UNIQUE GAMES CONJECTURE

-Strengthening of $P \neq NP$ hypothesis
- posits hardness of a natural problem
- yields optimal hardness results for Max-Cut, Vertex Cover, ...

- truth not yet known
- Amazingly rich theory with interplay between
 1) hardness of approx.
 2) algo design via SDPs.
 3) Methods from Analysis of Boolean Functions, Geometry...
The Problem & the Conjecture

Max 2-LIN(p) \to \text{field.}
\Rightarrow \text{# vars in each equation}

Input: equations of the form

\{ X_i + X_j = b \text{ mod } p \}

Goal: Satisfy max frac of them

Def (Value): max frac of constraints satisfiable

Random Assignment: \frac{1}{p}

Theorem: If value = 1, can find
a sat assignment in poly time.

Proof: Solve linear equations via Gaussian elimination --

CONJECTURE [Khot’02]

\[\forall \varepsilon > 0, N \text{ large enough,} \]

\[(1-\varepsilon, 3) - \text{MAX 2LIN}(p) \text{ is NP-hard.} \]

"It is NP-hard to "find an \(\varepsilon \) sat assignment for a 1-\(\varepsilon \) sat instance".

Best poly time algo: \(1-\varepsilon, 1-O(\sqrt{\varepsilon \log k}) \)

Can beat brute-force search:
Arora-Bazak-Steuver’10

2^{n^3} time algo, if $\text{opt} = 1-\varepsilon$, round $= \frac{1-\varepsilon}{16}$.

"indep of alphabet size"

Lots of interesting work on both algs & lower bounds...

Most recently:

Thm [2018] [2-to-2 Games Thm]

$(\frac{1}{2}, \varepsilon)$-UG is NP-Hard.

$1-\varepsilon \implies \text{UGC}$.
Today & next 2 classes

→ a glimpse of this theory

We will prove hardness of Max-Cut assuming the UGC.

We will do it in a way that shows that there's a principled theory of such optimal hardness reductions. And this theory directly builds hardness reductions from Integrality Gaps for SDP for a large class of problems.

FAILURE OF SDP → UG Hardness...
Theorem [Khot Kindler Mossel Odonnell ’04]

\[f \approx 0 \implies d_{GW} + \varepsilon \text{ approx.} \]

\[
\text{Max-Cut is NP-Hard assuming the U.G.C.}
\]

\[
\min_{\varepsilon > 0} \frac{\pi(1/2 - \varepsilon/2)}{\pi(1/2)}
\]

Like the examples we saw in last lecture, this theorem we will prove this theorem via "gadget" reductions

"Gadget Reductions": \(R : P_1 \rightarrow P_2 \)

\(P_2 \) instance = "local transformation" of \(P_1 \) instance

- \(\text{modify constant size portions} \)
- \(\text{local} \)

E.g. Reduction for Vertex Cover that replaces each clause by 7 vertices
each edge of the resulting IS instance depends only on 2 clauses in the input 3SAT instance.

Our gadgets need to get the exact \(\frac{1}{2} - \frac{1}{2} \theta \rightarrow \frac{\text{arc-cos}(\theta)}{\pi} \) gap. So need some "geometry" to sharpen.

In fact, our gadgets will in a precise sense come from our Integrality Gap & Rounding Gap Instances for Max Cut.

Let me remind you of those...

Both were "embedded graphs" → each vertex came with a vector labeling it.
Integral Gap (Feige Schechtman graph)

Vertices = (discretization) of unit sphere in \(d \)-dim.

Edge distribution:
- pick \(\mathbf{u}, \mathbf{v} \) uniformly from \(S^{d-1} \) conditioned on \(\langle \mathbf{u}, \mathbf{v} \rangle \leq \theta_\ast \).

\[
\text{SDP OBJ} : \mathbb{E} \left[\frac{1}{2} - \frac{1}{2} \langle \mathbf{u}, \mathbf{v} \rangle \right]
\]

\[
\text{edge} = \frac{1}{2} - \frac{1}{2} \theta_\ast.
\]

Analysis:
1. Hemisphere cuts are optimal for this graph.
2. Hemisphere cuts have value \(\sim \frac{\text{arc-cos}(\theta_\ast)}{\pi} \).

Same analysis as our rounding.
Rounding Gap

1) Vertices: Corners of hypercube \(\{ \pm \frac{1}{\sqrt{d}} \} \) scaled down to be unit vectors.

2) Edges: 1) Pick \(\vec{u} \) at random.

2) Pick \(\vec{v} \) by flipping each coordinate of \(\vec{u} \) independently with probability \(\frac{1}{2} - \frac{1}{2} \delta \).

3) Output \(\{ \vec{u}, \vec{v} \} \).

