Lecture 13: Facility Location Problems (Cont'd).

Last time: local search for k-medium, constant approx.

today: LP rounding algorithms for facility location / k-medium.

recall: same setup (almost) for both problems:

metric (V,i,d). clients C ∈ V

\[\text{fac loc: open } F \subseteq V, \quad \text{cost } = \sum_{i \in F} f_i + \sum_{j \in C} d(j,F) \]

\[\text{kmed: open } (F, k), F \subseteq V \quad \text{cost } = \sum_{j \in C} d(j,F). \]

local search for fac. loc can also give O(1) approx.

- Today see LP-based solutions that do better, also more versatile.

 and give better apx. (comparable to LP relaxation as opposed to optimal integer soln.).
Focus on Fac-Loc for now.

How to solve?

(1) Cast as set cover. Each set given by a center and some subset of clients in a set. See Exercise in HW1.

goto $O(\log n)$ approx!

Better? Yes.

Today: write an LP. round it (round and round again).

\[\text{LP:} \quad \min \sum f_i y_i + \sum_{ij} d_{ij} x_{ij} \]
\[\text{st:} \quad \sum_i x_{ij} = 1 \quad \forall i \in C \]
\[x_{ij} \leq y_i \quad \forall i \in V, \forall j \in C \]
\[x_{ij}, y_i \geq 0. \]

Thm: Can round and get solution $F \leq V$ st.

\[\text{cost}(F) = \sum_i f_i + \sum_{j \in C} d(G, F) \]
\[\leq \text{constant} \cdot \text{LP value}. \]

best known: 14.6 or 80.

Thm: Integrality gap is at least 1463.

Small gap here. But focus will be on the alg. ideas, not the actual numerical values.
In previous applications we've not considered the dual program, but that gives a lot of information as well.

\[
\begin{align*}
&\text{max} & \sum_{j \in C} \alpha_j \\
\text{subject to} & & \alpha_j - \beta_{ij} \leq d_{ij} & \forall ij \in E
\end{align*}
\]

dual variable per client

dual variable per client-facility pair

\[
\sum_{j \in C} \beta_{ij} \leq f_i & \forall i \in V.
\]

\[
\beta_{ij} \geq 0, \alpha_j \geq 0.
\]

but really set \(\alpha_j = \min_{i \in V} \left(\frac{d_{ij} + \beta_{ij}}{\beta_{ij}} \right) \) \(\forall i \in V \)

and \(\beta_{ij} \) so non-negative.

We will interpret this LP in greater detail soon, but for right now, just recall basic facts about LP duality.

\[\begin{align*}
\text{for:} & \quad \min c^T x \\
(\text{P}) & \quad Ax \leq b \quad x \geq 0
\end{align*}\]

\[\begin{align*}
\Rightarrow & \quad \max b^T y \\
(\text{D}) & \quad A^T y \leq c \\
& \quad y \geq 0
\end{align*}\]

Then (Weak duality): if \(x, y \) are feasible LP solutions to \(\text{P} \), \(\text{D} \) then \(c^T x \leq b^T y \).

\[\begin{align*}
\Rightarrow & \quad (A^T y)^T x = y^T A x \geq y^T b \quad \text{primal feasibility} \\
& \quad \text{and} \ x \geq 0 \quad \text{and} \ y \geq 0.
\end{align*}\]

Then (Strong duality). If \(x^* \) feasible primal & dual solution, then \(x^* \) optimal feasible, \(\alpha^* \geq 0 \).

Optimal feasible, \(\alpha^* \geq 0 \).

Not giving proof for now, see, e.g. Schrijver or Matoušek - Gärtner or...

Corollary: (Complementary slackness). For \(x^*, y^* \) optimal primal/dual solutions.

\[\begin{align*}
& x^T (A^* y^* - c) = 0 \quad \text{and} \ y^T (A^* x^* - b) = 0.
\end{align*}\]

Pf: both inequalities here must be tight if \(c^T x = b^T y \). ☺
In other words, if a dual variable is non-zero then the corresponding primal is constraint is tight.

As example: SPs (x,y), (x,β) optimal solutions

$$x_j > 0 \text{ then } d_j - \beta j = d_j = \beta j + d_j$$

$\text{BTW: other implications of strong duality.}$

Any dual \preceq optimal dual LP soln \preceq optimal primal LP soln \preceq optimal primal IP soln before relaxing.

$\text{LP is relaxation of IP}$

$dual$ is like an accounting device.

So suffice to show: $\text{Solution to facility locating with cost} \leq c \cdot \text{dual value.}$

$(\text{and dual solution})$

* Solve the LP, and dual optimally. (x,β) solutions.

* For each client $i \in C$,

 define its “neighbors” $N(i) = \{ i \in V / x_{ij} > 0 \}$.

 $\text{Fact: if } i \in N(j) \text{ then } d_j = \beta j + d_j.$

* What if we open the cheapest of these facilities and send j there?
consider some disjoint clusters \(C \). A clique s.t. \(N(j) \cap N(j') = \emptyset \) for \(j, j' \in C \)

then opening these cheapest facilities in each cluster gives cost

\[
\sum_{j \in C} \left(\text{cost of cheapest facility in } N(j) + \text{dist of } j \text{ to this facility} \right).
\]

Hmm... how to account for this cost?

