Notes from Lec 1's PDF
continued and refined
Algorithmic Gap: Does greedy do better than \(\ln n \)?

Fact: Greedy no better than \(\ln n (1 - \varepsilon) \). (even for unweighted)

Pf:

\[
\begin{align*}
\text{OPT} &= 2, \\
A(S) &= \log(2\varepsilon/2) \\
\Rightarrow \text{gap} &= \frac{\log_2 n - 1}{2} \\
&\leq \frac{\ln n}{2}.
\end{align*}
\]

To set \(k \ln n \), use sets \(S_i \) where \(\text{OPT} = k \) vertically.

But each other set covers \(\frac{1}{k} \) at remainder.

\[
\Rightarrow \# \text{sets} = \left(\frac{1}{k} \right)^n. \Rightarrow \text{gap} = \frac{\log(P(k))n}{k} = \frac{\ln n}{k \ln(1 - \varepsilon)}
\]

but \(\ln(1 + \varepsilon) = \Theta(\varepsilon^2) \)

for \(\varepsilon \) small.

So another algorithm?

Before that: am greedy also for weighted case

At each step, pick set that \(\max \left(\frac{\text{coverage}}{\text{cost}} \right) \).

Thus: Greedy is \(\Theta(\ln n) \)-approximation for weighted set cover.

Pf: (Sketch) Same idea as before. Show that if costs \(c_1, c_2 \ldots c_k \)

\[
\begin{align*}
\text{OPT} &\leq n \left(1 - \frac{c_1}{\text{OPT}} \right) \left(1 - \frac{c_2}{\text{OPT}} \right) \ldots \left(1 - \frac{c_k}{\text{OPT}} \right) \\
&\leq n \exp \left(\frac{\sum c_i}{\text{OPT}} \right),
\end{align*}
\]

\(\text{etc.} \)
A charging proof for weighted set cover.

Greedy: Pick set that has the max \(\text{new coverage} \) \(\frac{n_t - n_{t-1}}{C(S_t)} \), until all elements covered.

Claim: \(\text{cost} \leq H_n \cdot \text{cost}(\text{opt}) \).

Proof: wts. \(S_t \) = \(t \)th set picked, \# elements uncovered before pick \(S_t \). \(n_t \) after pick \(S_t \).

\[\Rightarrow \text{by greedy choice } \frac{n_t - n_{t-1}}{C(S_t)} \geq \frac{n_t}{\text{opt}} \]

\[\Rightarrow C(S_t) \leq \text{opt} \cdot \frac{n_t - n_{t-1}}{n_t} \]

\[\Rightarrow \sum_{t} C(S_t) \leq \text{opt} \left[\frac{n_0 - n_1}{n_0} + \frac{n_1 - n_2}{n_1} + \ldots \right] \]

\[\text{ALG} = \text{opt} \left[\frac{1}{n} + \frac{1}{n} + \ldots + \frac{1}{n} \right] \]

\[\leq \text{opt} \left[\frac{1}{n} + \frac{1}{n} + \ldots + \frac{1}{n} \right] \]

\[= \text{opt} \cdot H_n. \]

A different view: charge \(\text{cost} \) of \(C(S_t) \) to all elements newly covered by it, equally.

Now: Consider set \(S^* \) in \(\text{opt} \), covers some elements \(e_1, e_2, \ldots , e_t \)
change to \(e_i \leq \frac{C(S^*)}{t} \) (wlog \(t \) set picked, \(S^* \) at least as good as \(S^* \))

\[b_t \leq \frac{C(S^*)}{t-1} \]

\[\Rightarrow \text{total charge} \leq \sum_{S^*} \frac{C(S^*) + H_n}{t} \Rightarrow \text{total charge to elements covered by } S^* \leq \text{opt} \cdot H_n \]
Linear Programming-based Algos:

Idea: Relax and Round

1. Write an IP for Set Cover. \((IP = \text{Integer (Linear) Program}) \)
2. "Relax" it to an LP \((LP = \text{Linear Program}) \)
3. Solve this LP.
4. "Round" the fractional solution to integers.

Usually:
1. \(IP(I) = \text{Opt}(I) \).
2. \(LP(I) \leq IP(I) \).
3. \(\text{Alg}(I) \leq \alpha \cdot LP(I) \implies \text{Alg}(I) \leq \alpha \cdot \text{Opt}(I) \).

Set Cover: variable \(x_s \in \{0, 1\} \) for each set \(s \in \{ S_1, S_2, \ldots, S_m \} \).

\[
\begin{align*}
\min & \sum S_s x_s \\
\text{subject to} & \sum x_s = 1 \forall e \in U \\
& x_s \in \{0, 1\} \\
& x_s \geq 0
\end{align*}
\]

Round: Imagine each \(x_s \) as a prob. value. \((\text{Fact: } x_s \in [0,1], \text{no reason for } x_s \text{ to be integer}) \)

Also: \(\left[\begin{array}{c}
\text{For } T \text{ times} \\
\forall s \in F \\
\text{select } S \text{ independently up } x_s \\
\end{array} \right] \) T rounds a sampling
What if this is not a feasible solution?

Clean-up: For element \(e \), pick cheapest set covering \(e \) if \(e \) not covered by sampling.

Lemma: \(E[\text{cost of solution}] \leq T \cdot LP(I) + \left[\sum_{e \in S} (\text{cheapest set covering}) \right] e^{-T} \)

Pf: \(E[\text{cost of each round}] = \sum_{c} c_i \cdot \Pr[S \text{ picked}] = \sum_{c} c_i x_c = LP(I) \)

\[\Pr[\text{en not covered in T rounds}] \leq e^{-T} \]

Now use linearity of expectation again.

