phi(m_b, n, g(r)) + n \]

\[\phi(m, n, r) \leq n \cdot g^*(r) \]

\[f(m, n, r) \leq (k+1) \cdot m + n \cdot g^*(r) \]
Shifting Lemma:

If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)

then also \(f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \)
Shifting Lemma:

If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \)

Shifting Corollary:

If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r) \)
for any \(i \geq 0 \)
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g_{**...**}^{i}(r) \)
for any \(i \geq 0 \)
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot \underbrace{g ** ... *}_{i}(r) \)
for any \(i \geq 0 \)

Trivial bound: \(f(m,n,r) \leq n \cdot (r-1) \)
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)

then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**} \cdot \cdot \cdot *(r) \)

for any \(i \geq 0 \)

Trivial bound: \(f(m,n,r) \leq n \cdot (r-1) \)

\[= 0 \cdot m + n \cdot (r-1) \]
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\ldots\ldots}(r) \)
for any \(i \geq 0 \)

Trivial bound: \(f(m,n,r) \leq n \cdot (r-1) \)
\[= 0 \cdot m + n \cdot (r-1) \]

\(g(r) = r-1 \)
\(g^{\ast}(r) = r-1 \)
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[\begin{align*}
 n_t + n_b &= n \\
 m_t + m_b &\leq m \\
 0 \leq s &< r
\end{align*} \]

Trivial bound: \(f(\mu,\nu,\rho) \leq \nu \cdot (\rho-1) \)
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]

Trivial bound: \[f(\mu,\nu,\rho) \leq \nu \cdot (\rho-1) \]

\[f(m,n,r) \leq n_t \cdot (r-s-2) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t \]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[\begin{align*}
 n_t + n_b &= n \\
 m_t + m_b &\leq m
\end{align*} \quad 0 \leq s < r \]

Trivial bound: \[f(\mu,\nu,\rho) \leq \nu \cdot (\rho-1) \]

\[f(m,n,r) \leq n_t \cdot (r-s-2) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]
\[\leq n_t \cdot (r-2s-4) + f(m_b,n_b,s) + n + m_t \]
\[f(m,n,r) \leq f(m_t,n_r,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]

Trivial bound: \(f(\mu,\nu,\rho) \leq \nu \cdot (\rho - 1) \)

\[
\begin{align*}
f(m,n,r) & \leq n_t \cdot (r-s-2) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \[\leq n_t \cdot (r-2s-4) + f(m_b,n_b,s) + n + m_t \]
\end{align*}
\]

set \(s = \lfloor r/2 \rfloor \)
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)n_t + m_t \]

\[n_t + n_b = n \quad 0 \leq s < r \]
\[m_t + m_b \leq m \]

Trivial bound: \[f(\mu,\nu,\rho) \leq \nu(\rho-1) \]

\[f(m,n,r) \leq n_t(r-s-2) + f(m_b,n_b,s) + n - (s+2)n_t + m_t \]
\[\leq n_t(r-2s-4) + f(m_b,n_b,s) + n + m_t \]

set \(s = \lfloor r/2 \rfloor \)

\[f(m,n,r) \leq f(m_b,n_b,r/2) + n + m_t \]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m \\
0 &\leq s < r
\end{align*}
\]

Trivial bound: \[f(\mu,\nu,\rho) \leq \nu \cdot (\rho-1) \]

\[
\begin{align*}
f(m,n,r) &\leq n_t \cdot (r-s-2) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \\
&\leq n_t \cdot (r-2s-4) + f(m_b,n_b,s) + n + m_t
\end{align*}
\]

set \(s = \lfloor r/2 \rfloor \)

\[
\begin{align*}
f(m,n,r) &\leq f(m_b,n_b,r/2) + n + m_t \\
f(m,n,r) - m &\leq f(m_b,n_b,r/2) - m_b + n
\end{align*}
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]

Trivial bound: \[f(\mu,\nu,\rho) \leq \nu \cdot (\rho-1) \]

\[f(m,n,r) \leq n_t \cdot (r-s-2) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]
\[\leq n_t \cdot (r-2s-4) + f(m_b,n_b,s) + n + m_t \]

set \[s = \lfloor r/2 \rfloor \]

\[f(m,n,r) \leq f(m_b,n_b,r/2) + n + m_t \]

\[f(m,n,r) - m \leq f(m_b,n_b,r/2) - m_b + n \]

\[f(m,n,r) \leq m + n \cdot \log r \]
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r) \)
for any \(i \geq 0 \)
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)
then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\ldots*}(r) \)
for any \(i \geq 0 \)