- SDP OBJ = \(\frac{1}{2} - \frac{1}{2} \delta \).
- True Max-Cut: also \(\frac{1}{2} - \frac{1}{2} \delta \).

\(D_i = \{ \vec{u} \mid \vec{u}_i = \pm \frac{1}{\sqrt{d}} \} \).

\(\Pr[D_i(\vec{u}^2) \neq D_i(\vec{v}^2)] = \frac{1}{2} - \frac{1}{2} \delta \) for \(\vec{u}, \vec{v} \) on edge.
Our gadget for Max-Cut \(\to \) hypercube graph.

To analyze cuts in such graphs, useful to adopt "function view".

Every subset of vertices \(S \) corresponds to a function \(f : \{\pm 1\}^d \to \{\pm 1\} \).

- \(f(x) = +1 \) if \(x \in S \).
- \(f(x) = -1 \) if \(x \notin S \).

Value of cuts
\[
\Pr \left[f(x) \neq f(y) \right] \quad \text{for } \{x, y\} \text{ edge distn}
\]

Need machinery to reason about such quantities.
BASIC FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

\[f : \mathbb{B}^n \rightarrow \mathbb{R} \]

Let \(f : \mathbb{B}^n \rightarrow \mathbb{R} \) be a Boolean function.

Fourier analysis ~ write \(f \) as a linear combination of some nice functions, use it to prove properties of \(f \).

INNER PRODUCT

Let \(f : \mathbb{B}^n \rightarrow \mathbb{R} \)

\(g : \mathbb{B}^n \rightarrow \mathbb{R} \)

\[\langle f, g \rangle = \mathbb{E} f(x) \cdot g(x) \]

\[x \in \{-1,1\}^n = \mathbb{E}_x f(x) \cdot g(x) \]
“treat \(f, g \) as vectors of length \(2^n \), take inner products, rescale by \(2^n \). Note: \(\sum_i x_i = 0 \iff f \)

\[
\text{NORM} \\
\|f\|_2^2 = \langle f, f \rangle = \sum_i f(x_i)^2
\]

\[\text{Def (Parity functions/Monomials)}\]

For any \(S \subseteq [n] \),

\[X_S = \prod_{i \in S} x_i \] is the "parity" function or monomial on \(S \).

If odd \# bits in \(S \) are \(-1\), then \(-1\) even \# bits in \(S \) are \(-1\), then \(1\)
Observation [Orthonormality]

\[\mathbb{E}_x X_s = 0 \quad \text{if } S \neq \emptyset \]

If \(S \neq T \),
\[\langle X_s, X_T \rangle = 0. \]

If \(S = T \),
\[\langle X_s, X_s \rangle = \|X_s\|_2^2 = 1 \]

Proof:

\[X_s \cdot X_T = \prod_{i \in S} x_i \cdot \prod_{i \in T} x_i \]

\[= \prod_{i \in S} x_i^2 \cdot \prod_{i \in T} x_i \]

\[= \prod_{i \in S \Delta T} x_i \]

If \(S \Delta T \neq \emptyset \),
\[\mathbb{E}_x \prod_{i \in S \Delta T} x_i = \mathbb{E}_x \prod_{i \in S \Delta T} x_i \]

\[= 0 \]
Observation:
The set of functions \(\{ X_s \mid s \leq [n] \} \) form an orthonormal basis w.r.t. the inner product above.

Proof: We proved that each \(X_s \) has length: \(\|X_s\|^2_2 = 1 \) & \(\forall s \neq t \langle X_s, X_t \rangle = 0 \) & there are \(2^n \) such functions & the demn of space \(\leq 2^n \).

\[\square \]

Thus each \(f \) can be expanded as demn comb. of \(X_s \).
Definition (Fourier Transform)

\[f: \{-1,1\}^n \to \mathbb{R} \]

\[\hat{f}(s) = \sum_{s \in \{n\}} \hat{f}(s) \cdot x_s(x) \]

"writing for the basis of \(x_s\)."

Observation

Let \(f: \{-1,1\}^n \to \mathbb{R} \). Then

\(\forall s, \ \hat{f}(s) = \mathbb{E} f(x) \cdot x_s \)

\(\downarrow \)

Correlation of \(f \) & \(x_s \).
Proof:

\[f(x) = \sum_{S} \hat{f}(S) \cdot x_{S}(x) \]

\[\mathbb{E} f(x) \cdot x_{T}(x) = \mathbb{E} \sum_{S} \hat{f}(S) \cdot x_{S}(x) \cdot x_{T}(x) \]

\[= \sum_{S} \hat{f}(S) \cdot \mathbb{E} x_{S}(x) \cdot x_{T}(x) \]

\[= \hat{f}(T) \]

Observation: \(f : \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R} \)

Then, \[\mathbb{E} f(x)^{2} = \sum_{S} \hat{f}(S)^{2} \]
Proof: \(f(x) = \sum_{s} \hat{f}(s) \cdot x_s(x) \)

\[
\mathbb{E} f(x)^2 = \frac{1}{2^n} \sum_{s,t} \hat{f}(s) \hat{f}(t) \\
= \sum_{s,t} \hat{f}(s) \hat{f}(t) \\
\mathbb{E} x_s \cdot x_t \\
= \sum_{s} \hat{f}(s)^2.
\]
Influence of Functions

Inf_i(f) : influence of i-th variable on f.

