1 A few notes on Lecture 14

1.1 The distance bound
Recall that we want to bound
|Zi = Zi 1| = |E[f (X1, .0, Xio1, X, Xy, 0, X))
— (X1, X, X X, X)) | X1, Xo,..., Xi]| (1)

Note that we do not want to just use the 2v/2-Lipschitz property, since that will be too weak, and will only
give us

Pr(|f — Ef] < A < exp{-A?/O(n)}.
We want something much better!

Claim 1.1

FX1, e X, Xy Xt -, X)) — F(X1s o Xio1, Xiy Xigts -0 X))
< 2(mind(X;, X;) + mind(X;, X;)).
< 2(mind(X,, X))+ mind(%,, ;)

Proof: Let A= X;,...,X;_1,Xi41,-.., X, be all the points except X; and )A(i, and let T (A) be the optimal
TSP tour on A. Note that f(A) = length(T'(A)). For any point = and set S, define d(x, S) = minyegs d(z, y).

Note that if take T(A), and to it we add two edges from X; to its closest point in A, and from )?Z to its
closest point in A, then we have an Eulerian graph on the n + 1 points AU {X;, X;} of total length at most

F(A) +2(d(Xi, A) + d(Xi, A)). (2)

Using the triangle inequality to shortcut repeated vertices gives us TSP tour of length at most (2), and hence
the length of the optimal tour on A U {X;, X;} has length

FAAU{X:, Xi}) < F(A) +2(d(X5, A) + d(X, A)). (3)

Finally, using the fact that

f(A) < fAU{X;}) < f(AU {Xz,Xz})
f(A) < FAU{X:}) < FAU{X, X0})

implies that

IFLAU{X:)) — FIAULXG))] < FAULXG, X0} — f(A)
< 2(d(X;, A) + d(X;, A)), (4)

the last inequality using (3). This is just a rephrasing of the claim that we want to prove. [ |

Corollary 1.2 Define B ={X; |j > i}. Then

f(Xla' . 7Xi—17XiaXi+17"'7Xn) - f(X17"'7Xi—17)?i7Xi+1a"'aXn) < Q(d(leB) +d()?Z7B)) (5)

Proof: The quantity on the right of (5) is larger than the quantity on the right of (4), since B C A. [ |



Lemma 1.3

|Z; — Zi_1| < 2(E[d(X;, B) | Xi] + Eld(X;, B)]). (6)

Proof: Plug in the result of Claim 1.1 into (1), and note that d(X;, B) is independent of X7, Xs,..., X;_1,
whereas d(X;, B) is independent of all X;,...X;. Simplifying gives us the lemma. ]

1.2 The Rest of the Argument

Suppose we throw down n — ¢ points randomly in U, and define the random variable @;(x) to be the distance
of z to the closest point amongst these n —i. Let R be the set of random points, and hence Q;(x) = d(z, R).
We proved that

Claim 1.4 Foranyxz €U,

o(1)
ElQ; < . 7
Qi(=)] < —= (7)
Proof: This was the geometric proof, and I am going to omit it. ]
Hence we can upper bound both E[d(X;, B) | X;] and E[d(X;, B)] by %. Finally, using (6), we get
0O(1) O(1) >
Zi—Z;—1| L2 + 8
| 1 ( —t (8)

This implies that we can set ¢; = % in Azuma’s inequality, which is much better than the bound that we
get just plugging in the 2v/2-Lipschitz-ness of f. Now >, ¢z = O(logn), and hence we get
Pr(|f — Ef| < A < exp{-A?/O(logn)}, (9)

as claimed.