We know bound: \(f(m,n,r) \leq m + n \cdot \log r \)
If \(f(m,n,r) \leq k \cdot m + n \cdot g(r) \)

then also \(f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r) \)

for any \(i \geq 0 \)

We know bound: \(f(m,n,r) \leq m + n \cdot \log r \)

Therefore for any \(i \geq 0 \):

\[
f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{**...*}(r)
\]
For any $i \geq 0$:
\[
f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{** \ldots *}(r)
\]
For any $i \geq 0$: $f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{i}(r)$

Choice of i:
For any $i \geq 0$:

\[f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{\ldots}(r) \]

Choice of i:

Define $\alpha(r) = \min\{ i \mid \log^{\ldots}(r) \leq i \}$
For any $i \geq 0$:
$$f(m, n, r) \leq (i+1) \cdot m + n \cdot \log^{**\cdots*}(r)$$

Choice of i:

Define $\alpha(r) = \min\{ i \mid \log^{**\cdots*}(r) \leq i \}$

$$f(m, n, r) \leq (m+n)(1+\alpha(r))$$
For any $i \geq 0$:

$$f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{** \cdots} (r)$$

Choice of i:

Define $\alpha(r) = \min\{ i \mid \log^{** \cdots} (r) \leq i \}$

$$f(m,n,r) \leq (m+n)(1+\alpha(r))$$

$$\leq (m+n)(1+\alpha(\log n))$$
For any \(i \geq 0 \): \[f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{**\ldots\ast}(r) \]

Choice of \(i \):

Define \(\alpha(m,n,r) = \min\{ i \mid \log^{**\ldots\ast}(r) \leq m/n \} \)
For any $i \geq 0$:
\[f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{**\ldots\ast}(r) \]

Choice of i:

Define $\alpha(m,n,r) = \min\{i \mid \log^{**\ldots\ast}(r) \leq m/n\}$

\[f(m,n,r) \leq m(2 + \alpha(m,n,r)) \]
For any $i \geq 0$:

$$f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{**\ldots\ast}(r)$$

Choice of i:

Define $\alpha(m,n,r) = \min\{i \mid \log^{**\ldots\ast}(r) \leq m/n\}$

$$f(m,n,r) \leq m(2+\alpha(m,n,r))$$

Define $\alpha(m,n) = \min\{i \mid \log^{**\ldots\ast}(\log n) \leq m/n\}$
For any $i \geq 0$:

$$f(m,n,r) \leq (i+1) \cdot m + n \cdot \log^{*\cdots*}(r)$$

Choice of i:

Define $\alpha(m,n,r) = \min\{ i \mid \log^{*\cdots*}(r) \leq m/n \}$

$$f(m,n,r) \leq m(2+\alpha(m,n,r))$$

Define $\alpha(m,n) = \min\{ i \mid \log^{*\cdots*}(\log n) \leq m/n \}$

$$f(m,n,r) \leq m(2+\alpha(m,n))$$
Good bounds for \(f(m,n,r) \) when \(r \) is small

\[
\begin{align*}
 f(m,n,0) &= 0 \\
 f(m,n,1) &= 0 \\
 f(m,n,2) &\leq m
\end{align*}
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[n_t + n_b = n \]
\[m_t + m_b \leq m \]
\[0 \leq s < r \]

choose \(s = 2 \):

\[f(m,n,r) \leq f(m_t,n_t,r-3) + f(m_b,n_b,2) + n - 4 \cdot n_t + m_t \]
$$f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)n_t + m_t$$

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m \\
0 \leq s &< r
\end{align*}
\]

choose \(s = 2\):

\[
f(m,n,r) \leq f(m_t,n_t,r-3) + f(m_b,n_b,2) + n - 4n_t + m_t
\]

\[
\leq n_t(r-4) \quad \leq m_b
\]
$$f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)n_t + m_t$$

$$n_t + n_b = n$$
$$m_t + m_b \leq m$$
$$0 \leq s < r$$

choose $s = 2$:

$$f(m,n,r) \leq f(m_t,n_t,r-3) + f(m_b,n_b,2) + n - 4n_t + m_t$$

$$\leq n_t(r-4)$$

$$\leq m_b$$

$$f(m,n,r) \leq m + n + (r-8)n_t$$
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t \]