Def (for Boolean valued functions)

\[f : \{-1,1\}^n \rightarrow \{-1,1\} \]

\[\text{Inf}_i(f) = \Pr_{x \in \{-1,1\}^n} \left[f(x) \neq f(x^{(i)}) \right] \]

\[= \mathbb{E}_{x \in \{-1,1\}^n} \frac{1}{4} (f(x) - f(x^{(i)}))^2 \]

"prob that at a random x, flipping i-th bit changes the value of f"
Lemma

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then,

$$\frac{1}{4} \sum_{x} (f(x) - f(x^{(i)}))^2 = \sum_{S \ni i} \hat{f}(S)^2$$

Proof: $f(x) = \sum_{S} \hat{f}(S) \cdot x_S$

$$f(x^{(i)}) = \sum_{S} \hat{f}(S) \cdot x_S^{(i)}$$

$$= \sum_{S \ni i} \hat{f}(S) \cdot x_S - \sum_{S \ni i} \hat{f}(S) \cdot x_S$$

Thus, $f(x) - f(x^{(i)}) = 2 \sum_{S \ni i} \hat{f}(S) \cdot x_S$

or $\frac{1}{2}(f(x) - f(x^{(i)})) = \sum_{S \ni i} \hat{f}(S) \cdot x_S^{(i)}$
Parseval: \[
\int g(x)^2 = \sum_{s\in\mathbb{I}} \hat{f}(s)^2
\]
\[
\frac{1}{4} \int \left(f(x) - f(x^{(i)}) \right)^2
\]

Examples:

1) Dictator Function

\[f(x) = x^j \rightarrow \text{depends only on } j\text{th bit.} \]

\[\text{Inf}_j(f) = 1! \quad \text{Very influential} \]

2) \[f(x) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) \quad \text{"mean function"} \]

\[\frac{1}{4} \int \left(f(x) - f(x^{(i)}) \right)^2 = \frac{1}{n^2} \quad \text{"low influence function"} \]
3) $f(x) = \text{MAJ}(x), \; n: \text{odd}$

$$= \text{Sign} (\sum_i x_i).$$

When does flipping a bit change the value of MAJ?

Ans: when $\sum_i x_i = 1$

or $\sum_i x_i = -1$.

At such an x, any bit flipped will change the value.

$\text{Prob} [\sum_i x_i = 1 \text{ or } -1] = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{n/2} \frac{1}{2^n}$

All n bits have influence $\sim \frac{1}{\sqrt{n}}$.

4) **Parity Function**
\[f(x) = \prod_{i=1}^{n} x_i \]

flipping any bit at any \(x \) changes the output of \textsc{parity function}.

Every bit has influence 1.

\[\text{Inf}_i(f) = 1 + i \]

LOW DEGREE INFLUENCE

Def

\[\text{Inf}_i^c(f) = \sum_{S \in i} \hat{f}(S)^2 \]

"discounting the effect of higher degree parity functions."
Obs: only C bits can be influential now.

\[\text{Inf}_{i}(x_5) = 0 \text{ if } |S| > C \]

So, if $|S|$ is large, the low degree influence is small.

\[\text{Lemma (Only a small \# vars can be influential)} \]

Let $f: \{-1,1\}^n \to [-1,1]$. Then, for any $C > 0$

\[|\{i : |\text{Inf}_{i}^C(f) \geq 3\}| \leq \frac{C}{3} \]
Proof
\[
\sum_{i=1}^{n} \text{Inf}_{i}(f)
\leq \frac{c}{3}
\]
\[
= \sum_{i=1}^{n} \sum_{s \in S_{i}, |s| = 1} \hat{f}(s)^{2}
\leq c \sum_{s} \hat{f}(s)^{2} \leq c
\]
\[
\text{since } \sum_{s} \hat{f}(s)^{2} = \frac{\sum_{x} E(f(x)^{2})}{c} \leq 1
\]
So, by Markov's inequality,
\[
\text{frac of } i : \text{Inf}_{i}(f) \geq \varepsilon
\leq \frac{c}{3}
\]