
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla
Topic: Finding Perfect Matchings Date: 20 Sep, 2004
Scribe: Viswanath Nagarajan

3.1 The existence of perfect matchings in bipartite graphs

We will look at an efficient algorithm that determines whether a perfect matching exists in a given
bipartite graph or not. This algorithm and its extension to finding perfect matchings is due to
Mulmuley, Vazirani and Vazirani (1987). The algorithm is based on polynomial identity testing
(see the last lecture for details on this).

A bipartite graph G = (U, V,E) is specified by two disjoint sets U and V of vertices, and a set E
of edges between them. A perfect matching is a subset of the edge set E such that every vertex
has exactly one edge incident on it. Since we are interested in perfect matchings in the graph G,
we shall assume that |U | = |V | = n. Let U = {u1, u2, · · · , un} and V = {v1, v2, · · · , vn}. The
algorithm we study today has no error if G does not have a perfect matching (no instance), and
errs with probability at most 1

2 if G does have a perfect matching (yes instance). This is unlike the
algorithms we saw in the previous lecture, which erred on no instances.

Definition 3.1.1 The Tutte matrix of bipartite graph G = (U, V,E) is an n × n matrix M with
the entry at row i and column j,

Mi,j =

{

0 if(ui, uj) /∈ E
xi,j if(ui, uj) ∈ E

The determinant of the Tutte matrix is useful in testing whether a graph has a perfect matching
or not, as the following claim shows. Note that we do not think of this determinant as taking on
some numeric value, but purely as a function of the variables xi,j.

Claim 3.1.2 Det(M)6= 0 ⇐⇒ There exists a perfect matching in G

Proof: We have the following expression for the determinant :

Det(M) =
∑

π∈Sn

(−1)sgn(π)Πn
i=1Mi,π(i)

where Sn is the set of all permutations on [n], and sgn(π) is the sign of the permutation π. There
is a one to one correspondence between a permutation π ∈ Sn and a (possible) perfect matching
{(u1, vπ(1)), (u2, vπ(2)), · · · , (un, vπ(n))} in G. Note that if this perfect matching does not exist in
G (i.e. some edge (ui, vπ(i)) /∈ E) then the term corresponding to π in the summation is 0. So we
have

Det(M) =
∑

π∈P

(−1)sgn(π)Πn
i=1xi,π(i)

where P is the set of perfect matchings in G. This is clearly zero if P = ∅, i.e., if G has no
perfect matching. If G has a perfect matching, there is a π ∈ P and the term corresponding to π is

1

Πn
i=1xi,π(i) 6= 0. Additionally, there is no other term in the summation that contains the same set

of variables. Therefore, this term is not cancelled by any other term. So in this case, Det(M) 6= 0.

This claim gives us an easy way to test a bipartite graph for a perfect matching — we use the
polynomial identity testing algorithm of the previous lecture on the Tutte matrix of G. We accept
if the determinant is not identically 0, and reject otherwise. Note that Det(M) has degree at most
n. So we can test its identity on the field Zp, where p is a prime number larger than 2n. From the
analysis of the polynomial testing algorithm, we have the following :

• G has no perfect matching =⇒ Pr[accept]=0

• G has a perfect matching =⇒ Pr[accept]≥ 1
2

The above algorithm shows that Perfect Matching for bipartite graphs is in RP. The general case
is left as a homework exercise.

3.2 A parallel algorithm for finding perfect matchings

The algorithm for checking the existence of a perfect matching described in the previous section
can be easily converted to one that actually computes a perfect matching as follows:

1. Pick (ui, vj) ∈ E.

2. Check if G\{ui, vj} has a perfect matching.

3. If YES, output (ui, vj) to be in the matching and recurse on G\{ui, vj} (graph obtained after
the removal of vertices ui and vj).

4. If NO, recurse on G − (ui, vj) (graph obtained after removing the edge (ui, vj)).

Note that this algorithm is inherently sequential in that we cannot speed up its running time
considerably by using multple processors.

We now extend the algorithm of the previous section to one that runs efficiently on parallel proces-
sors. The model here is that there are polynomially many processors, and each is to run in parallel
in poly-logarithmic time. It is known that there is an efficient parallel algorithm for computing
the determinant of a matrix, and we will use this fact to obtain a parallel algorithm for finding a
perfect matching.

We start with the following idea for a parallel algorithm : There is a processor for every edge
(ui, vj) that tests (in parallel) if edge (ui, vj) is in some perfect matching or not. If this edge is in
some perfect matching, the processor outputs (ui, vj), else it outputs nothing.

We are immediately faced with the problem that there may be several perfect matchings in the
graph, and the resulting output is not a matching. The algorithm may in fact return all the edges
in the graph. So instead of testing whether an edge (ui, vj) is in some perfect matching or not,
we want to test whether an edge (ui, vj) is in a specific perfect matching or not. The way we so

2

this is to put random weights on the edges of the graph and test for the minimum weight perfect
matching. We will see that the minimum weight perfect matching is unique with a good probability.
This follows from the following Isolation Lemma.