\[
\begin{align*}
 n_t + n_b &= n \\
 m_t + m_b &\leq m \\
 0 &\leq s < r
\end{align*}
\]

choose \(s = 2 \):

\[
f(m,n,r) \leq \underbrace{f(m_t,n_t,r-3)}_{\leq n_t(r-4)} + \underbrace{f(m_b,n_b,2)}_{\leq m_b} + n - 4\cdot n_t + m_t
\]

\[f(m,n,r) \leq m + n + (r-8)n_t \]

\[f(m,n,r) \leq m + n \quad \text{for } r \leq 8, \text{ i.e. for } n < 512 \]
f(m, n, r) \leq n(r-1)
\[f(m,n,r) \leq n(r-1) \]

\[
\begin{align*}
n=4, r=1: & \text{ bound } 4(2-1) = 4 \\
\text{actual bound: } & 1
\end{align*}
\]
\[f(m,n,r) \leq n(r-1) \]

\[n=4, r=1: \text{ bound } 4(2-1) = 4 \]

actual bound: 1

bound \(n(2-1) = n \)

actual bound: \(n-3 \)
\[f(m,n,r) \leq n(r-1) \]

n=4, r=1: bound \(4(2-1) = 4\)

actual bound: \(1\)

bound \(n(2-1) = n\)

actual bound: \(n-3\)

\[f(m,n,2) \leq n-3 \]
\[f(m,n,3) \leq 2n-11 \]
\[f(m,n,r) \leq (r-1)n-(r2^{r-1}-1) \]
“trivial” bound for rank forest with n nodes and with max rank r, where there are R_i trees of rank i, for $0 \leq i \leq r$.

\[n(r-1) - \sum_{0 \leq i \leq r} R_i \cdot C(r,i) \]

\[C(r,i) = 2^{i-1}(2r-i)-1 \]
\[
f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t
\]

\[
n_t + n_b = n
m_t + m_b \leq m \quad 0 \leq s < r
\]

choose \(s = 8 \):

\[
f(m,n,r) \leq f(m_t,n_t,r-9) + f(m_b,n_b,8) + n - 10\cdot n_t + m_t
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t \]

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m \\
0 \leq s < r
\end{align*}
\]

choose \(s = 8 \):

\[
\begin{align*}
f(m,n,r) &\leq f(m_t,n_t,r-3) + f(m_b,n_b,8) + n - 10\cdot n_t + m_t \\
&\leq n_t(r-4) - \sum R_i \cdot C(r-3,i) \\
&\leq m_b + n_b
\end{align*}
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t \]

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m
\end{align*}
\]

\[0 \leq s < r \]

Choose \(s = 8 \):

\[f(m,n,r) \leq f(m_t,n_t,r-3) + f(m_b,n_b,8) + n - 10 \cdot n_t + m_t \]

\[
\leq n_t(r-4) - \sum R_i \cdot C(r-3,i)
\leq m_b + n_b
\]

\[R_i \geq n_t \text{ for each } i \]
\[
f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t
\]

\[
\begin{align*}
n_t + n_b &= n \\
m_t + m_b &\leq m \\
0 &\leq s < r
\end{align*}
\]

choose \(s = 8 \):

\[
f(m,n,r) \leq \underbrace{f(m_t,n_t,r-3)}_{\leq n_t(r-4) - \sum R_i \cdot C(r-3,i)} + \underbrace{f(m_b,n_b,8)}_{\leq m_b + n_b} + n - 10 \cdot n_t + m_t
\]

\[
R_i \geq n_t \text{ for each } i
\]

\[
f(m,n,r) \leq m + 2n + n_t(r-202)
\]
\[f(m,n,r) \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2) \cdot n_t + m_t \]

\[
\begin{align*}
 n_t + n_b &= n \\
 m_t + m_b &\leq m \\
 0 \leq s &< r
\end{align*}
\]

choose \(s = 8 \):

\begin{align*}
 f(m,n,r) &\leq f(m_t,n_t,r-3) + f(m_b,n_b,8) + n - 10 \cdot n_t + m_t \\
 &\leq n_t(r-4) - \sum R_i \cdot C(r-3,i) \\
 &\leq m_b + n_b
\end{align*}

\(R_i \geq n_t \) for each \(i \)

\[f(m,n,r) \leq m + 2n + n_t(r-202) \]

\[f(m,n,r) \leq m + 2n \quad \text{for } r \leq 202, \text{i.e. for } n < 2^{203} \]
This approach yields

\[f(m,n,r) \leq m + n(\log^* r - c) \]
Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

linking by weight and path compression
Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

linking by weight and path compression

linking by rank and generalized path compaction
Heuristic 2': Path compaction

when performing a \texttt{Find(x)} operation make
“all” nodes in the “findpath” child of some node
further up.
Heuristic 2': Path compaction

when performing a \texttt{Find(x)} operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a \textbf{Find}(x) operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a \texttt{Find}(x) operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a Find(x) operation make “all” nodes in the “findpath” child of some node further up.