Hence set \(T = \frac{1}{\ln n} \).

\[E[\text{cost}] \leq (\ln n) \cdot LP + \frac{1}{\ln n} \cdot LP \]

\[= (\ln n + 1) \cdot LP \]

(b/c LP value \(\geq \) cheapest set covering for any \(e \))

HW: Show that if set size \(B \), then LP randomly gives \(O(\ln B) \) apx.

Greedy too (but see more later).

Picture

```
\[ \text{OPT}(I) \]
\[ \leq \log n \]
```

\[\text{LP}(I) \quad \Rightarrow \quad \text{IP}(I) \quad \Rightarrow \quad \text{Alg}(I) \]

\[\Rightarrow \text{increase} \]
Ask 2 questions:

1. **Algorithmic gap**: does instance where \(\frac{A_f(L)}{\text{OPT}(L)} = \Omega(\log n) \).

2. **Infeasibility gap**: does instance \(\frac{\text{OPT}(L)}{\text{LP}(L)} = \Omega(\log n) \).

\(\text{LP} \) shows that using this approach cannot beat the log-approximation.

\[\text{no matter what we do.} \]

[as long as we relate ourselves to the LP value, of course!]

Also gap: \(\text{see in HW} \).

Infeasibility gaps:

- Take \(L = \frac{3}{2} \times \{ 0, 1, \ldots, d \} \times \{ \frac{d}{2} \} \)

\(n = |U| = (\frac{d}{2})^d = \Theta\left(\frac{2^d}{\sqrt{d}}\right) \).

- \(\text{Set 6: all "dictator" sets } S_i = \frac{d}{2} \times \{ 0, 1 \} \times \{ \frac{d}{2} \} \).

\(\text{cost} = 1. \)

- \(\text{OPT} \geq \frac{d}{2} + 1 \) else \(\exists \) element not covered.

- \(\text{LP value: set } \frac{2}{d} \text{ on each set } S_i \) (ie. \(x_i = 1 + \epsilon S \)).

\(\Rightarrow \) total LP value = \(d \times \frac{2}{d} = 2 \).

\(\Rightarrow \) infeasibility gap \(\geq \frac{d}{2} \times \left(\frac{d}{2} + 1 \right) \), \(\Rightarrow \Theta(d) = \Theta(\log n) \).

Fact: can do better, get HW for infeasibility gap as well.
Derandomizing the Randomized Aho - (Pippage Rounding)

\[\text{Sp s.t. } x^* = \text{OPT fractional LP soln.} \]
\[z^* = \sum \zeta \]
\[\text{LP } = \sum \zeta x^* \]

Fact 1: LP \(\geq \) OPT (relaxation).

In "idealized" rounding:

Pick each set \(S \) up \(x_s \), indep.

Fact 2:
\[
E[\text{coverage}] = \sum_{s \in \epsilon} (1 - e^{-\epsilon}) \geq \sum_{s \in \epsilon} (1 - e^{-2\epsilon}) \geq \sum_{s \in \epsilon} (1 - e^{-\epsilon})
\]
\[
\text{LP} \geq \sum_{s \in \epsilon} f(x) = \sum_{s \in \epsilon} f(x)
\]
\[
f(x) = \frac{1}{|S|} f(x)
\]

Fact 3: But only guarantees that we pick \(k \) elements w/ respect to optimized.

Fact 4: If solution is integral, then coverage = \(f(x) \).

and set = \(k \) sets

So idea:

\[x^* \rightarrow x_0 \rightarrow x_{\epsilon} \rightarrow \ldots \rightarrow x_{\text{int}} \]

Integral.

\[f(x^*) \leq f(x_{\epsilon}) \leq f(x_{\text{int}}) \leq f(x_{\text{int}}) \]

\[\geq (1 - \epsilon) \text{LP} \]

\[\geq (1 - \epsilon) \text{OPT} \]

\[\geq \text{fact 1} \]

\[\text{but this is integral so actually tells you soln.} \]
How to find (increase integer coordinates)?

Assume \(\sum x_s = k \) else raise some \(x \) until sat.

If \(x \) fractional, has at least 2 fractional sets

say \(x_{s_1}, x_{s_2} \)

"Move along line \(e_{s_1} - e_{s_2} \)"

Consider solution \(x^* \leftarrow x + \varepsilon (e_{s_1} - e_{s_2}) \)

Let \(g(\varepsilon) = f(x^*) \) be univariate function in \(\varepsilon \).

- \(g(0) = f(x^0) = f(x) \)

- \(g(\varepsilon) = \sum f_\varepsilon (x^*) = \sum f_\varepsilon (x^0) + \sum f_\varepsilon (x^0) + \sum f_\varepsilon (x^0) + \sum f_\varepsilon (x^0) \)

\[
1 - \left[\prod_{s \neq s_1} (1-x_{s}) \right] (1-x_{s_1}-\varepsilon)
\]

= linear fn in \(\varepsilon \).

Also linear fn in \(\varepsilon \)

Claim: \(g(\varepsilon) \) is convex in \(\varepsilon \).

\[
\Rightarrow \text{consider } x_{s_0} \text{ st } x_{s_1} \text{ reaches 1 or } x_{s_2} \text{ reaches 0}
\]

\[
-x_{s_0} \text{ st } x_{s_1} \text{ reaches 0 or } x_{s_2} \text{ reaches 1}
\]

One must be at least as high as \(x_0 \)!