Indeed, s.t. \(i(j) \) is facility cheapest in \(N(j) \), then

\[
\sum_{i \in N(j)} x_{ij} \leq \sum_{i \in N(j)} f_{ij}x_{ij} \leq \sum_{i \in N(j)} f_{ij}y_i = \text{LP cost inside that cluster.}
\]

\(\text{min} \), \(\text{average} \), \(\text{subject to} \)

\(X_{ij} \; \text{s.t.} \; x_{ij} \leq y_i \text{ constraint} \)

\(\Rightarrow \text{bk clusters are disjoint,} \)

\[
\sum_{i \in N(j)} x_{ij} \leq \text{LP cost for opening facilities.}
\]

What about connecting costs?

\[
\text{if } i \in N(j) \text{ then } d_{ij} = B_{ij} + d_{ij} \geq d_{ij} \Rightarrow d_{ij} \leq d_{ij} \geq 0.
\]

\(B_{ij} \geq 0 \), \(\text{dual contribution of } i \)

\(\Rightarrow \text{for centers of these clusters, } \sum_{i \in N(j)} x_{ij} \leq \text{their dual contribution.} \)

But how to do this when clusters are not disjoint ???

- Pick an independent / disjoint set \(A \) of clusters of "small" radius.

\(\text{selected} \)

- Open cheapest facility within each cluster \(\text{(has low cost, already seen)} \)

- Show that routing clients of unselected clusters can be sent to these open facilities also with small cost.
Algorithm: Solve LP and dual.

Sort clients \(s \) so \(\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n \).

\(S \leftarrow \emptyset \).

\(\text{for } j = 1 \text{ to } n \)

\[
\begin{cases}
\text{if } N(j) \text{ is disjoint from all } N(j'), j' \in S \text{ }
\end{cases}
\]

\(S \leftarrow S \cup \{ j \}, \text{open cheapest facility in } N(j). \)

So open cheapest facilities in \(\bigcup_{j \in S} N(j) \).

- Facility cost: \(\sum_{j \in S} \min_{i \in N(j)} f_i \leq \sum_{j \in S} \sum_{i \in N(j)} f_i x_{ij} \leq \sum_{j \in S} f_j x_{ij} \leq \text{LP primal} \)

- connect arcs for \(j \in S \).

\(d_{ij} \leq \alpha_j \) because distance from \(j \) to \(F \)

\(\leq \text{distance from } j \text{ to open fac in } N(j) \)

\(\leq \alpha_{j'} \). (as above).

- What about \(j \notin S \).

Must be b/c \(N(j) \cap N(j') \neq \emptyset \) for \(j' \in S \)

say \(i \) liest

and cheapest fac in \(N(j') \) opened

\(d(j, i) \leq d(j, i') + d(j', i) + d(j', i') \)

\(\leq \alpha_i + \alpha_j + d_{j'} \leq 3 \alpha_j \)

by completeness.

by sorted order
Overall: Facility opening cost \leq LP value

Connection cost ≤ 3. Dual value $\leq 3 \cdot LP$ value

$\Rightarrow 4$-apx

Moral of Story: properties of dual solution / relationship to primal
allowed us to get quick apx-algo for Facility Location

- Deterministic rounding
- Clustering ensured that facility opening costs small.
 - Divis ensured that connection costs for non-cluster centers small.

What is the integrality gap? Showed upper bound ≤ 4. Better? Yes.

Here is a randomized rounding idea.

- Having picked a set S of cluster centers, open one facility randomly.

 - $\forall j \in S$, Pick $i \in N(j)$ w/ X_{ij} (recall $\sum_{i \in N(j)} X_{ij} = 1$ so prob. dist).

 - For $i \notin N(j)$, pick indep $y_i = \sum_{j \in S} X_{ij}$ so pick one facility in each such set $N(i)$.

 - $E[\text{facility cost}] = \sum_{j \in S} E[\sum_{i \in N(j)} X_{ij}] = \sum_{j \in S} f_j X_{ij} \leq LP$ value.

 - Again, distance of each $j \in S$ to closest fac $\leq d_j$ is dual contribution.
What about \(j \neq 5 \),

since \(j \neq 5, \exists j \in S \iff \nu(j) \neq 0 \)

and \(\alpha_i \leq \alpha_j \)

\(\Rightarrow \) overall connect in cost (in expectation) \(\leq (1 + \frac{2}{\epsilon}) \sum_j \alpha_j = (1 + \frac{2}{\epsilon}) \text{dual value} \)

\(\Rightarrow \) integrality gap \(\leq 1 + (1 + \frac{2}{\epsilon}) \leq 2.7 \text{something} \)

Can save the "1 + .." loss as well to get \((1 + \frac{2}{\epsilon})\). See the [WS10] book.

And more ideas, but not today.

Let's see a different "primal-dual" way to use duality next time.