1
2
3
4
5
6
7
8
Heuristic 2': Path compaction

when performing a \texttt{Find}(x) operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a Find(x) operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a $\text{Find}(x)$ operation make “all” nodes in the “findpath” child of some node further up.
Heuristic 2': Path compaction

when performing a $\textbf{Find}(x)$ operation make “all” nodes in the “findpath” child of some node further up.
Main Lemma:

\mathcal{C} ... sequence of compress operations on \mathcal{F} with node set X

X_t, X_b dissection for \mathcal{F} inducing subforests $\mathcal{F}_t, \mathcal{F}_b$

$\Rightarrow \exists$ compression sequences \mathcal{C}_b for \mathcal{F}_b and \mathcal{C}_t for \mathcal{F}_t

with

$$|C_b| + |C_t| \leq |C|$$

and

$$\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t|$$
Main Lemma:
C ... sequence of compaction operations on F with node set X
X_t, X_b dissection for F inducing subforests F_t, F_b

$\Rightarrow \exists$ compaction sequences
C_b for F_b and C_t for F_t
with

$$|C_b| + |C_t| \leq |C|$$

and

$$\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| + \sum_{v \in X_b} \text{height}(v)$$
Proof:

\[|C_b| + |C_t| \leq |C| \]

compression paths from \(C \)

case 1:

\[\downarrow \quad \downarrow \quad \text{into } C_t \]

case 2:

\[\downarrow \quad \downarrow \quad \text{into } C_b \]

case 3:

\[\downarrow \quad \downarrow \quad \text{into } C_t \]

\[\downarrow \quad \downarrow \quad \text{into } C_b \]
Proof:

\[|C_b| + |C_t| \leq |C| \]

compaction paths from \(C \)

- **case 1:**
 - \(Y \)
 - \(X \)

- **case 2:**
 - \(Y \)
 - \(X \)

- **case 3:**
 - \(Y \)
 - \(X' \)

\(\infty \) into \(C_b \)

\(\infty \) into \(C_t \)
Compaction of path that crosses dissection boundary:
Compaction of path that crosses dissection boundary:

Charge getting a new brown parent to the topmost brown node v that gets a green parent for the first time.
Compaction of path that crosses dissection boundary:

Charge getting a new brown parent to the topmost brown node v that gets a green parent for the first time.

happens to v at most once; v can be charged at most $\text{height}(v)$
Main Lemma:

\(C \) ... sequence of compaction operations on \(\mathcal{F} \) with node set \(X \)

\(X_t, X_b \) dissection for \(\mathcal{F} \) inducing subforests \(\mathcal{F}_t, \mathcal{F}_b \)

\(\Rightarrow \exists \) compaction sequences

\(C_b \) for \(\mathcal{F}_b \) and \(C_t \) for \(\mathcal{F}_t \)

with

\[|C_b| + |C_t| \leq |C| \]

and

\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| + \sum_{v \in X_b} \text{height}(v) \]
\[
\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| + \sum_{v \in X_b} \text{height}(v)
\]

In a rank forest \(\sum_{v \in X_b} \text{height}(v) \leq |X_b| \)
\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| + \sum_{v \in X_b} \text{height}(v) \]

In a rank forest \(\sum_{v \in X_b} \text{height}(v) \leq |X_b| \)
\[\leq \#	ext{ children of } v \]
\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + |X_b| + |C_t| \]

\[+ \sum_{v \in X_b} \text{height}(v) \]

In a rank forest \(\sum_{v \in X_b} \text{height}(v) \leq |X_b| \)

\[\leq \]

\# children of \(v \)

\[\text{cost}(C) \leq \text{cost}(C_b) + \text{cost}(C_t) + 2 \cdot |X_b| + |C_t| \]
Corollary:
Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compaction takes time at most

$$O(m \cdot \alpha(m,n) + n)$$
Open problems:

• top-down approach for lower bounds