Lemma 3.2.1 Let S = {e1, · · · , em} and S1, · · ·Sk ⊆ S. For every element ei there is a weight wi

picked u.a.r. from {0, 1, · · · , 2m − 1}. The weight of subset Sj is w(Sj) =
∑

ei∈Sj
wi. Then,

Pr[minimum weight set among S1, · · · , Sk is unique] ≥ 1
2

Proof: We will estimate the probability that the minimum weight set is not unique. Let us define
an element ei to be tied if

min
Sj |ei∈Sj

w(Sj) = min
Sj |ei /∈Sj

w(Sj)

It is easy to see that there exists a tied element if and only if the minimum weight subset is not
unique. Below we bound the probability that a fixed element ei is tied. The result will then follow
using a union bound.

We use the principle of deferred decisions. Let us fix the weights w1, · · · , wm of all the elements
except wi. We want to bound Prwi

[ei is tied |w1, · · · , wi−1, wi+1, wm]. Let

W− = min
Sj |ei /∈Sj

w(Sj)

W+ = min
Sj |ei∈Sj

w(Sj)

with wi assigned the value 0. It is easy to see that ei is tied iff W− = W+ + wi. So,
Prwi

[ei is tied |w1, · · · , wi−1, wi+1, wm] = Prwi
[wi = W− − W+ |w1, · · · , wi−1, wi+1, wm] ≤ 1

2m .
The last inequality is because there is at most on value for wi for which W− = W+ + wi. This
holds irrespective of the particular values of the other wi′s. So Pr[ei is tied] ≤ 1

2m , and

Pr[there exists a tied element] ≤
m

∑

i=1

Pr[ei is tied] ≤
1

2

Thus Pr[minimum weight set is unique] ≥ 1
2

Now we can look at the parallel algorithm for finding a perfect matching. For each edge (ui, vj),
we pick a random weight wi,j, from [2m − 1], where m = |E| is the number of edges in G. Let
the sets Sj denote all the perfect matchings in G. Then the Isolation Lemma implies that there is
a unique minimum weight perfect matching with at least a half probability. We assign the value
xi,j = 2wi,j to the variables in the Tutte matrix M . Let D denote the resulting matrix. We use
the determinant of D to determine the weight of the min-weight perfect matching, if it is unique,
as suggested by the following lemma.

Lemma 3.2.2 Let W0 be the weight of the minimum weight perfect matching in G. Then,

• G has no perfect matching =⇒ Det(D) = 0.

• G has a unique min-weight perfect matching =⇒ Det(D) 6= 0 and the largest power of 2
dividing Det(D) is W0.

3

• G has more than one min-weight perfect matching =⇒ Det(D) = 0 or the largest power of
2 dividing Det(D) is at least W0.

Proof: If G has no perfect matching, it is clear from claim 3.1.2 that Det(D) = 0.

Now consider that case when G has a unique min-weight perfect matching. From the expression of
the determinant, we have

Det(D) =
∑

π∈P

(−1)sgn(π)Πn
i=12

wi,π(i) =
∑

π∈P

(−1)sgn(π)2
� n

i=1 wi,π(i) =
∑

π∈P

(−1)sgn(π)2w(π)

where w(π) is the weight of the perfect matching corresponding to π and P is the set of all
perfect matchings in G. Since there is exactly one perfect matching of weight W0 and other perfect
matchings have weight at least W0+1, this evaluates to an expression of the form ±2W0±2W0+1 · · ·±
other powers of 2 larger than W0. Clearly, this is non-zero, and the largest power of 2 dividing this
is W0.

Now consider the case when G has more than one min-weight perfect matchings. In this case, if the
determinant is non-zero, every term in the sumation is a power of 2, at least 2W0 . So 2W0 divides
Det(D).

We refer to the submatrix of D obtained by removing the i-th row and j-th column by Di,j. Note
that this is a matrix corresponding to the bipartite graph G\{ui, vj}. The parallel algorithm would
run as follows.

1. Pick random weights wi,j for the edges of G.

2. Compute the weight W0 of the min-weight perfect matching from Det(D) (using the parallel
algorithm for computing the determinant).

3. If Det(D) = 0, output “no perfect matching”.

4. For each edge (ui, vj) ∈ E do, in parallel,:

(a) Evaluate Det(Di,j).

(b) If Det(Di,j) = 0, output nothing.

(c) Else, find the largest power of 2, Wi,j, dividing Det(Di,j).

(d) If Wi,j + wi,j = W0, output (ui, vj).

(e) Else, output nothing.

It is clear that, if G has no perfect matching, this algorithm returns the correct answer. Now
suppose G has a unique minimum weight perfect matching, then from lemma 3.2.2, we see that
precisely all the edges in the unique min-weight perfect matching are output. To see this, consider
an edge (ui, vj) not in the unique min weight perfect matchi(P is the set of all perfect matchings
in G)ng. From the lemma, Det(Di,j) is either zero (edge is not output in this case), or Wi,j

is at least as large as the min-weight perfect matching in G\{ui, vj}. This in turn implies that
wi,j + Wi,j is strictly larger than the min-weight perfect matching (W0) of G, since the min-weight

4

perfect matching is unique and does not contain edge (ui, vj). Therefore this edge is not output.
Conversely, if an edge (ui, vj) is in the unique min-weight perfect matching, consider removing this
edge from the matching, and we get a unique min-weight perfect matching in G\{ui, vj}. So, in
this case Wi,j = W0 − wi,j and the edge is output.

Thus, we see that in case G does have a perfect matching, this algorithm outputs a correct perfect
matching with probability at least 1

2 , which is the probability that we have a unique min-weight
perfect matching (from the Isolation Lemma).

5

